Specified Electrode/electrolyte Combination Patents (Class 429/482)
  • Publication number: 20150147676
    Abstract: A fuel cell having an air electrode provided on one surface of a solid oxide electrolyte layer; a fuel electrode on the other surface thereof; and a separator 11 on the air electrode. A middle layer is further provided between the separator and the air electrode in order to suppress the diffusion of constitutional elements of the air electrode to the separator.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventor: Kazuhide Takata
  • Patent number: 9034536
    Abstract: A fuel cell includes an electrolyte electrode assembly, an inner seal member, an outer seal member, a metal separator, and a cell voltage monitor terminal. The electrolyte electrode assembly includes an electrolyte, a pair of electrodes, and a resin frame member. The inner seal member extends around an electrode surface. The outer seal member extends around an outer periphery of the inner seal member. The inner seal member and the outer seal member are disposed on the resin frame member. The cell voltage monitor terminal is embedded in the resin frame member. The cell voltage monitor terminal includes an exposed portion provided between the inner seal member and the outer seal member. The exposed portion is in contact with the metal separator adjacent to the exposed portion.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: May 19, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Kimiharu Mizusaki, Shuhei Goto, Takaaki Mitsuoka, Gen Okiyama, Nobuyoshi Muromoto, Masayuki Katsuno
  • Publication number: 20150132680
    Abstract: A power generation unit of a fuel cell stack includes a first metal separator, a first membrane electrode assembly, a second metal separator, a second membrane electrode assembly, and a third metal separator. A first oxygen-containing gas flow field includes a plurality of wavy flow grooves. An outlet merging area is provided at the end of the wavy flow grooves on the outlet side. The outlet merging area is connected to a plurality of straight connection flow grooves. The groove depth of the straight connection flow grooves is smaller than the groove depth of the wavy flow grooves.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventors: Yuji ASANO, Shuji SATO, Kenji NAGUMO, Kentaro ISHIDA, Naoki YAMANO
  • Publication number: 20150125781
    Abstract: A fuel battery cell has a membrane electrode assembly, a frame, a pair of separators, and support members. The membrane electrode assembly is formed with an anode and a cathode bonded so as to face an electrolyte membrane. The frame holds the periphery of the membrane electrode assembly. The pair of separators sandwich the frame holding the membrane electrode assembly. The support members protrude along an edge part of the frame so as to pass beyond the frame and support the membrane electrode assembly.
    Type: Application
    Filed: June 18, 2013
    Publication date: May 7, 2015
    Inventors: Takanori Oku, Mitsutaka Abe, Tomoya Nomura, Tomoyuki Takane
  • Patent number: 9023550
    Abstract: Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 5, 2015
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventor: Kyle S. Brinkman
  • Patent number: 9017896
    Abstract: An fuel cell system includes a fuel cell, a fuel cell box, a ventilation device, an air intake duct, and a gas outlet pipe. The fuel cell is disposed in the fuel cell box. The ventilation device is provided to supply air to the fuel cell box. The air intake duct connects the ventilation device to the fuel cell box to supply air from the ventilation device into the fuel cell box. The gas outlet pipe is connected to the air intake duct and connects an inside space of the fuel cell box to an outside space of the fuel cell box through the air intake duct. The gas outlet pipe has an opening cross-sectional area smaller than an opening cross-sectional area of the air intake duct.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: April 28, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Mitsunori Matsumoto, Kazunori Fukuma
  • Publication number: 20150111128
    Abstract: The method for producing an anion exchange membrane according to the present invention includes the steps of irradiating a substrate composed of a hydrocarbon polymer with radiation and heat-treating the irradiated substrate so as to form a crosslinked structure between chains of the hydrocarbon polymer contained in the substrate; further irradiating the substrate, in which the crosslinked structure has been formed, with radiation and graft-polymerizing, onto the irradiated substrate, a monomer containing a site into which a functional group having anion conducting ability can be introduced and an unsaturated carbon-carbon bond so as to form a graft chain composed of the polymerized monomer; and introducing the functional group having anion conducting ability into the site of the formed graft chain.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 23, 2015
    Inventors: Koso Matsuda, Takeshi Nakano, Hiroyuki Nishii
  • Publication number: 20150111129
    Abstract: A proton conductor includes an electrolytic layer having first and second main surfaces; and a plurality of catalyst particles. The first main surface of the electrolytic layer includes a flat portion and a plurality of recessed portions. The plurality of catalyst particles are respectively located in the plurality of recessed portions. The flat portion of the first main surface and parts of surfaces of the plurality of catalyst particles exposed from the plurality of recessed portions form a third main surface. The electrolytic layer is formed of a single crystal of a perovskite-type oxide having a proton conductivity. The catalyst particles are formed of a single crystal of a noble metal material. The perovskite-type oxide of the electrolytic layer) has a crystal orientation that matches a crystal orientation of the noble metal material of the plurality of catalyst particles.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: Tomoyuki KOMORI, Yuji ZENITANI, Takashi NISHIHARA
  • Patent number: 9005840
    Abstract: A fuel cell separator pair has first and second separators having front and back surfaces, a corrugated plate portion shaped in a wave form at the central portion, and a flat plate portion formed in the peripheral portion and surrounding the corrugated plate portion, wherein the corrugated plate portion of the front surface constitutes a reaction gas channel and the corrugated plate portion of the back surface constitutes a coolant channel. The back surfaces of the first and second separators are facing each other. The flat plate portions of the first and second separators are arranged on top of each other so as to be in contact with each other. The flat plate portion of the second separator protrudes toward the outside beyond the flat plate portion of the first separator.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Morimoto, Toshihiro Matsumoto, Atusi Murata, Mitsuo Yoshimura, Yoko Yamamoto
  • Patent number: 9005841
    Abstract: Provided are a polymer electrolyte membrane for fuel cells, and a membrane electrode assembly and a fuel cell including the same. More specifically, provided is a polymer electrolyte membrane for fuel cells including a hydrocarbon-based cation exchange resin having hydrogen ion conductivity and fibrous nanoparticles having a hydrophilic group. By using the fibrous nanoparticles having a hydrophilic group in conjunction with the hydrocarbon-based cation exchange resin having hydrogen ion conductivity, it is possible to obtain a polymer electrolyte membrane for fuel cells that exhibits improved gas barrier properties and long-term resistance, without causing deterioration in performance of fuel cells, and a fuel cell including the polymer electrolyte membrane.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 14, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Hyuk Kim, Seong Ho Choi, Kyung A Sung, SangWoo Lee, Tae Geun Noh, Ji Soo Kim
  • Publication number: 20150099209
    Abstract: The present embodiment describes a method of forming different layers in a solid oxide fuel cell. The method begins by preparing slurries which are then delivered to a spray nozzle. The slurries are then atomized and sprayed subsequently onto a support to produce a layer which is then dried. In this embodiment different layers can comprise an anode, an electrode and a cathode. Also the support can be a metal or a metal oxide which is later removed.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Ying Liu, Mingfei Liu, David M. Bierschenk, Ting He
  • Publication number: 20150099211
    Abstract: A solid oxide fuel cell comprising an electrolyte, an anode and a cathode. In this fuel cell at least one electrode has been modified with a promoter using liquid phase infiltration.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: David M. Bierschenk, Ying Liu, Mingfei Liu, Ting He
  • Publication number: 20150093680
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Application
    Filed: August 29, 2014
    Publication date: April 2, 2015
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Patent number: 8993194
    Abstract: A fuel cell includes a solid electrolyte layer containing Zr; an intermediate layer containing CeO2 solid solution having a rare-earth element excluding Ce; an air electrode layer containing Sr, the intermediate layer and the air electrode layer being stacked in this order on one surface of the solid electrolyte layer; and a fuel electrode layer on another surface of the solid electrolyte layer which is opposite to the one surface. A value obtained by dividing a content of the rare-earth element excluding Ce by a content of Zr is equal to or less than 0.05 at a site of the solid electrolyte layer, the site being 1 ?m away from an interface between the solid electrolyte layer and the intermediate layer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 31, 2015
    Assignee: KYOCERA Corporation
    Inventors: Tetsurou Fujimoto, Yuuichi Hori, Takayuki Iwamoto
  • Patent number: 8993190
    Abstract: A fuel cell unit of a fuel cell contains a first membrane electrode assembly having a frame portion on an outer circumference thereof, a first separator, a second membrane electrode assembly having a frame portion on an outer circumference thereof, a second separator, and a third separator. A plurality of resin pins are formed integrally on the frame portion of the first membrane electrode assembly. The resin pins are integrally inserted into holes in the first separator, holes in the second membrane electrode assembly, holes in the second separator, and holes in the third separator.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 31, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahiro Fukuta, Yoshihiro Nakanishi, Kentaro Ishida
  • Patent number: 8993200
    Abstract: The present invention relates to a novel method for preparing a BZCYYb material to be used in a solid oxide fuel cell. In particular, the method comprises mixing particular nano-sized and micro-sized ingredients and the size selection provides greatly improved performance characteristics of the resulting material. In particular, barium carbonate powder, zirconium oxide powder having particle diameters in the nanometer range, and cerium oxide powder having particle diameter in the micrometer range are used together with ytterbium oxide powder, and yttrium oxide powder.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: March 31, 2015
    Assignees: Georgia Tech Research Corporation, Phillips 66 Company
    Inventors: MingFei Liu, Meilin Liu, Ting He, Lei Yang
  • Publication number: 20150086902
    Abstract: A catalytic material includes (i) a support material and (ii) a thin film catalyst coating having an inner face adjacent to the support material and an outer face, the thin film catalyst coating having a mean thickness of ?8 nm, and wherein at least 40% of the support material surface area is covered by the thin film catalyst coating; and wherein the thin film catalyst coating includes a first metal and one or more second metals, and wherein the atomic percentage of first metal in the thin film catalyst coating is not uniform through the thickness of the thin film catalyst coating.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 26, 2015
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Graham Alan Hards, Ian Roy Harkness, Michael Ian Petch, Jonathan David Brereton Sharman, Edward Anthony Wright, Alexander Martin Willcocks
  • Publication number: 20150072263
    Abstract: An electrochemical cell structure has an electrical current-carrying structure which, at least in part, underlies an electrochemical reaction layer. The cell comprises an ion exchange membrane with a catalyst layer on each side thereof. The ion exchange membrane may comprise, for example, a proton exchange membrane. Some embodiments of the invention provide electrochemical cell layers which have a plurality of individual unit cells formed on a sheet of ion exchange membrane material.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Gerard F. McLean, Anna Stukas, Jeremy Schrooten
  • Publication number: 20150064601
    Abstract: The present invention aims to provide a hydrocarbon-based polymer electrolyte which is excellent in processability and proton conductivity, especially proton conductivity at low water content, and a membrane thereof. The polymer electrolyte contains, in its main chain, a repeating unit represented by the following formula (1): wherein Ar represents a benzene or naphthalene ring, or a derivative thereof in which one or more of the ring-forming carbon atoms is replaced by a hetero atom; X represents a proton or a cation; a and b are each an integer of 0 to 4, and the sum of a's and b's is 1 or greater; m represents an integer of 1 or greater; and n represents an integer of 0 or greater.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 5, 2015
    Applicants: KANEKA CORPORATION, UNIVERSITY OF YAMANASHI
    Inventors: Takahiro Miyahara, Masahiro Watanabe, Kenji Miyatake
  • Publication number: 20150064600
    Abstract: The present invention relates to a fuel cell assembly and method of manufacturing same, and a bonding part manufacturing method and device. For instance, in a resin frame, a depression part is subsidence formed from a lower-end face toward an upper-end face, and a housing hole is pass-through formed from a top surface of the depression part toward the upper-end face. For instance, the depression part, a cathode-side electrode and an electrolyte film are housed, and in such a circumstance, an anode-side electrode is housed in the housing hole. A portion of the resin frame permeates a gas diffusion layer which configures the anode-side electrode and is a porous body. Via the permeated site, the resin frame and the gas diffusion layer (anode-side electrode) are integrally bonded.
    Type: Application
    Filed: October 29, 2012
    Publication date: March 5, 2015
    Inventors: Masayuki Katsuno, Ryugo Fujitsuka, Kenji Takenaka, Gen Okiyama, Ryo Uozumi
  • Publication number: 20150056536
    Abstract: A method of preparing a nitrogen containing electrode catalyst by converting a high surface area metal-organic framework (MOF) material free of platinum group metals that includes a transition metal, an organic ligand, and an organic solvent via a high temperature thermal treatment to form catalytic active sites in the MOF. At least a portion of the contained organic solvent may be replaced with a nitrogen containing organic solvent or an organometallic compound or a transition metal salt to enhance catalytic performance. The electrode catalysts may be used in various electrochemical systems, including a proton exchange membrane fuel cell.
    Type: Application
    Filed: September 8, 2014
    Publication date: February 26, 2015
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Di-Jia Liu, Shengqian Ma, Gabriel A. Goenaga
  • Publication number: 20150056534
    Abstract: The description relates to fuel cells and fuel cell systems. One example includes at least one multi cell membrane electrode assembly (MCMEA). Individual MCMEAs can include multiple serially interconnected sub-cells.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 26, 2015
    Applicant: EMERGENT POWER INC.
    Inventor: William A. FUGLEVAND
  • Patent number: 8962166
    Abstract: A power cell comprises a membrane with a first side and a second side. The membrane has a geometric structure encompassing a volume. The power cell also has a cover that is coupled to the membrane to separate the first flow path from the second flow path at the membrane. In the power cell, first and second catalyst is in gaseous communication with respective first flow path and second flow path and in ionic communication with respective first and second sides of the membrane. Furthermore, a first electrode is electrically coupled to the first catalyst on the first side of the membrane, and a second electrode is electrically coupled to the second catalyst on the second side of the membrane. In another embodiment, the power cell further includes a substrate on which the membrane is coupled.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: February 24, 2015
    Assignee: Encite LLC
    Inventor: Stephen A. Marsh
  • Publication number: 20150050578
    Abstract: The present disclosure relates to an oxide-ion conductor having the general formula La2Ge1?xCrxMgO6?0.5x, where 0<x<1 and M=Cr, Sc, Ga and In or a mixture thereof. The present disclosure further relates to composite materials containing such oxide-ion conductors and to devices containing such oxide-ion conductors or composites.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Inventors: John B. Goodenough, Preetam Singh
  • Publication number: 20150044594
    Abstract: A catalyst-layer-supporting substrate comprising a substrate supporting a catalyst layer; wherein the catalyst layer comprises two or more porous catalyst metal particle layers that are superposed alternately with (i) two or more intersticed layers comprising at least one element selected from the group consisting of Mn, Fe, Co, Ni, Zn, Sn, Al, and Cu; or (ii) two or more fibrous carbon layers having interstices among fibers of the fibrous carbon. A method for forming a catalyst-layer-supporting structure that comprises porous catalyst metal particle by removing a pore-forming metal from a mixture layer containing a pore-forming metal and a catalyst metal.
    Type: Application
    Filed: April 23, 2014
    Publication date: February 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mei WU, Tsuyoshi Kobayashi, Mutsuki Yamazaki, Yoshihiko Nakano
  • Publication number: 20150044596
    Abstract: Provided is a solid electrolyte laminate comprising a solid electrolyte layer having proton conductivity and a cathode electrode layer laminated on one side of the solid electrolyte layer and made of lanthanum strontium cobalt oxide (LSC). Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte laminate can further comprise an anode electrode layer made of nickel-yttrium doped barium zirconate (Ni—BZY). This solid electrolyte laminate is suitable for a fuel cell operating in an intermediate temperature range less than or equal to 600° C.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 12, 2015
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara, Tetsuya Uda, Yohei Noda
  • Publication number: 20150044595
    Abstract: An object of the present invention is to suppress flooding phenomenon in an electrode catalyst for fuel cells containing a metal atom, a carbon atom, a nitrogen atom and an oxygen atom. A production process of an electrode catalyst for fuel cells is provided which includes a fluorination step of bringing a catalyst body into contact with fluorine, the catalyst body having an atom of at least one metal element selected from the group consisting of zinc, titanium, niobium, zirconium, aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, samarium and lanthanum, a carbon atom, a nitrogen atom and an oxygen atom.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 12, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Yuji Ito, Kunchan Lee, Takashi Sato
  • Patent number: 8951694
    Abstract: A novel approach based on the increase of the intrinsic oxidative stability of uncrosslinked membranes is addressed. The co-grafting of styrene with methacrylonitrile (MAN), which possesses a protected ?-position and strong dipolar pendant nitrile group, onto 25 ?m ETFE base film is disclosed. Styrene/MAN co-grafted membranes were compared to styrene based membrane in durability tests in single H2/O2 fuel cells. The incorporation of MAN improves the chemical stability dramatically. The membrane preparation based on the copolymerization of styrene and MAN shows encouraging results and offers the opportunity of tuning the MAN and crosslinker content to enhance the oxidative stability of the resulting fuel cell membranes.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: February 10, 2015
    Assignee: Paul Scherrer Institut
    Inventors: Hicham Ben-Youcef, Lorenz Gubler, Dirk Henkensmeier
  • Patent number: 8951693
    Abstract: There is provided a membrane electrode assembly including an anode gas diffusion layer included in an anode and a cathode gas diffusion layer included in a cathode, wherein the anode gas diffusion layer includes an anode gas diffusion substrate and an anode microporous layer disposed on a first surface of the anode gas diffusion substrate, wherein the cathode gas diffusion layer includes a cathode gas diffusion substrate and a cathode microporous layer disposed on a first surface of the cathode gas diffusion substrate, and wherein at least one of a strike-through ratio on a second surface of the anode gas diffusion substrate and a strike-through ratio on a second surface of the cathode gas diffusion substrate is larger than 0.2%.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 10, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Hirofumi Takami, Shigeru Sakamoto
  • Patent number: 8945410
    Abstract: Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: February 3, 2015
    Assignees: Hyundai Motor Company, Korea Institute of Science and Technology
    Inventors: Bo Ki Hong, Sae Hoon Kim, Kook Il Han, Kwang Ryeol Lee, Myoung Woon Moon
  • Patent number: 8945791
    Abstract: In a fuel cell including an electrolyte layer allowing an anion component to migrate, and a fuel-side electrode and an oxygen-side electrode arranged to face each other while sandwiching the electrolyte layer, the oxygen-side electrode contains a first catalyst containing a first transition metal and polypyrrole, and a second catalyst containing a second transition metal and a porphyrin ring-containing compound so that the mixing ratio of the first catalyst relative to 100 parts by mass of the total amount of the first catalyst and the second catalyst is more than 10 parts by mass, and below 90 parts by mass.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: February 3, 2015
    Assignees: Daihatsu Motor Co. Ltd., STC UNM
    Inventors: Koichiro Asazawa, Koji Yamada, Hirohisa Tanaka, Kazuya Yamamoto, Tim Olson, Svitlana Pylypenko, Plamen Atanassov
  • Publication number: 20150030961
    Abstract: A redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode, wherein the polyoxometallate is represented by the formula: Xa[ZbMcOd] Wherein X is selected from hydrogen, alkali metals, alkaline earth metals, ammonium and combinations of two or more thereof; Z is selected from B, P, S, As, Si, Ge, Ni, Rh, Sn, Al, Cu, I, Br, F, Fe, Co, Cr, Zn, H2, Te, Mn and Se and combinations of two or more thereof; M comprises W and optionally one or more of
    Type: Application
    Filed: March 7, 2013
    Publication date: January 29, 2015
    Applicant: ACAL ENERGY LTD
    Inventors: Hywel Owen Davies, Sarah Elizabeth Wilson, Matthew Alexander Herbert, Kathryn Jane Knuckey
  • Patent number: 8940452
    Abstract: A method for producing an electrode catalyst substrate is provided herein, which comprises a carbon film forming step of forming a porous carbon film on a base, a hydrophilization step of hydrophilizing the porous carbon film, an immersion step of immersing the base in a solution prepared by dissolving catalytic metal ions in a polar solvent, and a reduction step of adding a reducing agent to the solution and thus reducing the catalytic metal ions. An electrode catalyst substrate obtained by the method and a polymer electrolyte fuel cell in which the electrode catalyst obtained by the method is used for anodes and/or cathodes are also provided herein. In the electrode catalyst of the present invention, fine catalyst particles are loaded in a uniform and highly dispersed manner.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: January 27, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Kazuma Shinozaki, Atsuhito Okamoto, Tatsuya Hatanaka, Hiroaki Takahashi, Tomoaki Terada, Takahiro Nagata
  • Publication number: 20150024299
    Abstract: The present invention relates to a unit cell for a solid-oxide fuel cell and to a solid-oxide fuel cell using same, and, more specifically, relates to: a unit cell for a solid-oxide fuel cell, wherein a fuel charging-and-discharging part and an air charging-and-discharging part are provided perpendicularly to a cathode comprised in the solid-oxide fuel cell; and a solid-oxide fuel cell using same.
    Type: Application
    Filed: February 12, 2013
    Publication date: January 22, 2015
    Inventors: Ji-Haeng Yu, In-Sub Han, Doo-Won Seo, Se-Young Kim, Sang-Kuk Woo, Sun-Dong Kim
  • Publication number: 20150017566
    Abstract: A catalyst electrode layer includes an anion conductive elastomer in which a quaternary base type anion exchange group is introduced into at least a part of an aromatic ring of a copolymer of an aromatic vinyl compound, and a conjugated diene compound or a copolymer where a double bond of a main chain is partially or completely saturated by hydrogenating a conjugated diene part of the copolymer, and in which at least a part of the quaternary base type anion exchange group forms a cross-linked structure; and an electrode catalyst.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 15, 2015
    Inventors: Shin Watanabe, Kenji Fukuta, Fumie Inoue
  • Publication number: 20150004525
    Abstract: A solid oxide fuel cell comprises a solid electrolyte layer, a barrier layer, and a cathode. The cathode includes a cathode current collecting layer and a cathode active layer. The cathode active layer includes a plurality of micro-cracks in a surface region within a predetermined distance from the interface between the barrier layer and the cathode active layer.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Ayano KOBAYASHI, Makoto OHMORI, Mariko OKAMOTO
  • Publication number: 20150004524
    Abstract: A solid oxide fuel cell comprises a solid electrolyte layer, a barrier layer, and a cathode. The cathode includes a cathode current collecting layer and a cathode active layer. The cathode active layer includes a plurality of micro-cracks in an inner region separated respectively from the interface and the interface.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Ayano KOBAYASHI, Makoto OHMORI, Mariko OKAMOTO
  • Publication number: 20150004523
    Abstract: A solid oxide fuel cell comprises a solid electrolyte layer, a barrier layer, and a cathode. The cathode includes a cathode current collecting layer and a cathode active layer. The cathode active layer includes a plurality of micro-cracks in an interface region within a predetermined distance from the interface between the cathode current collecting layer and the cathode active layer.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Ayano KOBAYASHI, Makoto OHMORI, Mariko OKAMOTO
  • Publication number: 20150004522
    Abstract: The invention relates to a modified planar cell with a solid-oxide solid electrolyte, a gas-diffuse anode, a cathode, a metal or oxide current path and a current-gas supply. The supporting solid electrolyte of the cell is in the form of a corrugated plate consisting of corrugations. In cross-section, the corrugations of the plate constitute an isosceles, identical-height trapezium, without a larger lower base with holes. The holes are formed on one side in the upper part of each corrugation, for supplying one of the reagents, e.g. fuel in case of a fuel cell. The corrugations are connected to one another at their base in order to form gas space channels of the cell. The gas space channels are in the form of inverted isosceles trapezia without a larger upper base and the angle ? at their smaller base is 0.1 to 89.9°. The corrugated plate is connected to two opposing walls, a front wall and a rear wall.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 1, 2015
    Inventors: Aleksandr S. Lipilin, Viktoria S Liplina
  • Patent number: 8921007
    Abstract: A bonding layer, disposed between an interconnect layer and an electrode layer of a solid oxide fuel cell article, may be formed from a yttria stabilized zirconia (YSZ) powder having a monomodal particle size distribution (PSD) with a d50 that is greater than about 1 ?m and a d90 that is greater than about 2 ?m.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Guangyong Lin, Yeshwanth Narendar, John D. Pietras, Qiang Zhao, Robert J. Sliwoski, Caroline Levy, Samuel S. Marlin, Aravind Mohanram
  • Patent number: 8920985
    Abstract: A method of generating electrical power includes flowing hydrogen across an anode, splitting the hydrogen into protons and electrons using a catalyst attached to the anode, directing the electrons to a circuit to produce electrical power, flowing oxygen across a cathode, splitting the oxygen molecules into oxygen atoms using a cathode catalyst, passing the protons through an electrolyte to the cathode, and combining the protons with oxygen to form water. The cathode catalyst includes a plurality of nanoparticles having terraces formed of platinum, and corner regions and edge regions formed of a second metal.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
  • Patent number: 8920612
    Abstract: The innovation process describes the process and results for fabrication of a magnetron sputter deposited fully dense electrolyte layer (8YSZ/GDC/LSGM) embedded in a high performance membrane electrolyte assembly (MEA) (Unit Cell) of Solid Oxide Fuel Cell. A single cell with airtight electrolyte layer (8YSZ/GDC/LSGM) is prepared via thin film technique of magnetron sputter deposition, combined with SOFC-MEA processing methods (such as tape casting, lamination, vacuum hot pressing, screen printing, spin coating, and plasma spray coating) and sintering optimization conditions. The gas permeability of the electrolyte layer is below 1×10?6 L/cm2/sec and the open circuit voltage/power density of the single cell performance test exceeds 1.0 V and 500 mW/cm2.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 30, 2014
    Assignee: Institute of Nuclear Energy Research
    Inventors: Tai-Nan Lin, Maw-Chwain Lee, Wei-Xin Kao, Yang-Chuang Chang, Chun-Hsiu Wang, Li-Fu Lin
  • Publication number: 20140377681
    Abstract: The invention describes an air-breathing fuel cell for the oxidation of ions with air or oxygen, having an anode half cell and a cathode half cell. A first ion-conducting membrane and a second ion-conducting membrane is introduced between the half cells, and the second ion-conducting membrane is coated at least in regions on the side orientated towards the cathode half cell with a catalyst for the reduction of oxygen. According to the invention, the air-breathing fuel cell is characterised in that an oxidation zone for the oxidation of ions with negative standard electrode potential is provided between the ion-conducting membranes.
    Type: Application
    Filed: July 13, 2012
    Publication date: December 25, 2014
    Applicant: Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Jens Noack, Thomas Berger, Jens Tübke, Karsten Pinkwart
  • Publication number: 20140377683
    Abstract: A solid oxide fuel cell includes a solid electrolyte layer, a fuel electrode layer that is disposed on one surface of the solid electrolyte layer, an oxygen electrode layer that is disposed on the other surface of the solid electrolyte layer, and an intermediate layer that is disposed between the solid electrolyte layer and the oxygen electrode layer and that includes ceria-based particles containing rare earth elements other than cerium and ceramic particles consisting of oxide of a metallic element different from that of the ceria-based particles. The ceramic particles having a smaller average particle diameter than that of the ceria-based particles exist in grain boundaries of the ceria-based particles of the intermediate layer.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 25, 2014
    Applicant: KYOCERA Corporation
    Inventor: Shushin Inoue
  • Publication number: 20140377684
    Abstract: The present invention provides a fuel electrode doubling as a support of a solid oxide fuel cell that hardly deteriorates conductivity and strength thereof through repetitive exposure to reducing atmosphere/oxidizing atmosphere. The fuel electrode doubling as the support of the solid oxide fuel cell according to the present invention includes: a porous structure formed of first oxide particles having a 10% cumulative particle diameter between 5 ?m and 12 ?m and a 90% cumulative particle diameter between 84 ?m and 101 ?m; and electrode particles having an electrode catalytic activity that cover a surface in a gap of the porous structure and have a surface covered with second oxide particles by 10% to 70%.
    Type: Application
    Filed: July 17, 2013
    Publication date: December 25, 2014
    Applicant: Kabushiki Kaisha Riken
    Inventor: Takashi Okamoto
  • Publication number: 20140377682
    Abstract: A fuel cell includes an electrolyte membrane, a first electrode, a second electrode and a stress suppressing structure. The first electrode is joined to one surface of the electrolyte membrane. The second electrode is joined to an other surface of the electrolyte membrane. The first peripheral section which is at least part of periphery of the first electrode is located on an inner side along a planar direction of the first electrode than respective peripheries of the electrolyte membrane and the second electrode. The stress suppressing structure is configured to suppress concentration of stress on a location along the first peripheral section in the electrolyte membrane.
    Type: Application
    Filed: December 6, 2011
    Publication date: December 25, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rira Hirasawa, Yoshikazu Watanabe, Junji Nakanishi, Shigeki Osuka, Hiroo Yoshikawa
  • Patent number: 8916309
    Abstract: A fuel-cell stack includes a proton-exchange membrane, a first electrode, a second electrode, a first current-collecting metal plate, a first gas diffusion layer, and first and second layers that contact each other. The first electrode and second electrodes are fixed on corresponding sides of the membrane. The first gas diffusion layer is interposed between the first current-collecting plate and the second electrode. The first layer is fixed on the first current-collecting plate, while the second layer is fixed to the first gas diffusion layer. Both layers include a polyurethane matrix containing conductive fillers. The second layer makes contact with the first layer.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: December 23, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Remi Vincent, Julien Tard
  • Publication number: 20140363756
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell having higher power-generating characteristics in a high-temperature, low-humidity environment, and a polymer electrolyte fuel cell using the same. In this membrane electrode assembly for a polymer electrolyte fuel cell provided with electrode catalyst layers, which include at least a proton-exchange polymer and carbon-supported catalyst, on both surfaces of a polymer electrolyte membrane, the resistance (Ri) of the proton-exchange polymer of the electrode catalyst layers is at least about 2 ?cm2 but not more than about 5 ?cm2 under measurement conditions of 20% relative humidity and an AC impedance of 10 kHz to 100 kHz.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventor: Madoka OZAWA
  • Patent number: 8906818
    Abstract: Dielectric compositions that include compound of the formula [(M?)1?x(A?)x][(M?)1?y?z,(B?)y(C?)z]O3??(VO)? and protonated dielectric compositions that include a protonated dielectric compound within the formula [(M?)1?x(A?)x](M?)1?y?z(B?)y(C?)z]O3??+h(Vo)?(H•)2h are disclosed. Composite materials that employ one or more of these dielectric compounds together with an electrolyte also are disclosed. Composite material that employs one or more of these dielectric compounds together with an electrochemally active material also are disclosed.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: December 9, 2014
    Assignees: Recapping, Inc., Penn State Research Foundation
    Inventors: Clive A. Randall, Leslie E. Cross, Aram Yang, Niall J. Donnelly, Ramakrishnan Rajagopalan, Amanda Lou Baker
  • Patent number: 8906576
    Abstract: A method of treating an electrode for a battery to enhance its performance is disclosed. By depositing a layer of porous carbon onto the electrode, its charging and discharging characteristics, as well as chemical stability may be improved. The method includes creating a plasma that includes carbon and attracting the plasma toward the electrode, such as by biasing a platen on which the electrode is disposed. In some embodiments, an etching process is also performed on the deposited porous carbon to increase its surface area. The electrode may also be exposed to a hydrophilic treatment to improve its interaction with the electrolyte. In addition, a battery which includes at least one electrode treated according to this process is disclosed.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: December 9, 2014
    Inventors: Blake L. Darby, Ludovic Godet, Xianfeng Lu, Tristan Yonghui Ma