Grouping Of Fuel Cells Into Stack Or Module Patents (Class 429/452)
  • Patent number: 8945795
    Abstract: An apparatus and method for substantially continuously manufacturing fuel cells are provided. Each cell generates electrical power from reactions of reactants therein. Each cell comprises component parts assembled and/or laminated together in a stacked configuration.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 3, 2015
    Assignee: Powercell Sweden AB
    Inventors: Martin Berggren, Lars Johansen, Börge Rygh Sivertsen
  • Publication number: 20150030954
    Abstract: The present invention relates to a redox flow secondary battery. The redox flow secondary battery of the present invention comprises a unit cell including a pair of electrodes made of a porous metal, wherein the surface of the porous metal is coated with carbon. According to the present invention, a redox flow secondary battery using porous metal electrodes uniformly coated with carbon is provided, thus improving conductivity of the electrodes, and the electrodes have surfaces uniformly coated with a carbon layer having a wide specific surface area, thus improving reactivity. As a result, capacity of the redox flow secondary battery and energy efficiency can be improved and resistance of a cell can be effectively reduced. Further, the electrodes are uniformly coated with a carbon layer, thus also improving corrosion resistance.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 29, 2015
    Inventors: Youngjun Kim, Kijae Kim, Minsik Park, Jeahun Kim
  • Patent number: 8940450
    Abstract: A membrane electrode assembly for a fuel cell that secures a flow path of a separator while preventing generation of a pin-hole. The membrane electrode assembly includes an electrolyte membrane for a fuel cell, a microporous layer that is disposed at both surfaces of the electrolyte membrane, a backing layer that is disposed on the microporous layer, and a circumferential edge protective layer that is disposed at an circumferential edge of the electrolyte membrane. An end portion of the microporous layer is positioned further inside of the membrane electrode assembly than an end portion of the backing layer. The circumferential edge protective layer is inserted between the backing layer and the electrolyte membrane.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: January 27, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Kah-Young Song, Sang-Il Han, Myoung-Ki Min, Geun-Seok Chai, Soon-Cheol Shin
  • Patent number: 8936888
    Abstract: A solid oxide fuel cell system includes a first fuel cell tube, a flame tip protection member and a current conduction member. The first fuel cell tube has a flame end. The flame end has exit opening. The fuel cell tube is configured to deliver combustible gas to the flame tip region generating a flame kernel. The flame protection member is configured to inhibit at least one of mass transfer and heat transfer between the fuel cell tube and the flame tip region. The current conduction member is disposed through the exit opening of the flame end of the first fuel cell tube.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Adaptive Materials, Inc.
    Inventors: Aaron T. Crumm, Timothy LaBreche
  • Publication number: 20150017563
    Abstract: The invention relates to fuel cell unit arranged in an underfloor space of a fuel cell vehicle. The fuel cell unit includes a fuel cell that has a plurality of cells stacked together; and a cell monitor that is arranged in a side region of the fuel cell, and that monitors a state of each of the cells.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 15, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tsutomu Shirakawa, Norishige Konno, Kazuya Mori
  • Patent number: 8932738
    Abstract: A fuel cell assembly structure mainly comprises a housing in which there is an accommodating space; a plurality of unit cell stacks that are stacked in the same direction in the accommodating space of the housing and made by stacking in sequence a cathode layer, a power generation electrode, an anode layer and a connection disk; a connection disk connecting is series each unit cell stack, a sealing disk and a cover in sequence to cover the opening of the accommodating space of the housing. On the outer side of the cover there is a connection base, at least one surface of which has a plurality of conduits and the other end connects to a plurality of cell stack bypass manifolds that further connect to a plurality of side bypass manifolds.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: January 13, 2015
    Assignee: Institute of Nuclear Energy Research
    Inventors: Dung-Di Yu, Yung-Neng Cheng, Ruey-Yi Lee, Chien-Hsiung Lee
  • Publication number: 20150010845
    Abstract: A liquid fuel battery is described, having a vented case, an internal fuel chamber, and a plurality of substantially planar vertically stacked battery elements having separated fuel-sides and air sides. Such sides are separated by a series of anodic and cathodic seals. In one embodiment, a cathode contains doped carbon nanofibers and may be treated with polytetrafluoroethylene or another hydrophobic material. An anode current collector and/or cathode current collector may contain perforated metal, including metal mesh. Battery elements may be U-shaped to maximize the efficiency of the air-fuel interaction. The cathode is active for oxygen reduction and inactive for fuel oxidation.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Inventors: Paul H. Matter, Christopher T. Holt, Michael G. Beachy
  • Publication number: 20150010841
    Abstract: A fuel cell vehicle includes a fuel cell stack, a front side panel, and a fuel gas device. The fuel cell stack includes a plurality of fuel cells, one end and another end, a first end plate, and a second end plate. The first end plate is disposed at the one end. The second end plate is disposed at the another end. The front side panel is connected to side surfaces of the first and second end plates. The side surfaces face forward in a vehicle driving direction. The front side panel includes a first protruding end portion that protrudes from the first end plate outward in a vehicle width direction. The fuel gas device is disposed on the first end plate so as to be covered by the first protruding end portion when seen from a front side in the vehicle driving direction.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 8, 2015
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Hideharu NAITO
  • Patent number: 8921006
    Abstract: The fuel cell assembly of the present invention comprises a first fuel cell, a second fuel cell disposed adjacent to the first fuel cell, and a current collector for electrically connecting the first fuel cell and the second fuel cell. The first fuel cell and the second fuel cell are respectively furnished with an electrical generating portion for generating electricity, each of the electrical generation portion having a first electrode through the interior of which a first gas flows, a second electrode of a polarity different from the first electrode, on the exterior of which a second gas flows, and an electrolyte disposed between the first electrode and the second electrode. The current collector distributes and sources the current generated in the first fuel cell generating portion from two different locations on the first electrode on the first fuel cell to the second electrode of the second fuel cell.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 30, 2014
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8921009
    Abstract: An improved approach toward manufacture of a sealed fuel cell stack configuration including electrostatic deposition of materials onto substrate surfaces of the fuel cell stack.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Zephyros, Inc.
    Inventors: Michael Czaplicki, Karsten Scholz
  • Patent number: 8916308
    Abstract: A fuel cell includes separators sandwiching electrolyte electrode assemblies. The separators each include first and second fuel gas supply sections through which a fuel gas supply passage extends centrally, first and second bridges extending radially outwardly from the first and second fuel gas supply sections, and first and second sandwiching sections connected to the first and second bridges. A fuel gas channel and an oxygen-containing gas channel are provided in the first and second sandwiching sections. Each of the first sandwiching sections has pairs of fuel gas outlets and a fuel gas consumed in the fuel gas channel is discharged through the fuel gas outlets.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: December 23, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koji Dan, Yukihiko Kiyohiro
  • Publication number: 20140354290
    Abstract: A measurement device for measuring voltages along a linear array of voltage sources, such as a fuel cell stack, includes at least one movable voltage probe that measures voltage transitions along an array element. The measured voltage is used to determine a distance of travel of the at least one voltage probe along the fuel cell stack from the speed of the probe and the timing of the transitions.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: John Matthew Fisher, David Higdon, Peter Andersen, Kevin Cheung
  • Publication number: 20140342262
    Abstract: The present invention relates to a hydrogen, methanol, or ethanol fuel cell comprising an anode electrocatalyst comprising palladium and iridium, and relates to a fuel cell stack comprising said fuel cell. The invention also relates to a method of making a fuel cell. The invention also relates to the use of the anode electrocatalyst in a hydrogen, methanol or ethanol fuel cell.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 20, 2014
    Applicant: UCL BUSINESS PLC
    Inventors: Daniel Brett, Christopher Gibbs, Rhodri Jervis, Noramalina Mansor
  • Patent number: 8889313
    Abstract: An electrolyte plate for an electrochemical system including a first face and a second face, being opposite each other, of largest surface area, the first face including linear parallel ribs and the second face including linear parallel ribs. The plate thus exhibits an increased rigidity without substantially increasing the thickness thereof.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: November 18, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Stephane Di Iorio, Thibaud Delahaye
  • Patent number: 8877405
    Abstract: A fuel cell includes: a membrane electrode assembly containing an anode and a cathode which are disposed opposite to one another via an electrolytic membrane; an anode channel plate adjacent to the anode and supplying a prescribed fuel to the anode; and a cathode channel plate adjacent to the cathode, supplying air to the cathode and containing a platy member which is elongated in a direction different from a supplying direction of the air to the cathode.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuusuke Sato, Kei Matsuoka
  • Patent number: 8871405
    Abstract: When assembly is carried out by clamping a stacked product made up of a plurality of unit cell modules, paired end plates respectively disposed on both the sides thereof and the like by a plurality of fastening members, first coupling portions of one end portion of each of such plurality of fastening members and second coupling portions of the other end portions are combined to each other, and coupled with one pin member. Thus, a plurality of such fastening members are coupled.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventor: Yoko Yamamoto
  • Patent number: 8859159
    Abstract: The present invention provides an apparatus and method for generating a virtual sound source for monitoring the operating state of a fuel cell stack, which monitors in real time the deviation and deterioration of a plurality of cells in a fuel cell stack during operation, and expresses the results as a chord or different sounds, thus allowing a driver to easily recognize the operating state of the fuel cell stack.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 14, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sae Hoon Kim, Sang Mun Chin, Kwi Seong Jeong
  • Patent number: 8859162
    Abstract: Disclosed herein is a fuel cell module. The fuel cell module according to preferred embodiments of the present invention includes: a first support part including a first body part surrounding one side of an outer peripheral surface of a fuel cell and a first connection part formed on one side of the first body part in a longitudinal direction; a second support part including a second body part surrounding the other side of the outer peripheral surface of the fuel cell and the second connection part formed on one side of the second body part in a longitudinal direction; and a fixing part passing through the first connection part and the second connection part to connect and fix the first connection part and the second connection part to each other.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jai Hyoung Gil, Kyong Bok Min, Jong Ho Chung, Jong Sik Yoon, Eon Soo Lee
  • Publication number: 20140295311
    Abstract: An electrolyte system for a flow battery has an anolyte including [Fe(CN)6]3? and [Fe(CN)6]4? and a catholyte including Fe2+ and Fe3+.
    Type: Application
    Filed: May 23, 2012
    Publication date: October 2, 2014
    Applicant: University of Kentucky Research Foundation
    Inventors: Stephen M. Lipka, Christopher R. Swartz
  • Patent number: 8846263
    Abstract: The present invention relates to a housing assembly for at least two fuel cells, comprising: a hollow profile-like body (12) extending in an axial direction (z) and being adapted to laterally encompass at least two fuel cells stacked on one another in axial direction (z), and a fastening mechanism to interconnect the body (12) with at least one end plate (18, 28) adapted to support the at least two fuel cells.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: September 30, 2014
    Assignee: Belenos Clean Power Holding AG
    Inventor: Uwe Hannesen
  • Patent number: 8846260
    Abstract: Coolant supply passages and coolant discharge passages, for example, two respectively thereof, are disposed on upper and lower side portions of a first end plate of a fuel cell stack. Grooves are formed on a surface of the first end plate for establishing communication between each of the coolant supply passages and the coolant discharge passages. Air, which is introduced upwardly of the coolant discharge passages, is discharged to the coolant supply passages.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: September 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideharu Naito, Norihisa Kobayashi, Ryoichi Yoshitomi, Masaaki Sakano, Keisuke Suda, Yasuhiro Watanabe
  • Publication number: 20140287336
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Application
    Filed: April 11, 2014
    Publication date: September 25, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Patent number: 8841036
    Abstract: Disclosed herein is a flexible fuel cell including, one or a plurality of cell sections, and a sealing sheet covering the cell section or sections, wherein the cell section has, at least, a pair of electrode sheets which form an anode and a cathode and at least one of which is accompanied by an oxidoreductase present at a surface thereof, a separator which is disposed between the electrode sheets and which has a proton-permeable membrane, a pair of current collectors which are electrically conductively connected respectively to the electrode sheets with a conductive adhesive, and a fuel reservoir section which is provided at such a position as to make contact with the anode at least and in which a fuel solution containing a fuel component is reserved.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: September 23, 2014
    Assignee: Sony Corporation
    Inventors: Shuji Fujita, Takaaki Nakagawa, Ryuhei Matsumoto, Hideyuki Kumita, Daisuke Yamaguchi
  • Publication number: 20140272660
    Abstract: In some examples, a fuel cell comprising a first electrochemical cell including a first anode and a first cathode; a second electrochemical cell including a second anode and a second cathode; and an interconnect configured to conduct a flow of electrons from the first anode to the second cathode, wherein the interconnect comprises a first portion and a second portion, wherein the first portion is closer to the anode than the second portion, and the second portion is closer to the cathode than the first portion, wherein the first portion comprises one or more of doped ceria, doped lanthanum chromite, and doped yttrium chromite, and wherein the second portion comprises one or more of a Co—Mn spinel and a ABO3 perovskite.
    Type: Application
    Filed: December 13, 2013
    Publication date: September 18, 2014
    Applicant: LG Fuel Cell Systems, Inc.
    Inventors: Zhien Liu, Richard W. Goettler, Hwa-Young Jung, Minjae Jung
  • Patent number: 8835024
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: September 16, 2014
    Assignee: Societe BIC
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Publication number: 20140255814
    Abstract: A combined water and anode knock-out purge line for a fuel cell including an inlet portion having an inlet portion lower surface, an outlet portion having an outlet portion lower surface, a middle portion having a lower surface and extending between the inlet portion and the outlet portion. Each lower surface of the inlet portion and outlet portion is raised relative to the lower surface of the middle portion in a generally longitudinal direction.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Craig Michael Mathie, William F. Sanderson, Virgo Edwards, Kurt David Osborne
  • Patent number: 8828614
    Abstract: The present invention provides a fuel cell hybrid system having a multi-stack structure, which maintains the voltage of a fuel cell at a level lower than that of an electricity storage means (supercapacitor) during regenerative braking so that the fuel cell does not unnecessarily charge the electricity storage means, thereby increasing the amount of recovered energy and improving fuel efficiency.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: September 9, 2014
    Assignee: Hyundai Motor Corporation
    Inventors: Nam Woo Lee, Sang Uk Kwon, Seong Pil Ryu, Jae Won Jung, Sun Soon Park
  • Patent number: 8815464
    Abstract: A fuel cell includes a membrane electrode assembly and a metal separator. The metal separator is stacked with the membrane electrode assembly. A reactant gas passage is provided between the membrane electrode assembly and the metal separator to supply a reactant gas along an electrode surface. The metal separator includes a reactant gas communication hole to communicate with the reactant gas passage. The metal separator further includes a plurality of groove groups each having a plurality of grooves press-formed to allow the reactant gas communication hole to communicate with the reactant gas passage. The grooves adjacent to each other are spaced apart by a first distance. The groove groups adjacent to each other are spaced apart by a second distance larger than the first distance.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hidetada Kojima, Masaaki Sakano, Yasuhiro Watanabe
  • Patent number: 8808939
    Abstract: A fuel cell cogeneration system of the present invention includes: a cell (10); a fuel gas discharging manifold (122) which is formed to extend in a thickness direction of the cell (10) and through which an anode off gas unconsumed in an anode (2A) flows; an oxidizing gas discharging manifold (124) which is formed to extend in the thickness direction of the cell (10) and through which a cathode off gas unconsumed in a cathode (2B) flows; and a cooling medium discharging manifold (126) which is formed to extend in the thickness direction of the cell (10) and through which an off cooling medium having recovered heat from the cell (10) flows, and the fuel gas discharging manifold (122) and/or the oxidizing gas discharging manifold (124) are formed between the cooling medium discharging manifold (126) and a separator end closest to the cooling medium discharging manifold (126).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 19, 2014
    Assignee: Panasonic Corporation
    Inventors: Yasushi Sugawara, Takahiro Umeda, Soichi Shibata
  • Patent number: 8802312
    Abstract: A fuel cell according to the present invention includes a power generation unit. The power generation unit is formed by stacking a first metal separator, a first membrane electrode assembly, a second metal separator, a second membrane electrode assembly, and a third metal separator. The number of flow grooves in a first oxygen-containing gas flow field is different from the number of flow grooves in a second oxygen-containing gas flow field. The first oxygen-containing gas flow field and the second oxygen-containing gas flow field have the same length, and the flow grooves in the first oxygen-containing gas flow field and the flow grooves in the second oxygen-containing gas flow field have the same depth.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 12, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Masaru Oda, Masaaki Sakano, Norimasa Kawagoe, Takashi Kosaka
  • Patent number: 8795918
    Abstract: The single fuel cell of the present invention includes an MEA (membrane electrode assembly), GDLs (gas diffusion layers) and separators, a pair of catalyst layers being provided on both surfaces of a polymer electrolyte membrane in the MEA, a pair of the GDLs being disposed opposite the pair of catalyst layers of the MEA, the separators including gas flow channels of an air electrode and a fuel electrode, the MEA and the pair of the GDLs being interposed between the separators, and at least one of an area of the GDL of the air electrode and an area of the GDL of the fuel electrode being smaller than an effective area of the gas flow channel of the separator, which is an inner area specified by tracing and connecting outermost edge parts of a groove of the gas flow channel of the separator.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: August 5, 2014
    Assignee: Toppan Printing Co., Ltd.
    Inventor: Keita Shimomura
  • Patent number: 8785075
    Abstract: A separator of a fuel cell includes sandwiching sections for sandwiching electrolyte electrode assemblies, first bridges each having a fuel gas supply channel, and a fuel gas supply unit. A fuel gas supply passage extends through the fuel gas supply unit in a stacking direction. Each of the sandwiching sections has a fuel gas inlet for supplying a fuel gas to a fuel gas channel, a fuel gas discharge channel for discharging the fuel gas consumed in the fuel gas channel, and a circular arc wall contacting an anode, and prevents the fuel gas from flowing straight from the fuel gas inlet to the fuel gas discharge channel.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: July 22, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yukihiko Kiyohiro
  • Patent number: 8778564
    Abstract: Disclosed is a unit cell of a honeycomb-type solid oxide fuel cell (SOFC) having a plurality of channels. The channels include cathode channels and anode channels. The cathode channels and anode channels are set up alternately in the unit cell. A collector is installed inside each of the cathode channels and the anode channels, and a packing material is packed into the channels having the collector. Disclosed also is a stack including the unit cells and methods for manufacturing the unit cell and the stack.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: July 15, 2014
    Assignee: Korean Institute of Science and Technology
    Inventors: Sung Pil Yoon, Tae Hoon Lim, Seong Ahn Hong, In Hwan Oh, Suk-Woo Nam, Jonghee Han, Jong Pil Jeong, Kwang Soo Lee, Yeong Cheon Kim, Hyoung-Juhn Kim, Eun Ae Cho, Soo-Kil Kim, Sang Yeop Lee
  • Publication number: 20140186737
    Abstract: The present invention involves an electrically-conductive fuel cell electrode connector, the connector including an opening and a slot, the slot connecting an interrupted external edge of the connector to the opening to delimit a first flap and a second flap of the connector. A method of using the connector comprising a step of deforming the connector to be able to insert a module of unit cells into the connector opening.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: Paxitech
    Inventors: Renaut MOSDALE, Séverine ANDRADA
  • Patent number: 8765326
    Abstract: The present invention features a fuel cell stack that preferably includes an electricity generating assembly having a plurality of unit cells that are suitably disposed one after another; a pair of end plates pressedly disposed respectively at upper and lower ends of the electricity generating assembly; and a joining device suitably engaging the end plates by a rope, where pressure is applied to the electricity generating assembly by means of tension of the rope, and the length and tension of the rope is suitably controlled.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: July 1, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Advanced Institute of Science and Technology
    Inventors: Haeng Jin Ko, Young Bum Kum, Young Woo Noh, Sae Hoon Kim, Sang Hyun Cho, Jung Do Suh, Kwi Seong Jeong, Junghan Yu, Byung Ki Ahn, Duck Whan Kim, Sung Keun Lee, Dai Gil Lee, Ha Na Yu
  • Patent number: 8765317
    Abstract: A fuel cell system has a fuel cell stack and a controller. The fuel cell stack is formed by stacking cells. The controller executes first cell voltage recovery processing when the cell voltage of a first cell group, placed at each end of the fuel cell stack, is below a first lower limit voltage threshold and executes second cell voltage recovery processing, which is different from the first cell voltage recovery processing, when the cell voltage of a second cell group, placed at substantially the center of the fuel cell stack, is below a second lower limit voltage threshold.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: July 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yasuhiro Nonobe
  • Publication number: 20140162162
    Abstract: A method of insulating a base portion of a fuel cell system including pouring an insulation that can be poured to fill at least 30 volume % of a base portion cavity of the fuel cell system housing through an opening in a sidewall of the housing. The base portion cavity of the housing is located between a bottom wall of the housing and a stack support base plate located in the housing. The stack support base plate supports one or more columns of fuel cell stacks.
    Type: Application
    Filed: November 18, 2013
    Publication date: June 12, 2014
    Applicant: Bloom Energy Corporation
    Inventors: Vlad Kalika, David Edmonston, Michael Petrucha, John Matthew Fisher, Martin Perry, Virpaul Bains, James Szweda
  • Publication number: 20140162161
    Abstract: An electrical connection system for cell voltage monitoring in a fuel cell stack. A fuel cell stack assembly comprises a plurality of fuel cells disposed in a stacked configuration, each cell substantially parallel to an x-y plane and including an electrical tab extending laterally from an edge of a plate in the cell in the x-direction to form an array of tabs extending along a side face of the fuel cell stack in a z-direction orthogonal to the x-y plane. A connector device comprises a planar member having a plurality of spaced-apart slits formed in an edge of the planar member, each slit having an electrically conductive material on an inside face of the slit. The slits are spaced along the edge of the planar member and configured to receive the tabs by sliding engagement in the y-direction.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 12, 2014
    Applicant: Intelligent Energy Ltd.
    Inventor: Peter David Hood
  • Patent number: 8741500
    Abstract: A fuel cell stack formed by stacking two or more fuel cell layers each constituted of one or more unit cell and a fuel cell system including the same are provided. Any two fuel cell layers adjacent to each other each have one or more gap region. At least a part of the gap region in one fuel cell layer of any two fuel cell layers adjacent to each other is in contact with a unit cell constituting the other fuel cell layer. The gap region in one fuel cell layer and the gap region in the other fuel cell layer communicate with each other. The fuel cell stack is excellent in fuel or oxidizing agent supply performance and it realizes high power density.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki Fujita, Hironori Kambara, Masashi Muraoka, Tomohisa Yoshie
  • Patent number: 8741494
    Abstract: A method for operating a fuel cell power plant to provide end-use electricity, end-use heat and end-use reformate includes the steps of providing a fuel cell power plant that consumes reformate to provide electricity and heat, said fuel cell power plant having a nominal reformate flow rate and including a fuel processor system for generating reformate from a hydrocarbon fuel; operating the fuel processor system so as to provide a reformate flow at a rate greater than the nominal reformate flow rate; operating the fuel cell power plant using a first portion of the reformate flow to generate the electricity and the heat, the first portion being less than or equal to the nominal reformate flow rate; and providing a second portion of the reformate flow as the end-use reformate.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: June 3, 2014
    Assignee: UTC Fuel Cells, LLC
    Inventors: Paul R. Margiott, Carl Rohrbach, Jr., Michael E. Gorman
  • Patent number: 8735008
    Abstract: A fuel cell system includes: a fuel cell stack for generating electrical energy by reacting oxidant and mixed fuel, and for discharging non-reacted fuel, oxidant, moisture, and carbon dioxide; a mixer for preparing the mixed fuel by mixing at least a portion of the non-reacted fuel, oxidant and moisture with concentrated fuel and for supplying the mixed fuel to the fuel cell stack; a fuel supply unit for supplying the concentrated fuel to the mixer; an oxidant supply unit for supplying the oxidant to the fuel cell stack; a first heat exchanger between an outlet of the fuel cell stack and the mixer; and a second heat exchanger between the mixer and an inlet of the fuel cell stack.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: May 27, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seong-Kee Yoon, Young-Soo Joung, Jung-Kurn Park, Hye-Jung Cho, In-Seob Song
  • Patent number: 8728682
    Abstract: A fuel cell of the present invention includes: four fastening bolts which extend in a stack direction of a stack structure so as to penetrate through openings of end plates and nuts which are disposed at both ends of the fastening bolts and can adjust fastening forces applied by the fastening bolts to the stack structure sandwiched between the end plates. Each fastening bolt is disposed in the vicinity of an intermediate point of each side of the end plate. In an electrode facing region of the end plate, one or more springs are disposed on a first straight line passing through two fastening bolts one or more springs are disposed on a second straight line passing through two fastening bolts one or more springs are disposed on a third straight line passing through two fastening bolts and one or more springs are disposed on a fourth straight line passing through two fastening bolts.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: May 20, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Yoshiki Nagao
  • Patent number: 8728673
    Abstract: A casing of a fuel cell system is divided into a fluid supply section, a module section, and an electrical equipment section. A detector, a fuel gas supply apparatus, an oxygen-containing gas supply apparatus, and a water supply apparatus are provided in the fluid supply section. A fuel cell module and a combustor are provided in the module section. A power converter and a control device are provided in the electrical equipment section. The module section is interposed between the fluid supply section and the electrical equipment section.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: May 20, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ogawa, Kimiko Fujisawa, Ayatoshi Yokokawa
  • Publication number: 20140132238
    Abstract: A method is provided for mitigating hydrogen evolution within a flow battery system that includes a plurality of flow battery cells, a power converter and an electrochemical cell. The method includes providing hydrogen generated by the hydrogen evolution within the flow battery system to the electrochemical cell. A first electrical current generated by an electrochemical reaction between the hydrogen and a reactant is sensed, and the sensed current is used to control an exchange of electrical power between the flow battery cells and the power converter.
    Type: Application
    Filed: January 22, 2014
    Publication date: May 15, 2014
    Applicant: United Technologies Corporation
    Inventors: Rachid Zaffou, Arun Pandy, Michael L. Perry
  • Publication number: 20140134513
    Abstract: An electrical connection material for solid oxide fuel cells, which is capable of preferred electrical connections. The electrical connection material includes a burn-out material-containing ceramic layer and a burn-out material-free ceramic layer stacked on the burn-out material-containing ceramic layer. The burn-out material-containing ceramic layer contains a conductive ceramic and a burn-out material.
    Type: Application
    Filed: January 21, 2014
    Publication date: May 15, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenji Nakamura, Tomoaki Hirai
  • Patent number: 8722267
    Abstract: A front terminal plate (31) that is joined to a fuel cell unit (40) at the front end of a fuel cell stack has a metal-plating layer (31b) formed on the side to be joined to the fuel cell unit (40). The metal-plating layer (31b) is formed so as to cover the surface of a plate (31a), and the surface of the metal-plating layer (31b) is flat. The thickness of the metal-plating layer (31b) in an electrode-facing region (31c) that faces an electrode region of the fuel cell unit (40) is different from the thickness of the metal-plating layer (31b) in a peripheral region (31d) that surrounds the electrode-facing region (31c), and the thickness of the metal-plating layer (31b) in the peripheral region (31d) is larger than the thickness of the metal-plating layer (31b) in the electrode-facing region (31c).
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kazuhisa Kunitake
  • Patent number: 8722218
    Abstract: A system and method for determining whether valves in a fuel cell system bleed manifold unit (BMU) are blocked with ice or have otherwise failed. The system opens a first bleed valve, closes a second bleed valve and opens an exhaust valve, and then reads a pressure signal to determine whether there is flow through a flow restriction to determine whether the first bleed valve or the exhaust valve is blocked. The system then closes the exhaust valve, leaves the first bleed valve open, and again reads the pressure signal to determine the pressure drop across the flow restriction, which will indicate whether the flow restriction the pressure sensor lines are blocked. The system then closes the first bleed valve and opens the second bleed valve to determine whether the pressure signal indicates a flow through the second bleed valve.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Patrick Frost, Bruce J. Clingerman
  • Patent number: 8715883
    Abstract: There is provided a fuel cell power generation system in which power loss in a power line electrically connecting a stack and a power conversion circuit, thereby attaining high power generation efficiency. A reformer and the stack are disposed in a main body package. Stack output terminals 31 are provided in both ends in a stacking direction of the stack. A power conversion circuit is disposed in the main body package and arranged in the proximity to the stack. Power conversion circuit input terminals are provided on the power conversion circuit and arrayed in a direction parallel to the stacking direction of the stack. Stack output lines electrically connect the stack output terminals and the power conversion circuit input terminals.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Panasonic Corporation
    Inventor: Hideo Yamamoto
  • Patent number: 8703357
    Abstract: A fuel cell stack is disclosed. In one embodiment, the fuel cell stack includes a main body that is constructed with an assembly of a plurality of generators, and at least one heat pipe that is disposed in the main body to provide heat to the generators corresponding to heat-generating temperature differences according to positions of the generators.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 22, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Min-Jung Oh
  • Patent number: 8703350
    Abstract: The present invention provides a heat-resistant alloy member which hardly causes external diffusion of Cr, an alloy member for a fuel cell, a collector member for a fuel cell, a cell stack, and a fuel cell apparatus. The surface of a collector base material 201 containing Cr is coated with a Cr diffusion preventing layer 203 made of an oxide containing Zn and Mn and a coating layer 202 made of an oxide containing Zn is formed on the surface of the Cr diffusion preventing layer 203. The coating layer 202 preferably contains at least one kind of Al and Fe as a trivalent or higher valent positive metal element.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 22, 2014
    Assignee: Kyocera Corporation
    Inventors: Masahiko Higashi, Tetsuro Fujimoto