The Alkali Metal Is Lithium Patents (Class 429/322)
  • Patent number: 10868293
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: December 15, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10862171
    Abstract: Methods for making solid-state laminate electrode assemblies include methods to prevent devitrifying and damaging a lithium ion conducting sulfide glass substrate during thermal evaporation of lithium metal, as well as methods for making thin extruded lithium metal foils.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 8, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10858263
    Abstract: Nanosized cubic lithium lanthanum zirconate is synthesized by forming a solution including an organic compound and compounds of lithium, lanthanum, and zirconium; drying the solution to yield a solid; and heating the solid in the presence of oxygen to pyrolyze the organic compound to yield a product comprising nanosized cubic lithium lanthanum zirconate.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: December 8, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jon Mark Weller, Candace Chan
  • Patent number: 10818965
    Abstract: Disclosed is a ceramic material having a formula of LiwAxM2Re3-yOz, wherein w is 5-7.5; wherein A is selected from B, Al, Ga, In, Zn, Cd, Y, Sc, Mg, Ca, Sr, Ba, and any combination thereof; wherein x is 0-2; wherein M is selected from Zr, Hf, Nb, Ta, Mo, W, Sn, Ge, Si, Sb, Se, Te, and any combination thereof; wherein Re is selected from lanthanide elements, actinide elements, and any combination thereof; wherein y is 0.01-0.75; wherein z is 10.875-13.125; and wherein the material has a garnet-type or garnet-like crystal structure. The ceramic garnet based material is ionically conducting and can be used as a solid state electrolyte for an electrochemical device such as a battery or supercapacitor.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: October 27, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Jeffrey Sakamoto, Travis Thompson
  • Patent number: 10811725
    Abstract: Provided is a method of producing a sulfide solid electrolyte with which the capacity retention of an all-solid-state battery can be improved. The method of producing a sulfide solid electrolyte comprises synthesizing material for a sulfide solid electrolyte from raw material for an electrolyte; and after said synthesizing, heating the material for a sulfide solid electrolyte in a flow of a gas at a temperature of no less than a melting point of elemental sulfur, the gas being able to form a chemical bond with the elemental sulfur.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 20, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahiro Iwasaki, Takuo Yanagi
  • Patent number: 10784505
    Abstract: A lithium sulfide (Li2Sw)-lithium phosphorus sulfide (LixPySz) composite, electrochemical cells comprising the same, and methods for making the same are described herein. By the mechanochemical method described herein, the Li2Sw—LixPySz composite can be formed and used as the active material in a positive electrode for a variety of electrochemical cells. It is shown herein that the composite is an electrochemically active cathode material. Further, it has been shown that the Li2Sw—LixPySz composite shows increased resistance to decomposition and H2S generation than Li2S.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: September 22, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Timothy S. Arthur, Patrick J. Bonnick, John Muldoon, Erika Nagai
  • Patent number: 10777845
    Abstract: A solid-state electrolyte including an ion-conducting inorganic material represented by the formula Li1+yZr2?xMex(PO4)3 where 2>x>0, 0.2>y>?0.2, and Me is at least one element from Group 14, Group 6, Group 5, or combinations thereof.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 15, 2020
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Cory O'Neill, Bin Li, Alex Freigang
  • Patent number: 10770759
    Abstract: Provided is a method of manufacturing a lithium ion secondary battery. The method includes a step of initially charging the battery. The step includes: a first step of charging the battery such that a voltage Vt of the battery is increased to a first voltage Vh which is in a lower decomposition range Ad; a second step of holding the voltage Vt of the battery at the first voltage Vh; and a third step of charging the battery to a second voltage Ve, which is higher than the first voltage Vh, after the second step.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: September 8, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Miura, Masanori Kitayoshi
  • Patent number: 10770692
    Abstract: An example system includes an enclosure of a mobile computing device, where the enclosure includes an external surface and an internal surface. The system also includes a lithium-based battery having a plurality of battery layers deposited on the external surface of the enclosure such that the enclosure is a substrate for the plurality of battery layers. The plurality of battery layers include at least (i) a first conductive layer plated on a portion of the external surface of the enclosure, where the first conductive layer is configured as a cathode current collector of the lithium-based battery, and (ii) a second conductive layer plated on a respective portion of the external surface of the enclosure, where the second conductive layer is configured as a portion of an anode current collector of the lithium-based battery.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: September 8, 2020
    Assignee: Google LLC
    Inventors: Ramesh C. Bhardwaj, Tai Sup Hwang
  • Patent number: 10714749
    Abstract: A high-rate lithium cobaltate cathode material, which contains a multi-channel network formed by fast ionic conductor Li?M??O?, mainly consists of lithium cobaltate. The lithium cobaltate is melted together with the fast ionic conductor Li?M??O? in the form of primary particles to form secondary particles. Besides, the lithium cobaltate is embedded in the multi-channel network formed by fast ionic conductor Li?M??O?. The element M? in Li?M??O? is one or more of Ti, Zr, Y, V, Nb, Mo, Sn, In, La, W and 1???4, 1???5, 2???12. The lithium cobaltate cathode material is mainly obtained by uniformly mixing cobaltous oxide impregnated with a hydroxide of M? and lithium source, then by the sintering reaction in an air atmosphere furnace at a high temperature. The product of the present invention can greatly promote the lithium ion conductivity of the lithium cobaltate cathode material during the charging and discharging process of the lithium-ion battery, and improve the rate performance of the material.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: July 14, 2020
    Assignee: HUNAN SHANSHAN ENERGY TECHNOLOGY CO., LTD.
    Inventors: Hong Dong, Xuyao Hu, Xiangkang Jiang, Xinxin Tan, Xu Li
  • Patent number: 10714790
    Abstract: A battery, including: a positive electrode; a negative electrode; and an electrolyte layer containing a negative electrode active material.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: July 14, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takashi Tamura, Norihito Kobayashi, Tadahiko Kubota, Shuhei Sugita, Hiroki Mita, Kazumasa Takeshi
  • Patent number: 10706987
    Abstract: A LiBH4—C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: July 7, 2020
    Assignee: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventors: Ragaiy Zidan, Joseph A. Teprovich, Jr., Hector R. Colon-Mercado, Scott D. Greenway
  • Patent number: 10700354
    Abstract: The main object of the present disclosure is to provide a composite active material with a capability of improving a battery output. The present disclosure achieves the object by providing a composite active material comprising: an oxide active material, an oxide solid electrolyte layer that coats a surface of the oxide active material, and a sulfide solid electrolyte layer that coats a surface of the oxide solid electrolyte layer; wherein the sulfide solid electrolyte layer has a specific surface area in a range of 1.06 m2/g to 1.22 m2/g, and a thickness the sulfide solid electrolyte layer is in a range of 15 nm to 25 nm.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 30, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masahiro Iwasaki
  • Patent number: 10680282
    Abstract: The present invention relates to a Li-rich antiperovskite compound and the use thereof, and more particularly, to a Li-rich antiperovskite compound having a novel structure in which a dopant is substituted in a Li3OCl compound, wherein the dopant is substituted for an O site rather than an anionic Cl site, as known in the art, and an electrolyte using the same. The Li-rich antiperovskite compound has high lithium ion conductivity and excellent thermal stability, and thus can be applied as an electrolyte for lithium secondary batteries which are driven at a high temperature.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 9, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Se Ho Park, Chanyeup Chung, Da Young Sung, Minchul Jang, Eunkyung Park, Changhun Park
  • Patent number: 10661090
    Abstract: An implantable medical device comprising a battery cell including: an anode; a cathode including fluorinated carbon particles; a separator between the anode and the cathode; and an electrolyte contacting the anode, the cathode, and the separator; wherein greater than 50 vol-% of the fluorinated carbon particles have a particle size within a range of 2 microns to 10 microns, and greater than 50% by number have an aspect ratio within a range of 1:1.2 to 1:8.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: May 26, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kaimin Chen, Gaurav Jain
  • Patent number: 10637094
    Abstract: Disclosed is an anode mixture configured to provide an all-solid-state lithium ion secondary battery being excellent in cycle characteristics when it is used in the battery, an anode including the anode mixture, and an all-solid-state lithium ion secondary battery including the anode. The anode mixture may be an anode mixture for an all-solid-state lithium ion secondary battery, wherein the anode mixture contains an anode active material, a solid electrolyte and an electroconductive material; and wherein a value obtained by multiplying, by a bulk density of the solid electrolyte, a volume percentage (%) of the electroconductive material when a volume of the anode mixture is determined as 100 volume %, is 0.53 or more and 3.0 or less.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: April 28, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro Ose, Hajime Hasegawa, Yusuke Kintsu, Mitsutoshi Otaki
  • Patent number: 10637095
    Abstract: Disclosed is a method of preparing a solid electrolyte, which includes (a) preparing a solid electrolyte precursor slurry by subjecting a mixed solution including a metal precursor solution, containing a lanthanum precursor, a zirconium precursor and an aluminum precursor, a complexing agent, and a pH controller to coprecipitation, (b) preparing a solid electrolyte precursor by washing and drying the solid electrolyte precursor slurry, (c) preparing a mixture by mixing the solid electrolyte precursor with a lithium source, and (d) preparing an aluminum-doped lithium lanthanum zirconium oxide (LLZO) solid electrolyte by calcining the mixture, and which is also capable of adjusting the aluminum content of a starting material to thus control sintering properties and of adjusting the composition of a precursor and a lithium source to thus control the crystal structure, thereby improving the ionic conductivity of the solid electrolyte.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: April 28, 2020
    Assignee: TDL CO., LTD.
    Inventors: Ho Sung Kim, Min-young Kim, Seung Hoon Yang, Jinsub Lim, Duck Rye Chang, Jong Ho Lee
  • Patent number: 10629950
    Abstract: Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer deposition (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 21, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 10593998
    Abstract: A composite electrolyte tri-layer structure, including a first layer having a first ceramic electrolyte, where the first electrolyte is stable against contact with lithium metal, a second layer having a second ceramic electrolyte, where the second electrolyte is stable against aqueous contact, and a third layer having a third non-aqueous electrolyte interposed between the first layer and second layer, wherein the first electrolyte, the second electrolyte, and the third electrolyte each have a different relative chemical stability. Also disclosed is a method of making and using the tri-layer structure, and an energy storage article or device incorporating at least one of the tri-layer structures.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: March 17, 2020
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, Paul Oakley Johnson, Xinyuan Liu
  • Patent number: 10587001
    Abstract: A lithium battery includes a first electrode assembly, a second electrode assembly, and a third electrode assembly in a case. The first electrode assembly and the second electrode assembly include a first lithium ion conductor layer and a second lithium ion conductor layer, respectively. The third electrode assembly includes a ceramic layer which is at least one of between a positive electrode and a separator or between a negative electrode and a separator.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: March 10, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Youngjin Park
  • Patent number: 10581110
    Abstract: The present invention provides a positive electrode active material for a lithium secondary battery, which includes a secondary particle core formed by agglomeration of primary particles of a nickel manganese cobalt-based first lithium composite metal oxide, an intermediate layer disposed on the core and including rod-shaped nickel manganese cobalt-based second lithium composite metal oxide particles radially oriented from a center of an active material particle to a surface thereof, and a shell disposed on the intermediate layer and including a nickel manganese cobalt-based third lithium composite metal oxide, and a lithium secondary battery including the same.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 3, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Yong Hoon Kwon, Ki Young Lee
  • Patent number: 10566651
    Abstract: An all-solid-state secondary battery includes: a positive electrode active substance layer; a negative electrode active substance layer; and a solid electrolyte layer, in which at least one layer of the positive electrode active substance layer, the negative electrode active substance layer, or the solid electrolyte layer contains a nitrogen-containing polymer having a repeating unit having at least one of a substituent X, a substituent Y, or a substituent Z and an inorganic solid electrolyte having conductivity of ions of metal belonging to Group 1 or 2 in the periodic table.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: February 18, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Masaomi Makino, Hiroaki Mochizuki, Katsuhiko Meguro, Tomonori Mimura
  • Patent number: 10559848
    Abstract: According to one embodiment, a composite electrolyte includes lithium-containing oxide particles and an electrolytic composition. The electrolytic composition includes lithium ions, an organic solvent and a polymer. A content of the lithium-containing oxide particles in the composite electrolyte falls within a range of from 90% by weight to 98% by weight. A specific surface area of the lithium-containing oxide particles falls within a range of 10 m2/g to 500 m2/g and is measured by a BET adsorption method using N2.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: February 11, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takami, Kazuomi Yoshima, Yasuhiro Harada
  • Patent number: 10483586
    Abstract: An all-solid-state battery includes a mixture layer which has a physical mixture of a sulfide-based sodium-containing solid electrolyte material and a sulfide-based lithium-containing solid electrolyte material.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: November 19, 2019
    Assignee: TOYOTA MOTOR EUROPE
    Inventors: Yuki Katoh, Jun Yoshida
  • Patent number: 10446331
    Abstract: Embodiments of the present invention may provide a wafer-capped rechargeable power source. The wafer-capped rechargeable power source may comprise a device wafer, a rechargeable power source disposed on a surface of the device wafer, and a capping wafer to encapsulate the rechargeable power source. The rechargeable power source may include an anode component, a cathode component, and an electrolyte component.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: October 15, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Baoxing Chen
  • Patent number: 10439250
    Abstract: Method of making solid-state electrolyte with composition formula Li7-xLa3Zr2-xBixO12. The method includes making a polymerized complex of the metal-ions of the composition formula, and making an agglomerate therefrom to be calcined and sintered to produce the solid-state electrolyte. A solid-state electrolyte with the composition formula Li7-xLa3Zr2-xBixO12 with superior ionic conductivity by choice of the value of x and processing conditions. A battery employing a solid-state electrolyte of superior ionic conductivity with the composition formula Li7-xLa3Zr2-xBixO12.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: October 8, 2019
    Assignee: Purdue Research Foundation
    Inventors: Derek Karl Schwanz, Esteban Ernesto Marinero-Caceres
  • Patent number: 10403931
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: September 3, 2019
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly
  • Patent number: 10396707
    Abstract: An integrated kesterite (e.g., CZT(S,Se)) photovoltaic device and battery is provided. In one aspect, a method of forming an integrated photovoltaic device and battery includes: forming a photovoltaic device having a substrate, an electrically conductive layer, an absorber layer, a buffer layer, a transparent front contact, and a metal grid; removing the substrate and the electrically conductive layer from the photovoltaic device to expose a backside surface of the absorber layer; forming at least one back contact on the backside surface of the absorber layer; and integrating the photovoltaic device with a battery, wherein the integrating includes connecting i) a positive contact of the battery with the back contact on the backside surface of the absorber layer and ii) a negative contact of the battery with the metal grid on the transparent front contact. An integrated photovoltaic device and battery is also provided.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Priscilla D. Antunez, Richard A. Haight, James B. Hannon, Teodor K. Todorov
  • Patent number: 10388986
    Abstract: A sulfide solid electrolyte material includes a sulfide phase containing a sulfide material and an oxide phase containing an oxide formed by oxidation of the sulfide material. The oxide phase is located on a surface of the sulfide phase. The sulfide solid electrolyte material satisfies conditions: 1.28?x?4.06 and x/y?2.60, where x denotes the oxygen-to-sulfur elemental ratio measured by XPS depth profiling at the outermost surface of the oxide phase; and y denotes the oxygen-to-sulfur elemental ratio measured by XPS depth profiling at a position 32 nm, estimated from the SiO2 sputtering rate, away from the outermost surface of the oxide phase.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: August 20, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Izuru Sasaki, Junichi Hibino
  • Patent number: 10347901
    Abstract: A method of preparing an electrode for a lithium-ion battery includes mixing a magnetic, electrically conductive material with a lithium conductive polymer; forming tubes of the polymer and magnetic, electrically conductive material; mixing the tubes with a slurry of an electrode material; coating a current collector with the slurry; and applying a magnetic field to the slurry to align the tubes within the slurry in relation to the current collector. The aligned tubes form electrical and ionic conductive pathways within the slurry. The tubes have a length less than half a thickness of the slurry.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 9, 2019
    Assignee: Nissan North America, Inc.
    Inventors: Ying Liu, Taehee Han, Yoshitaka Uehara
  • Patent number: 10333123
    Abstract: A high capacity solid state composite cathode contains an active cathode material dispersed in an amorphous inorganic ionically conductive metal oxide, such as lithium lanthanum zirconium oxide and/or lithium carbon lanthanum zirconium oxide. A solid state composite separator contains an electronically insulating inorganic powder dispersed in an amorphous, inorganic, ionically conductive metal oxide. Methods for preparing the composite cathode and composite separator are provided.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: June 25, 2019
    Assignee: Johnson IP Holding, LLC
    Inventors: Joykumar S. Thokchom, Davorin Babic, Lonnie G. Johnson, Lazbourne Alanzo Allie, David Ketema Johnson, William Rauch
  • Patent number: 10326164
    Abstract: A solid electrolyte for a lithium battery includes Li3+xGexAs1-xS4 where x=0 to 0.50. The value of x can be a range of any high value and any lower value from 0 to 0.50. For example, x can be 0.25 to 0.50, and x can be 0.3 to 0.4, among many other possible ranges. In one embodiment x=0.33 such that the solid electrolyte is Li3.334Ge0.334As0.666S4. A solid electrolyte for a lithium battery can include LiAsS4 wherein ½ to ? of the As is substituted with Ge. A lithium battery and a method for making a lithium battery are also disclosed.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 18, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Ezhiylmurugan Rangasamy, Gayatri Sahu
  • Patent number: 10326162
    Abstract: A composite solid electrolyte, including: a lithium ion conductor, and a coating layer on the lithium ion conductor, the coating layer including a silane compound represented by Formula 1: (—O)y—Si—(R1)x??Formula 1 wherein, in Formula 1, 1?x?3; 1?y?3; x+y=4; R1 is hydrogen, a halogen, a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C2-C30 alkenyl group, a substituted or unsubstituted C2-C30 alkynyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C6-C30 aryloxy group, a substituted or unsubstituted C7-C30 arylalkyl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C2-C30 heteroaryloxy group, a substituted or unsubstituted C3-C30 heteroarylalkyl group, a substituted or unsubstituted C4-C30 carbocyclic group, a substituted or unsubstituted C5-C30 carbocyclic alkyl group, a substituted or unsubstituted C2-C30 heterocyclic group, or a substituted or unsubstituted C2-C30 heterocyclic alkyl group
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: June 18, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Wonsung Choi, Mokwon Kim, Sangbok Ma, Kyounghwan Choi, Myungjin Lee
  • Patent number: 10319985
    Abstract: There are provided a lithium-containing garnet crystal high in density and ionic conductivity, and an all-solid-state lithium ion secondary battery using the lithium-containing garnet crystal. The lithium-containing garnet crystal has a chemical composition represented by Li7-xLa3Zr2-xTaxO12 (0.2?x?1), and has a relative density of 99% or higher, belongs to a cubic system, and has a garnet-related structure. The lithium-containing garnet crystal has a lithium ion conductivity of 1.0×10?3 S/cm or higher. Further, this solid electrolyte material has a lattice constant a of 1.28 nm?a?1.30 nm, and lithium ions occupy 96h-sites in the crystal structure. The all-solid-state lithium ion secondary battery has a positive electrode, a negative electrode and a solid electrolyte, and the solid electrolyte is constituted of the lithium-containing garnet crystal according to the present invention.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: June 11, 2019
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kunimitsu Kataoka, Junji Akimoto
  • Patent number: 10320029
    Abstract: All-solid-state lithium-sulfur electrochemical cells and production methods thereof are described. The Li—S electrochemical cells comprise at least one multilayer component which comprises an ion-conductive solid electrolyte film, a positive electrode film containing a sulfur composite, and a negative electrode film containing lithium. Positive electrodes films, prefabricated electrolyte-positive electrode elements, their uses as well as methods of their production are also described.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: June 11, 2019
    Assignee: HYDRO-QUÉBEC
    Inventors: Karim Zaghib, Chisu Kim, Abdelbast Guerfi, Francis Barray, Catherine Gagnon, Julie Trottier
  • Patent number: 10305140
    Abstract: An object of the present invention is to provide a sulfide solid electrolyte material having satisfactory ion conductivity. In the present invention, the above object is solved by providing a sulfide solid electrolyte material comprising a Li element, a Si element, a P element, a S element, and an X element (in which X represents at least one of F, Cl, Br and I), the sulfide solid electrolyte material having a crystal phase B having a peak at the position of 2?=30.12°±1.00° measured by X-ray diffractometry using CuK? ray.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: May 28, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Kato, Takamasa Ohtomo
  • Patent number: 10297864
    Abstract: A composite electrolyte including a polymeric ionic liquid; and an oligomeric electrolyte, wherein the oligomeric electrolyte includes an oligomer.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 21, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jusik Kim, Jenam Lee, Soyeon Kim, Hyunseok Kim, Joungwon Park, Seoksoo Lee, Hyorang Kang
  • Patent number: 10297874
    Abstract: A method of manufacturing an all-solid-state battery includes a lamination step of laminating a deactivated lithium-containing negative electrode active material layer containing deactivated lithium, a solid electrolyte layer for the all-solid-state battery, and a positive electrode active material layer for the all-solid-state battery such that the solid electrolyte layer for the all-solid-state battery is disposed between the deactivated lithium-containing negative electrode active material layer and the positive electrode active material layer for the all-solid-state battery.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: May 21, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Omori, Hajime Hasegawa, Kengo Haga, Mitsutoshi Otaki, Norihiro Ose, Daichi Kosaka, Masato Hozumi
  • Patent number: 10280109
    Abstract: A method for producing sulfide glass wherein phosphorus sulfide satisfying the following formula (1) is used as a raw material: 100×A/B?37??(1) wherein in the formula, A is peak areas of peaks that appear at peak positions in a range of 57.2 ppm or more and 58.3 ppm or less, and 63.0 ppm or more and 64.5 ppm or less in 31PNMR spectroscopy, and B is the total of peak areas of all peaks measured in 31PNMR spectroscopy.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: May 7, 2019
    Assignee: IDEMITSU KOSAN CO., LTD.
    Inventors: Akiko Nakata, Junpei Maruyama
  • Patent number: 10269507
    Abstract: A hybrid supercapacitor, including at least one negative electrode that includes a statically capacitive active material, an electrochemical redox active material, or a mixture thereof, at least one positive electrode that includes a statically capacitive active material, an electrochemical redox active material, or a mixture thereof, at least one separator that is situated between the at least one negative electrode and the at least one positive electrode, and an electrolyte composition, with the condition that at least one electrode includes a statically capacitive active material, and at least one electrode includes an electrochemical redox active material, the electrolyte composition being a liquid electrolyte composition and including at least one liquid, aprotic, organic solvent, at least one conducting salt, and at least one additive.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: April 23, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Elisabeth Buehler, Mathias Widmaier, Severin Hahn, Thomas Eckl
  • Patent number: 10243209
    Abstract: An active material composite particle is capable of suppressing a reaction with a sulfide solid electrolyte material at high temperature. The active material composite particle may include an oxide active material of rock salt bed type and a coat layer containing lithium niobate formed on a surface of the oxide active material, wherein a thickness of the coat layer is in the range of 25 nm to 94 nm.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: March 26, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nariaki Miki, Yuki Matsushita, Kouichi Sugiura
  • Patent number: 10236549
    Abstract: A lithium air battery includes: a composite cathode including a porous material and a first electrolyte; an anode including lithium metal, and an oxygen blocking layer disposed between the composite cathode and the anode, wherein a weight ratio of the porous material and the first electrolyte in the composite cathode is less than about 1:3. Also a method of manufacturing the lithium air battery.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 19, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taeyoung Kim, Hyukjae Kwon, Kihyun Kim, Dongjoon Lee, Hyunpyo Lee, Heungchan Lee, Dongmin Im
  • Patent number: 10236504
    Abstract: Achieved is a nickel-cobalt-manganese composite hydroxide which is excellent in reactivity with a lithium compound, and able to achieve a positive electrode active material which has excellent thermal stability and battery characteristics. The nickel-cobalt-manganese composite hydroxide is intended to serve as a precursor for a positive electrode active material of a non-aqueous electrolyte secondary battery, and represented by a general formula: Ni1-x-y-zCoxMnyMz(OH)2 (0<x??, 0<y??, 0?z?0.1, M represents one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W), and the nickel-cobalt-manganese composite hydroxide has a specific surface area of 3.0 to 11.0 m2/g as measured by a BET method through nitrogen adsorption, and an average valence of 2.4 or more for Co and Mn as obtained by redox titration.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: March 19, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yasutaka Kamata, Hiroyuki Toya
  • Patent number: 10211495
    Abstract: Disclosed is a hybrid electrochemical cell with a first conductor having at least one portion that is both a first capacitor electrode and a first battery electrode. The hybrid electrochemical cell further includes a second conductor having at least one portion that is a second capacitor electrode and at least one other portion that is a second battery electrode. An electrolyte is in contact with both the first conductor and the second conductor. In some embodiments, the hybrid electrochemical cell further includes a separator between the first conductor and the second conductor to prevent physical contact between the first conductor and the second conductor, while facilitating ion transport between the first conductor and the second conductor.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: February 19, 2019
    Assignee: The Regents of the University of California
    Inventors: Maher F. El-Kady, Richard B. Kaner
  • Patent number: 10186730
    Abstract: An electrolyte for a secondary battery, the electrolyte including: an organic solvent; and a lithium ion conductive solid electrolyte represented by the formula LiaPbSc wherein 3<a<5, 1<b<3, and 6<c<8, and wherein at least a portion of the solid electrolyte is dissolved in the organic solvent.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: January 22, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ryo Omoda, Yuichi Aihara, Seitaro Ito, Takanobu Yamada
  • Patent number: 10173921
    Abstract: A lithium-ion conductive glass-ceramic article has a crystalline component characterized by the formula MA2(XO4)3, where M represents one or more monovalent or divalent cations selected from Li, Na and Zn, A represents one or more trivalent, tetravalent or pentavalent cations selected from Al, Cr, Fe, Ga, Si, Ti, Ge, V and Nb, and X represents P cations which may be partially substituted by B cations.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: January 8, 2019
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Nadja Teresia Lonnroth
  • Patent number: 10135084
    Abstract: A solid ion conductor including a garnet oxide represented by Formula 1: L5+xE3(Mez,M2-z)Od??Formula 1 wherein L includes Li and is at least one of a monovalent cation and a divalent cation; E is a trivalent cation; Me and M are each independently one of a trivalent, tetravalent, pentavalent, and hexavalent cation; 0<x?3, 0?z<2, and 0<d?12; and O is partially or totally substituted with at least one of a pentavalent anion, a hexavalent anion, and a heptavalent anion.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 20, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-myung Lee, Tae-young Kim, Young-sin Park, Seung-wook Baek
  • Patent number: 10135091
    Abstract: A lithium secondary battery (solid electrolyte battery) includes a positive electrode which includes a positive electrode active material layer containing lithium oxide, a negative electrode which includes a negative electrode active material layer, a first solid electrolyte layer which is provided in contact with the positive electrode active material layer between the positive electrode and the negative electrode and contains lithium and oxygen, and a second solid electrolyte layer which is provided in contact with the negative electrode active material layer between the positive electrode and the negative electrode and contains lithium, nitrogen, and oxygen. It is preferred that each of the first solid electrolyte layer and the second solid electrolyte layer further contains boron.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: November 20, 2018
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Yasushi Yamazaki
  • Patent number: 10128532
    Abstract: Sulfide solid electrolyte material with favorable ion conductivity, wherein charge and discharge efficiency is inhibited from decreasing. Solves problem by providing a sulfide solid electrolyte material including a Li element, Si element, P element, S element and O element, having peak at position of 2?=29.58°±0.50° in X-ray diffraction measurement using CuK? ray, wherein sulfide solid electrolyte material does not have peak at position of 2?=27.33°±0.50° in X-ray diffraction measurement using CuK? ray, or in case of having peak at position of 2?=27.33°±0.50°, value of IB/IA is 1 or less when diffraction intensity at peak of 2?=29.58°±0.50° is regarded as IA and diffraction intensity at peak of 2?=27.33°±0.50° is regarded as IB; and wherein molar fraction of O element to total of S element and O element is larger than 0.2.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 13, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Kato, Mayuko Osaki
  • Patent number: 10096818
    Abstract: An electrode complex includes: a complex which includes a porous active material molded body which is formed by being three-dimensionally connected with a plurality of particulate active material particles containing a lithium double oxide and a plurality of particulate noble metal particles containing a noble metal with a melting point of 1000° C. or higher and includes a communication hole, and a solid electrolyte layer formed on the surface of the active material molded body containing the communication hole of the active material molded body; and a current collector which is provided by being bonded to the active material molded body on one surface of the complex.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: October 9, 2018
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Tsutomu Teraoka, Tomofumi Yokoyama