With Electrolyte Or Reactant Supply Or Circulation Patents (Class 429/454)
  • Patent number: 8450023
    Abstract: This disclosure related to polymer electrolyte member fuel cells and components thereof.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: May 28, 2013
    Assignee: Nuvera Fuel Cells, Inc.
    Inventors: Amedeo Conti, Scott C. Blanchet, Filippo Gambini
  • Patent number: 8449702
    Abstract: A method of making a solid oxide fuel cell (SOFC) includes forming a first sublayer of a first electrode on a first side of a planar solid oxide electrolyte and drying the first sublayer of the first electrode. The method also includes forming a second sublayer of the first electrode on the dried first sublayer of the first electrode prior to firing the first sublayer of the first electrode, firing the first and second sublayers of the first electrode during the same first firing step, and forming a second electrode on a second side of the solid oxide electrolyte.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 28, 2013
    Assignee: Bloom Energy Corporation
    Inventors: Emad El Batawi, Patrick Munoz, Dien Nguyen
  • Patent number: 8445157
    Abstract: An interconnect for a fuel cell stack includes a first set of gas flow channels in a first portion of the interconnect, and a second set of gas flow channels in second portion of the interconnect. The channels of the first set have a larger cross sectional area than the channels of the second set.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: May 21, 2013
    Assignee: Bloom Energy Corporation
    Inventors: Dien Nguyen, Ian Russell, Matthias Gottmann, Deepak Bose, Darren Hickey, Stephen Couse
  • Patent number: 8435692
    Abstract: An object of the present invention is to provide a fuel cell including a reaction gas supply path which makes it difficult to cause water condensation in a region near an end plate. A fuel cell of the present invention comprises a cell stack 2 having a reaction gas passage 13a inside thereof and having on one end surface thereof a reaction gas supply inlet 17 from which a reaction gas is supplied to the reaction gas passage 13a, a joint 5 connecting the reaction gas supply inlet 17 to an external pipe P for supplying the reaction gas, plate-shaped end members 3, 4 which are disposed on one end surface of the cell stack 2 and have through-holes 21, 23 into which the joint 5 is inserted so as not to contact inner wall surfaces thereof, and a closing member 9 for substantially closing a space formed between the joint 5 and the inner wall surfaces of the through-holes 21, 23.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: May 7, 2013
    Assignee: Panasonic Corporation
    Inventors: Soichi Shibata, Susumu Hatano, Hiroki Kusakabe, Eiichi Yasumoto, Toshihiro Matsumoto
  • Publication number: 20130089803
    Abstract: A fuel cell or electrolysis cell stack has force distributors (102, 103) comprising at least a partially flexible layer (102) and protruding contact areas (103), whereby the stack compression force is evenly transferred to the stack (104) in spite of potential dimension tolerance differences.
    Type: Application
    Filed: May 26, 2011
    Publication date: April 11, 2013
    Applicant: Topsoe Fuel Cell A/S
    Inventors: Martin Refslund Nielsen, Thomas Heiredal-Clausen
  • Patent number: 8415042
    Abstract: A metal halogen electrochemical energy cell system that generates an electrical potential. One embodiment of the system includes at least one cell including at least one positive electrode and at least one negative electrode, at least one electrolyte, a mixing venturi that mixes the electrolyte with a halogen reactant, and a circulation pump that conveys the electrolyte mixed with the halogen reactant through the positive electrode and across the metal electrode. Preferably, the positive electrode comprises porous carbonaceous material, the negative electrode comprises zinc, the metal comprises zinc, the halogen comprises chlorine, the electrolyte comprises an aqueous zinc-chloride electrolyte, and the halogen reactant comprises a chlorine reactant. Also, variations of the system and a method of operation for the systems.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 9, 2013
    Assignee: Primus Power Corporation
    Inventor: Rick Winter
  • Patent number: 8415039
    Abstract: An apparatus including at least one electrochemical flow cell in which the electrochemical flow cell includes an anode electrode, a cathode electrode and a reaction zone between the anode and the cathode. The electrochemical flow cell also includes an electrolyte storage reservoir configured to hold a molten salt electrolyte and a gas generated during charging of the at least one electrochemical flow cell and at least one conduit configured to supply the molten salt electrolyte and the gas from the storage reservoir to the at least one electrochemical flow cell. The electrochemical flow cell also includes at least one pump configured to pump the molten salt electrolyte from the storage reservoir to the reaction zone.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: April 9, 2013
    Assignee: Primus Power Corporation
    Inventors: Gerardo Jose la O', Rick Winter
  • Publication number: 20130065151
    Abstract: In one example embodiment, an electronic device uses a fuel cell which reduces thickness of the overall fuel cell while reducing electrical resistance. In one example embodiment, a flow path that distributes an electrolyte is included between a fuel electrode and an oxygen electrode. In one example embodiment, a current collector on the fuel electrode side has a pair of current collector terminals in opposing-corner positions. Similarly, a current collector on the oxygen electrode side has a pair of current collector terminals in opposing-corner positions. The current collector terminals project outside the fuel cell. Thereby, connection of unit cells within the battery is facilitated, a monopolar plate structure becomes easier to use as the current collector, and distance of flowing current is shortened.
    Type: Application
    Filed: October 29, 2009
    Publication date: March 14, 2013
    Applicant: Sony Corporation
    Inventor: Kengo Makita
  • Patent number: 8383279
    Abstract: There are disclosed a fuel cell system capable of inhibiting freezing at a joining part of a supply gas and a circulation gas during a system operation, and a method for calculating circulation ratio in the system. In the fuel cell system of the present invention, the circulation gas discharged from a fuel cell meets the supply gas from a gas supply source to be supplied to the fuel cell, and a flow rate of the circulation gas with respect to that of the supply gas is set in consideration of condensation latent heat of water vapor in the circulation gas. The flow rate of the circulation gas with respect to that of the supply gas can be set by heat balance calculation at the joining part in consideration of the condensation latent heat.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: February 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshiaki Naganuma
  • Patent number: 8357472
    Abstract: A fuel cell system includes a fuel cell stack formed by stacking a plurality of power generation cells, and an ejector for supplying a fuel gas to the fuel cell stack. A flow rectifier member is provided at a portion connecting an end plate of the fuel cell stack and the ejector. The flow rectifier member is a cylindrical member. A plurality of openings are formed between partition walls formed in the flow rectifier member.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 22, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaharu Suzuki, Kentaro Nagoshi
  • Patent number: 8343681
    Abstract: Bipolar plates and a fuel cell stack having the bipolar plates. The fuel cell stack includes membrane electrode assemblies (MEAs), and first and second bipolar plates sequentially stacked between the MEAs. The bipolar plates include: flow channels formed on opposing surfaces thereof; four manifolds connected to the flow channels; and through holes to connect to the manifolds of the bipolar plates adjacent thereto.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jie Peng, Jae-young Shin, Seung-jae Lee, Tae-won Song
  • Patent number: 8338047
    Abstract: The present invention is a solid oxide fuel cell configuration which equalizes gas volume distributed into each power generation cell to stabilize fuel cell output and improve the output efficiency. In the present invention, a flat plate laminating type solid oxide fuel cell has a reactant gas supply manifold extending through a fuel cell stack in the laminating direction, for supplying reactant gas to each of power generation cells through gas passages of separators which are communicated with the manifold. The manifold and the passages of the separators are in communication with each other through a gas-flow throttle mechanisms.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: December 25, 2012
    Assignees: Mitsubishi Materials Corporation, Tha Kansai Electrical Power Co., Inc.
    Inventors: Takafumi Kotani, Naoya Murakami
  • Patent number: 8323845
    Abstract: A solid electrolyte fuel cell plate structure includes a cell element layer composed of a solid electrolyte, an air electrode layer and a fuel electrode layer, a porous base body supporting the cell element layer, and a gas-impermeable member having electric conductivity. The cell element layer is arranged such that the solid electrolyte layer is sandwiched between the air electrode layer and the fuel electrode layer, with the air electrode layer or the fuel electrode layer being joined to the porous base body. The gas-impermeable member is associated with the solid electrolyte layer to allow gas internally passing through the porous base body to be separated from gas flowing outside the porous base body. Such a cell plate structure can be employed in a solid electrolyte fuel cell stack, which in turn can be employed in a solid electrolyte fuel cell electric power generation unit.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 4, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masaharu Hatano, Mitsugu Yamanaka, Fuminori Satou, Itaru Shibata, Keiko Kushibiki, Naoki Hara, Tatsuhiro Fukuzawa, Makoto Uchiyama
  • Patent number: 8304126
    Abstract: A fuel cell (A1) includes a cell stack (B) and a casing (210) for housing the cell stack (B), and is supplied with two reactant gases flowing separately from each other. The cell stack (B) includes a plurality of solid electrolyte fuel cell units (200) stacked on one another with inter-unit spaces provided therebetween. One of the reactant gases is supplied to the inter-unit spaces and used for power generation. The casing (210) includes a peripheral wall (222) surrounding the cell stack (B). The peripheral wall (222) is provided with at least one gas inlet opening (223) for introducing the one of the reactant gases into the inter-unit spaces and at least one gas outlet opening (224) for discharging the introduced reactant gas, wherein total opening width dimension of the gas inlet opening (223) is greater than total opening width dimension of the gas outlet opening (224).
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 6, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tatsuya Yaguchi, Yasushi Nakajima, Keiko Kushibiki, Shigeo Ibuka, Hirokazu Komatsu
  • Patent number: 8304139
    Abstract: A bipolar fluid flow flied plate for a fuel cell delivers fuel to a porous anode electrode and oxidant to an adjacent porous cathode electrode. The flow field plate comprises an electrically conductive, non-porous sheet into which fluid flow conduits are formed. A first fluid flow channel is patterned into a first face of the sheet and a second fluid flow channel patterned into the opposite face of the sheet. The pattern of the first channel comprises an interdigitated comb that co-operates with a pattern of the second channel comprising a continous serpentine path, so that no portion of the first channel directly overlies the pattern of the second channel over a substantial active area of the sheet. This allows the channels to be formed with combined depths that exceed the total plate thickness, thereby increasing fluid flow volumes.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: November 6, 2012
    Assignee: Intelligent Energy Limited
    Inventors: Peter D. Hood, Philip J. Mitchell, Paul L. Adcock, Simon E. Foster
  • Patent number: 8298716
    Abstract: In a process of manufacturing a membrane electrode assembly, seal-material flow holes (62a, 62b) in the form of through-holes are formed, separately from manifold holes (16a-16f), in the membrane electrode assembly prior to injection molding. When the membrane electrode assembly is placed in a mold for injection molding, the seal-material flow hole (62a) is located in a cavity (44a). When a seal material is supplied from a supply port (42) formed at a location where the manifold hole (16a) is formed, the seal material that flows toward the upper die (40a) passes the seal-material flow hole (62a) in the cavity (44a), and then flows toward the lower die (40b), so as to reduce the unevenness between the amounts of supply of the seal material to the upper die (40a) and the lower die (40b).
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoharu Sasaoka
  • Publication number: 20120270132
    Abstract: An electrochemical cell structure has an electrical current-carrying structure which, at least in part, underlies an electrochemical reaction layer. The cell comprises an ion exchange membrane with a catalyst layer on each side thereof. The ion exchange membrane may comprise, for example, a proton exchange membrane. Some embodiments of the invention provide electrochemical cell layers which have a plurality of individual unit cells formed on a sheet of ion exchange membrane material.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 25, 2012
    Applicant: Société BIC
    Inventors: Gerard Francis McLean, Anna Stukas, Jeremy Schrooten
  • Publication number: 20120270131
    Abstract: A fuel cell unit of a fuel cell contains a first membrane electrode assembly having a frame portion on an outer circumference thereof, a first separator, a second membrane electrode assembly having a frame portion on an outer circumference thereof, a second separator, and a third separator. A plurality of resin pins are formed integrally on the frame portion of the first membrane electrode assembly. The resin pins are integrally inserted into holes in the first separator, holes in the second membrane electrode assembly, holes in the second separator, and holes in the third separator.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Masahiro FUKUTA, Yoshihiro NAKANISHI, Kentaro ISHIDA
  • Publication number: 20120237846
    Abstract: The invention relates to an apparatus (1) for converting chemical energy into electrical energy and/or electrical energy into chemical energy with a housing (2, 3, 3a), which is open towards at least one side (6) and in which a pressure chamber (4) is formed, and with at least one electrochemically active cell (5) for energy conversion, which extends from the open side (6) of the housing (2, 3, 3a) into the housing (2, 3, 3a), wherein the open side (6) is closed by a plate (7, 31), which holds and/or supplies power to the cell (5). A sealing element (8, 9) is arranged between the housing (2, 3, 3a) and the plate (7, 31), closes the open side (6) of the housing (2, 3, 3a) in a fluid-tight and/or gas-tight manner so as to form the pressure chamber (4) and is formed at least partially from an elastic material.
    Type: Application
    Filed: December 6, 2010
    Publication date: September 20, 2012
    Inventors: Michael Brodmann, Martin Greda, Cristian Mutascu, Jeffrey Roth
  • Patent number: 8268502
    Abstract: An interconnect for a fuel cell stack includes a first set of gas flow channels in a first portion of the interconnect, and a second set of gas flow channels in second portion of the interconnect. The channels of the first set have a larger cross sectional area than the channels of the second set.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 18, 2012
    Assignee: Bloom Energy Corporation
    Inventors: Dien Nguyen, Ian Russell, Matthias Gottmann, Deepak Bose, Darren Hickey, Stephen Couse
  • Patent number: 8263251
    Abstract: An insulating plate of a nonaqueous electrolyte secondary cell is interposed between a cell element and a cover member in a nonaqueous electrolyte secondary cell including the cell element formed by stacking cathodes and anodes through separators, a cell can including a can body which houses the cell element and the cover member which closes an opening of the can body to seal the cell element, and an electrolyte injected into the cell can. The insulating plate includes a plate-shaped insulating plate body having insulating property, an injection hole which passes through the insulating plate body in the thickness direction and through which the electrolyte can be injected, and a filter member permeable to only the electrolyte and provided on one of the surfaces of the insulating plate body so as to cover the injection hole.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 11, 2012
    Assignee: Sony Corporation
    Inventors: Yasuo Fukase, Katsuhiko Watanabe
  • Patent number: 8247127
    Abstract: A fuel cell stack is divided into a main power generation portion and a sub power generation portion. A variable load large in variation of output current is connected to the main power generation portion located upstream in a fuel flow and a steady load small in variation of output current is connected to the sub power generation portion located downstream in the fuel flow. This causes a fuel cell unit constituting the sub power generation portion to continue consuming a constant fuel by constant power generation and also causes hydrogen gas to continue flowing at a constant flow rate into the fuel cell unit, thereby preventing impurity gas concentrated and stored in the fuel cell unit from diffusing toward the upstream.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: August 21, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Mogi, Masaaki Shibata
  • Patent number: 8247133
    Abstract: A fuel cell includes a separator having circular disks. On a surface of each of the circular disks, a fuel gas channel is provided for supplying a fuel gas to an anode. The fuel gas channel includes ring shaped grooves and ridges provided alternately, wherein the width of the ring shaped grooves gradually increases outwardly from a fuel gas inlet.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Koji Dan
  • Patent number: 8247124
    Abstract: Carbon dioxide recirculating apparatus (20, 120) is disclosed for use in an arrangement having combination means (115) and a path for the flow of a gas through the combustion means (115). The apparatus (20, 120) comprises extraction means (221) for extracting carbon dioxide from a first region of the path downstream of the combustion means (115). It further includes condensing means (26, 30) for condensing the extracted carbon dioxide, and feed means (36, 136) for feeding the condensed carbon dioxide to a second region of the path upstream of the combustion means.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 21, 2012
    Assignee: Rolls-Royce PLC
    Inventor: Gerard D Agnew
  • Patent number: 8247119
    Abstract: In a fuel cell system, a humidifier is attached to an end plate. A pipe connector of a fluid pipe provided at the end plate such as an oxygen-containing gas inlet manifold and a pipe connector of a fluid pipe of the humidifier such as a humidified air supply pipe are connected through a substantially ring-shaped intermediate pipe. O-rings are attached to annular grooves in the outer circumferential portions of the intermediate pipe. One of the O-rings tightly contacts the inner circumferential surface of the pipe connector of the oxygen-containing gas inlet manifold, and the other of the O-rings tightly contacts the inner circumferential surface of the pipe connector of the humidified air supply pipe.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadashi Nishiyama, Yoshihito Kimura
  • Publication number: 20120196203
    Abstract: A fuel cell stack is equipped with a stacked body constituted by stacking a plurality of power generating elements, which contain an electrolytic membrane and electrocatalytic layers arranged at both surfaces of the electrolytic membrane, via a separator for providing a flow path for supplying reaction gas to the electrocatalytic layer, and collector plates arranged at both ends of the stacked body, for collecting electricity generated by the stacked body and outputting it to the outside, wherein on the separator and the collector plate are formed at least one of an anode exhaust gas exhaust hole for exhausting anode exhaust gas, a cathode exhaust gas exhaust hole for exhausting cathode exhaust gas, and a medium supply hole for supplying into the stacked body a medium for maintaining the temperature of the stacked body at an approximately fixed level, and at the anode side collector plate arranged at the anode side end of the stacked body, an output terminal for outputting at least part of the collected elect
    Type: Application
    Filed: October 15, 2009
    Publication date: August 2, 2012
    Inventor: Sogo Goto
  • Patent number: 8221936
    Abstract: A fuel cell system is provided which includes a mounting system for a manifold having a mounting plate. The fuel cell system also includes a fuel cell stack with a first end and a second end. The first end of the fuel cell stack includes at least one port in communication with the manifold. A clamping system is disposed on the second end of the fuel cell stack and is operable to engage the mounting plate of the manifold to couple the manifold to the fuel cell stack.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: July 17, 2012
    Inventors: Michael Duffield, Donald H. Keskula
  • Patent number: 8221930
    Abstract: A fuel cell separator having a first plate, the first plate including an active surface comprising a reactant flow field and a header fluidly connected thereto, an opposing non-active surface, and a header channel fluidly connected to the header, wherein the header further includes a recess directly fluidly connected to one end of the header channel, wherein the recess comprises a top perimeter and a side wall. In one embodiment, the header channel is formed on the active surface of the plate. In another embodiment, the header channel is formed on the non-active surface of the plate and the side wall of the header further comprises at least one fluid port fluidly connected to the end of the header channel.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: July 17, 2012
    Assignees: Daimler AG, Ford Motor Company
    Inventor: Simon Farrington
  • Publication number: 20120178000
    Abstract: A fuel cell (100) includes a cation exchange membrane (110), a first anion exchange membrane (120) and a second anion exchange membrane (130). The cation exchange membrane (110) has a first side and an opposite second side. The first anion exchange membrane (120) has a first exterior surface and an opposite first interior surface disposed along at least a portion to the first side of the cation exchange membrane (110). A catalyst (140) is embedded along the first exterior surface. The second anion exchange membrane (130) has a second exterior surface and an opposite second interior surface disposed along at least a portion to the second side of the cation exchange membrane (110). A catalyst (142) is embedded along the second exterior surface. A stack of fuel cells (700) include a first fuel cell (701) with an acidic first anode (714) that is electrically coupled to an alkaline second cathode (722) of a second fuel cell (720).
    Type: Application
    Filed: September 24, 2010
    Publication date: July 12, 2012
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Murat Unlu, Paul Kohl, Hyea Kim, Junfeng Zhou, Irene Anestis-Richard
  • Patent number: 8211582
    Abstract: A fuel cell system includes a fuel cell body that includes a middle plate and an electricity generating unit that generates electricity by a reaction of air and fuel. The middle plate includes a plurality of unit sections, a supply passage formed inside the middle plate, a supply opening for supplying the fuel to the supply passage, a plurality of inlet openings formed on the unit sections, a discharge passage formed inside the middle plate, a plurality of outlet openings formed on the unit sections, and a discharge opening for discharging the fuel from the discharge passage. The fuel is supplied to the unit sections through the inlet openings, and the fuel discharged from the unit sections being discharged to the discharge passage through the outlet openings. In one embodiment, an opening area of an inlet opening become smaller as the inlet opening is located farther from the supply opening.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: July 3, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Inhyuk Son, Dongmyung Suh
  • Patent number: 8211579
    Abstract: A fuel cell has an anode, a cathode, and a proton-exchange membrane disposed between the anode and cathode. An exhaust anode gas exhausted from an outlet of the anode is directed back to an inlet of the anode. Hydrogen is added to the exhaust anode gas before the exhaust anode gas reaches the inlet.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: July 3, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hitoshi Igarashi, Masatoshi Iio, Seiho Sugawara, Atsushi Ooma, Takashi Iimori, Mitsuhiro Kokubo, Takashi Fukuda
  • Publication number: 20120156575
    Abstract: A method for determining the flow of an anode gas out of an anode sub-system. The method includes providing pressure measurements at predetermined sample times over a predetermined sample period and using the pressure measurements to calculate a slope of a line defining a change of the pressure from the beginning of the time period to the end of the time period. The slope of the pressure line is then used in a flow equation to determine the amount of gas that flows out of the anode sub-system, which can be through a valve or by system leaks.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel C. Di Fiore, Jan Biebrach
  • Publication number: 20120156582
    Abstract: The invention provides a method of operating a fuel cell comprising a solid anion exchange membrane, the method comprising contacting an anode in the fuel cell with urea, ammonia or an ammonium salt and contacting the cathode with an oxidant whereby to generate electricity.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 21, 2012
    Applicant: UNIVERSITY OF STRATHCLYDE
    Inventors: Shanwen Tao, Rong Lan
  • Publication number: 20120141904
    Abstract: According to one embodiment of the invention a fuel cell device array monolith comprises at least three planar electrolyte sheets having two sides. The electrolyte sheets are situated adjacent to one another. At least one of the electrolyte sheets is supporting a plurality of anodes situated on one side of the electrolyte sheet; and plurality of cathodes situated on the other side of the electrolyte sheet. The electrolyte sheets are arranged such that the electrolyte sheets with a plurality of cathodes and anodes is situated between the other electrolyte sheets. The at least three electrolyte sheets are joined together by sintered fit, with no metal frames or bipolar plates situated therebetween.
    Type: Application
    Filed: June 24, 2010
    Publication date: June 7, 2012
    Applicant: Corning Incorporated
    Inventors: Michael E. Badding, William Joseph Bouton, Jacqueline Leslie Brown, Lanrik Kester, Scott Christopher Pollard, Patrick David Tepesch
  • Patent number: 8177003
    Abstract: A fuel cell electric vehicle includes a driving motor for driving a pair of wheels, a fuel cell for generating electricity used in the driving motor with the fuel cell being disposed above the driving motor, and supply/discharge manifolds. The supply/discharge manifolds are for transporting the fuel gas, the oxidizing gas and the coolant to or from the fuel cell from lateral end portions of a lower part of the fuel cell so that the fuel gas, the oxidizing gas and the coolant supplied to and discharged from the fuel cell flow in a substantially vertical direction with respect to a vehicle without the fuel gas, the oxidizing gas and the coolant passing through a center portion between the lower part of the fuel cell and an upper part of the driving motor.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: May 15, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takeshi Shiomi, Hisashi Nakata
  • Patent number: 8173317
    Abstract: In a fuel cells power generation system provided with a power generation module having a plurality of fuel cells, the structure is made such that a cross sectional area of at least one of a fuel flow path and an air flow path is larger in an inner portion of the power generation module and smaller in an outer portion thereof. Accordingly, gas tends to flow through the inner portion of the power generation module, a gas flow rate is quickened, and it is possible to uniformize a molar flow rate of the fuel and the air supplied to the fuel cell, even in a state in which a temperature distribution of the module is not uniform within the power generation module.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: May 8, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Akira Gunji, Hiromi Tokoi, Shin Takahashi
  • Patent number: 8173318
    Abstract: The fuel reservoir for a fuel cell is a fuel reservoir detachably connected with a fuel cell main body, and it is equipped with a fuel-storing vessel of a tube type for storing a liquid fuel and a fuel discharge part; the fuel discharge part is provided with a valve for sealing communication between the inside and the outside of the above fuel-storing vessel; and a follower which seals the liquid fuel and moves as the liquid fuel is consumed is disposed in the rear end part of the liquid fuel stored. The valve assumes a structure in which a slit is formed in an elastic material and a structure in which a valve member is pressed by a resilient body.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: May 8, 2012
    Assignees: Mitsubishi Pencil Co., Ltd., Casio Computer Co., Ltd.
    Inventors: Takahiro Osada, Yoshihisa Suda, Toshimi Kamitani, Kunitaka Yamada, Kouji Nishimura, Yasunari Kabasawa
  • Publication number: 20120082916
    Abstract: A valve for a pressure vessel system includes a housing having a cavity defined by an inner surface of the housing. The housing further includes a rod aperture and a pair of fluid flow ports. An actuator is disposed adjacent the housing. The valve also includes a piston having a rod coupled to a piston head. The piston head is disposed in the cavity of the housing, and the rod disposed through the rod aperture. The rod is also coupled to the actuator. A ring seal is disposed between the piston head and an inner surface of the housing. The ring seal biases the piston head toward one of the fluid flow ports and seals the one of the fluid flow ports to close the valve when the actuator is deactivated. The ring seal is elastically deformed and the fluid flow ports are opened when the actuator is activated.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Oliver Maier
  • Patent number: 8142950
    Abstract: The invention is a hydrogen passivation shut down system for a fuel cell power plant (10, 200). During shut down of the plant (10, 200), hydrogen fuel is permitted to transfer between an anode flow path (24, 24?) and a cathode flow path (38, 38?). A controlled-oxidant flow device (209) near an oxygen source (58?) permits a minimal amount of atmospheric oxygen to enter the power plant (200) during shut down to equalize pressure between ambient atmosphere and the flow paths (24?, 28?) and to keep limited atmospheric oxygen entering the power plant (200) through the device (209) as far as possible from fuel cell flow fields (28?, 42?). A non-leaking hydrogen inlet valve (202), a non-leaking cathode exhaust valve (208), and a combined oxidant and fuel exhaust line (206) also minimize penetration of oxygen into the shut down power plant (200).
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: March 27, 2012
    Assignee: UTC Power Corporation
    Inventors: Carl A. Reiser, Venkateshwarlu Yadha, Matthew P. Wilson
  • Patent number: 8138713
    Abstract: An electrical energy storage device for a solar cell includes at least one electrode substrate coated with a oxide or mixed oxides layer. When the electrical energy storage device is electrically connected with a receive unit of the solar unit in parallel, the electrical energy storage device can have the advantages of high electric energy density, enhancing the charging efficiency of the solar cell, and reducing the charging time of the solar cell.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 20, 2012
    Assignees: National Energy Technology Co., Ltd., Apogee Power, Inc.
    Inventors: Keh-Chi Tsai, Steve James, Wen-Hua Lin
  • Patent number: 8133627
    Abstract: A fuel cell system that includes a stack includes a plurality of generators for producing electrical energy by an electrochemical reaction of hydrogen and oxygen. The generators are connected in series. In addition, the fuel cell system comprises a fuel supply assembly for supplying fuel comprising hydrogen to the generators, an oxygen supply assembly for supplying oxygen to the generators and at least one branch member that is coupled to at least one of the generators.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 13, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Ki Lee, Yun-Suk Choi
  • Patent number: 8124296
    Abstract: Direct reaction fuel cells (10) with cross-flow of an electrolyte mixture through thick, porous electrodes (12, 18) that contain a mixture of catalyst particles and that rotate to generate Taylor Vortex Flows (54) and Circular Couette Flows (56) in electrolyte chambers (24) are disclosed.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 28, 2012
    Assignee: Global Energy Science, LLC (California)
    Inventor: Halbert Fischel
  • Patent number: 8110319
    Abstract: An interconnect for a fuel cell stack includes a first set of gas flow channels in a first portion of the interconnect, and a second set of gas flow channels in second portion of the interconnect. The channels of the first set have a larger cross sectional area than the channels of the second set.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 7, 2012
    Assignee: Bloom Energy Corporation
    Inventors: Dien Nguyen, Ian Russell, Matthias Gottmann, Deepak Bose, Darren Hickey, Stephen Couse
  • Publication number: 20120028159
    Abstract: A fuel cell or electrolysis cell stack has force distribution members with one planar and one convex shape applied to at least its top and bottom face and in one embodiment further to two of its side faces. A compressed mat and further a rigid fixing collar surrounds the stack and force distribution members, whereby the stack is submitted to a compression force on at least the top and bottom face and potentially also to two side faces. The assembly is substantially gas tight in an axial direction of the primarily oval or circular shape and can be fitted with gas tight end plates to form robust gas inlet and outlet manifolds.
    Type: Application
    Filed: March 11, 2010
    Publication date: February 2, 2012
    Applicant: TOPSOE FUEL CELL A/S
    Inventors: Martin Refslund Nielsen, Niels H.B. Erikstrup
  • Patent number: 8105727
    Abstract: The invention concerns a bipolar plate for fuel cell, of the type comprising a cathode bipolar half-plate and an anode bipolar half-plate attached to each other, each bipolar half-plate (1) consisting of a plate including in its central part an active region (2) and at its peripheral part a plurality of cut-outs (4) designed to form at least two oxidant boxes, at least two fuel boxes and at least two coolant boxes, the bipolar plate including at least one connecting channel between each peripheral cut-out and the active region. The invention is characterized in that each connecting channel of a peripheral cut-out with the active region consists of at least one rib (8) in a bipolar half-plate.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: January 31, 2012
    Assignees: Peugeot Citroen Automobiles SA, Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Damien Lemasson, Guillaume Joncquet, Jean-Philippe Poirot-Crouvezier
  • Patent number: 8101313
    Abstract: A flow field plate module for a fuel cell system includes at least one flow field plate defining a fuel transporting channel thereon. The fuel transporting channel is divided into a middle converging zone having a group of first flow guiding plates arranged therein, and two diverging zones located at two lateral sides of the middle converging zone and each having a group of second flow guiding plates arranged therein. The second flow guiding plates are symmetrically arranged in the two diverging zones and are directed at respective inner end toward a space between two adjacent first flow guiding plates in the middle converging zone to thereby offset from each of the two adjacent first flow guiding plates by a predetermined distance in a fuel flowing direction, so that a fluid path is formed between any two adjacent first and second flow guiding plates.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: January 24, 2012
    Assignee: Young Green Energy Co.
    Inventors: Cheng Wang, Jin-Shu Huang, Ching-Po Lee, Nien-Hui Hsu
  • Patent number: 8097376
    Abstract: There is described a fuel cell power system including a fuel processor subsystem, a fuel cell subsystem, and a power conditioning subsystem. The fuel processor subsystem comprises a main module for producing hydrogen rich streams from a hydrocarbon fuel, a balance of plant module for auxiliary components, and a control and electronic module for monitoring and controlling the fuel processor subsystem. The fuel cell subsystem comprises a main module for generation of electric power and thermal energy from hydrogen rich streams produced by the fuel processor module and air, a balance of plant module for auxiliary components, and a control and electronic module for monitoring and controlling the fuel cell subsystem. Each module has individual components attached thereto, the modules being designed and manufactured separately and assembled together to form the respective subsystems.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: January 17, 2012
    Assignee: Hyteon, Inc.
    Inventors: Dingrong Bai, Jean-Guy Chouinard, David Elkaim
  • Publication number: 20120009495
    Abstract: A concentration sensor assembly for measuring a concentration of a aqueous hydrocarbon fuel to be supplied to a fuel cell stack, the assembly including a membrane electrode assembly having an anode, a cathode and an electrolyte membrane located between the anode and the cathode; a first monopolar flow field plate provided near the anode; a second monopolar flow field plate provided near the cathode; and a liquid gas separator.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 12, 2012
    Applicant: OORJA PROTONICS INC.
    Inventors: Suk-Yal Cha, David Ridley, Joseph Stark, Derek Kwok
  • Patent number: 8092949
    Abstract: Disclosed are a fuel reforming system and a fuel cell system having the same, which comprises a reformer to generate a reformed gas mainly containing hydrogen from a hydrogen containing fuel; and a CO remover to remove carbon monoxide from the reformed gas, wherein a ratio of an opening area of an inlet to an opening area of an outlet ranges from 1:1.5 to 1:3. Thus, the opening area of the inlet for the reforming fuel is larger than that of the outlet for the reformed gas, so that the reformed gas is smoothly discharged from the reformer without stagnating in the channel, thereby enhancing the reforming efficiency of the reformer.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: January 10, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong Myung Suh, Sang Jun Kong
  • Patent number: 8088533
    Abstract: A fuel cell includes a plurality of electrolyte electrode assemblies and a pair of separators sandwiching the electrolyte electrode assemblies. A substantially ring shaped stopper is formed integrally with a plate of the separator. The stopper has a guide inclined surface, and the guide inclined surface contacts an anode inclined surface formed in an outer circumferential region of the anode of the electrolyte electrode assembly for preventing exposure of the anode to the exhaust gas.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: January 3, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hideichi Yamamura