Means For Joining Components Together Patents (Class 429/507)
  • Patent number: 8652664
    Abstract: A fuel cell sealing plate taking-out method that may include taking out a sealing plate from a stack of sealing plates one by one while an air layer exists between adjacent sealing plates of the stack of fuel cells. A protrusion may be formed beforehand at one or more surfaces of each sealing plate. Due to the air layer existing between adjacent sealing plates, it may be possible to take out the sealing plate one by one from the stack of sealing plates.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shiro Akiyama, Shigemitsu Nomoto
  • Patent number: 8642230
    Abstract: An electrode-membrane-frame assembly for a polyelectrolyte fuel cell including of a membrane electrode assembly, a first frame body which has a separator-side surface on which a sealing member for sealing between the member and one separator and a membrane-side surface located on one surface of the peripheral edge portion of the membrane electrode assembly and is formed of a thermoplastic resin material, and a second frame body that has a separator-side surface on which a sealing member for sealing between the member and the other separator and a membrane-side surface located on the other surface of the peripheral edge portion of the membrane electrode assembly and is formed of a thermoplastic resin material and fitted to the first frame body holding the peripheral edge portion of the membrane electrode assembly between the second frame body and the first frame body.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: February 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Kawashima, Norihiko Kawabata, Toshihiro Matsumoto, Atsushi Murata, Takashi Morimoto
  • Publication number: 20140030632
    Abstract: A process for the conditioning of and applying a ceramic or other layer onto the surface of a sheet of stainless steel comprises the steps of (a) optionally annealing the steel plate or sheet in a protective gas atmosphere at an elevated temperature, (b) controlled etching of the surface of the sheet to produce a roughened surface and (c) depositing a protective and electrically conductive layer onto the roughened metallic surface. The process leads to coated metallic sheets with desirable properties, primarily to be used as interconnects in solid oxide fuel cells and solid oxide electrolysis cells.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 30, 2014
    Applicant: Topsoe Fuel Cell
    Inventors: Jørgen Gutzon Larsen, Søren Cliver Klitholm, Niels Christiansen
  • Patent number: 8637210
    Abstract: A first layered article (14a) in which a first electrolyte membrane (12a) and an anode-side catalyst layer (13a) are laminated, and a second layered article (14b) in which a second electrolyte membrane (12b) and a cathode-side catalyst layer (13b) are laminated, are formed. Then, the first layered article (14a) and the second layered article (14b) are disposed so that the electrolyte membrane-side surfaces of the two articles face each other. A reinforcement frame (20) is then disposed between the two articles. The whole layered assembly in this state is thermocompression-bonded. Thus, a membrane-electrode assembly (15) in which the reinforcement frame (20) is embedded within an electrolyte membrane (15) that is formed by the fusion of first electrolyte membrane (12a) and the second electrolyte membrane (12b) is obtained.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihiro Hori, Yoshito Endo
  • Patent number: 8628893
    Abstract: Binder composites for membrane electrode assemblies and membrane electrode assemblies employing the same are provided. The binder composition includes a solvent, a hyper-branched polymer and a polymer with high ion conductivity, wherein the hyper-branched polymer and the polymer with high conductivity of hydronium are distributed uniformly over the solvent, and the hyper-branched polymer has a DB (degree of branching) of more than 0.5.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 14, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Tsung-Hsiung Wang, Jing-Pin Pan, Ssu-Tai Lin
  • Patent number: 8623570
    Abstract: A fuel cell stack includes a casing containing a plurality of fuel cell units. A ridge is formed integrally at the center in the width direction of a side panel of the casing. The ridge contacts a load receiver to support the load of the fuel cell units. A plurality of separate reinforcement plates bridging a recess of the back surface of the ridge are provided on the side panel. The reinforcement plates are fixed to the side panel at welding points by spot welding.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 7, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Ryoichi Yoshitomi, Ken Takahashi, Masaharu Suzuki
  • Patent number: 8617758
    Abstract: A hydrogen-oxygen fuel cell including a main cell and an auxiliary cell sharing a common electrolyte and having at least one separate electrode, circuitry for measuring the humidity ratio of the electrolyte, and control and switching circuitry for operating the main and auxiliary cells in parallel on a same load or separately on two different loads.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: December 31, 2013
    Assignees: STMicroelectronics (Tours) SAS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Nicolas Karst, Pierre Bouillon, Nelly Martin, Audrey Martinent
  • Publication number: 20130337363
    Abstract: An exemplary fuel cell component includes a plate comprising an electrically conductive material. An electrical connector includes a first portion embedded in the plate. A second portion of the electrical connector extends from the plate. The second portion is configured to make an electrically conductive connection with another device.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Inventors: David Melo Ferreira, Christopher John Carnevale, Glenn Michael Allen
  • Patent number: 8609299
    Abstract: A fuel cell seal structure includes a GDL which is formed by a porous body and a gasket which is integrally formed with a peripheral edge of a GDL. The GDL includes a rubber impregnation portion and an impregnation stopping portion. The gasket is integrally formed with a gasket body portion having a thickness dimension larger than a thickness dimension of the GDL and an overlap portion overlapping with the GDL in a plane other than a portion impregnated by the GDL. The rubber impregnation portion of the GDL includes an inner portion which is provided between the impregnation stopping portion and an outer portion overlapping with the overlap portion of the gasket in a plane so as not to overlap with the gasket in a plane.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 17, 2013
    Assignee: NOK Corporation
    Inventors: Morihiro Iju, Shigeru Watanabe, Kenichi Oba
  • Patent number: 8597453
    Abstract: This invention provides a method of producing a highly electrically conductive sheet molding compound (SMC) composition and a fuel cell flow field plate or bipolar plate made from such a composition. The plate exhibits a conductivity typically greater than 100 S/cm and more typically greater than 200 S/cm. In one preferred embodiment, the method comprises: (a) providing a continuous sheet of a substrate material (bottom sheet) and a continuous sheet of flexible graphite (top sheet) from respective rollers; (b) feeding a resin mixture (comprising a thermoset resin and a conductive filler) to a space between the top sheet and the bottom sheet in such a way that the resin mixture forms a uniform core layer sandwiched between the two sheets to obtain a laminated structure; (c) compressing the laminated structure to obtain a SMC composition having two opposite outer surfaces; and (e) impressing a fluid flow channel to either or both of the outer surfaces (e.g.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 3, 2013
    Assignee: Manotek Instriments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu, Lulu Song
  • Patent number: 8597806
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 3, 2013
    Assignee: Societe BIC
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Patent number: 8586258
    Abstract: A valve for a pressure vessel system includes a housing including a cavity and a hollow fluid flow portion. A membrane actuator is disposed in the cavity of the housing. A piston is disposed in the cavity and in the hollow fluid flow portion of the housing. A spring is disposed in the hollow fluid flow portion of the housing. The spring biases a piston head toward a fluid flow port formed in the hollow fluid flow portion. The piston head seals the fluid flow port when the biasing of the piston head by the spring is not countered by an opposite deflection of the membrane actuator.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 19, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Oliver Maier
  • Patent number: 8586261
    Abstract: Techniques for packaging and utilizing solid hydrogen-producing fuel are described herein. The fuel may be in the form of a bonded/compressed powder, granules, or pellets. The fuel is packaged in cartridges having hydrogen-permeable enclosures. In operation, the fuel undergoes a hydrogen-releasing Thermally Initiated Hydrolysis (TIH) reaction. A cartridge may comprise one or more fuel chambers, and several cartridges may be assembled together.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 19, 2013
    Assignee: Protonex Technology Corporation
    Inventors: Michael T. Kelly, Jeffrey V. Ortega
  • Patent number: 8574787
    Abstract: A fuel cell stack includes a plurality of fuel cells stacked together, and a pair of end plates provided at opposite ends the fuel cells in the stacking direction. Further, the fuel cell stack includes coupling members bridging between the end plates, holding mechanisms provided in side surfaces of the end plates and the coupling members for applying tension in a tightening direction, and fixing mechanisms for fixing the side surfaces of the end plates and the coupling members together. The holding mechanism has a pin member inserted into the side surface of the end plate and the coupling member. Further, the fixing mechanism has a screw for fixing the coupling member to the side surface of the end plate.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: November 5, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadashi Nishiyama, Go Morimoto
  • Patent number: 8568940
    Abstract: A bipolar plate assembly for a fuel cell is provided. The bipolar plate assembly includes a first unipolar plate disposed adjacent to a second unipolar plate. The first unipolar plate and the second unipolar plate are bonded by a plurality of localized electrically conductive nodes. A fuel cell stack including the bipolar plate assembly and a method for preparing the bipolar plate assembly are also described.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Keith E. Newman, Michael K. Budinski
  • Patent number: 8563195
    Abstract: A frame assembly for a fuel cell power module, particularly but not exclusively for use in lift trucks, has at least one frame element. The frame element is provided with an internal cavity that is filled with a fill material to provide a desired mass of the frame assembly. The frame assembly is configured to receive a fuel cell stack and other balance of plant components of a fuel cell power module and may also be configured to receive a fuel storage vessel. The frame assembly can be configured so that it can replace a battery pack of a lift truck and still provide adequate counterweight.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 22, 2013
    Assignee: Hydrogenics Corporation
    Inventors: Anthony Sabapathy, Vicente Nunes, Andrew Hill, Igor Kvachnine
  • Patent number: 8557477
    Abstract: A fuel cell stack including a first end plate, a second end plate, at least a fuel cell, a first current collector and a second current collector is provided. The first end plate includes a first end plate structure component, which is combined with a first end plate manifold component. The second end plate includes a second end plate structure component, which is combined with a second end plate manifold component. The first and the second end plate manifold components are placed between the first and the second end plate structure components, while the fuel cell is disposed between the first and the second end plate manifold components. The first current collector is disposed between the first end plate manifold component and the fuel cell. The second current collector is disposed between the second end plate manifold component and the fuel cell.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 15, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Chang Chen, Huan-Ruei Shiu, Kuei-Han Chen, FangHei Tsau, Wen-Chen Chang
  • Publication number: 20130266891
    Abstract: The present invention features a fuel cell stack that preferably includes an electricity generating assembly having a plurality of unit cells that are suitably disposed one after another; a pair of end plates pressedly disposed respectively at upper and lower ends of the electricity generating assembly; and a joining device suitably engaging the end plates by a rope, where pressure is applied to the electricity generating assembly by means of tension of the rope, and the length and tension of the rope is suitably controlled.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 10, 2013
    Applicants: Hyundai Motor Company, Korea Advanced Institute of Science and Technology, Kia Motors Corporation
    Inventors: Hyundai Motor Company, Kia Motors Corporation, Korea Advanced Institute of Science and Technology
  • Patent number: 8546040
    Abstract: In forming a fuel cell stack by stacking a plurality of fuel cell units, in order to provide a fuel cell in which the fuel cell stack can be stably bound, the supply of fuel and conduction of respective cells can be surely performed, and stable power generation is possible, the fuel cell includes a fuel cell stack 2 formed by stacking a plurality of fuel cell units 3 having a fuel electrode 33 and an oxidizer electrode 43. The oxidizer electrode has, in a plane orthogonal to a stacking direction of the fuel cell units, an elastic member (an oxidizer electrode diffusion layer) 41 that is arranged in parallel to a rigid supporting member 14 and has electrical conductivity.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: October 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Akiyoshi Yokoi
  • Patent number: 8507149
    Abstract: The plant (1) with high-temperature fuel cells (7) includes a clamping device for a cell stack (5) and axially aligned chambers (7) for an after-burning. Clamping bars (60) of the clamping device are disposed between the afterburning chambers. Exhaust gas passages connect the after-burning chambers to a heat exchanger (20a) acting as a heat sink. A clamping element (62) of the clamping device is in heat conducting connection with the heat exchanger. Compression springs (63) are respectively mounted on the clamping bars between an end of the clamping bar and a lug (622) of the clamping element. In this arrangement they exert a clamping force onto the clamping bars. The compression springs are shielded by the clamping element from the cell stack so that, thanks to the heat sink, the compression springs are only exposed to moderate temperature at which the clamping force is maintained.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: August 13, 2013
    Assignee: Hexis AG
    Inventors: Alexander Schuler, Dirk Haberstock, Roland Denzler, Michael Tamas, Jeannette Clifford
  • Publication number: 20130196253
    Abstract: A solid oxide fuel cell (SOFC) stack having a glass seal sandwiched between the sealing surfaces of adjacent cassettes, in which at least one cassette includes means for interlocking the glass seal onto the sealing surface of the cassette for improved adhesion and durability of the glass seal. The at least one cassette includes a plurality of perforations configured to receive and lock onto a portion of the glass seal. At least one of the perforations includes a through-hole having an exterior opening on the sealing surface and an interior opening on the interior surface of the cassette. A portion of the glass seal is received in the perforation forming a glass column in the through-hole and a flared glass end on the interior surface surrounding the interior opening. The flared glass end cooperates with the glass column to interlock the glass seal onto the cassette's sealing surface.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: ANTHONY J. DE ROSE, SUBHASISH MUKERJEE, RAY BASSETT, KARL JACOB HALTINER, JR.
  • Patent number: 8481228
    Abstract: Disclosed herein is a fuel cell assembly that arranges a plurality of individual fuel cells into an array. The fuel cells are set into openings formed in a frame. The openings are arranged into the array, such as in columns and rows. A rear cover is sealingly attached to the frame, thereby defining a chamber between the frame and a base of the rear cover, where the chamber serves as a manifold. Optional supports extend from the base to the fuel cells. The void forms a fluid manifold for dispersing fuel for the fuel cells from a fuel reservoir to the fuel cells. Alternatively, the rear cover separates the interstitial space between the rear cover and the frame into compartments, which are fluidly interconnected by channels. The array may also include a functional element electrically connected to the fuel cells configured to transfer power an electronic device.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: July 9, 2013
    Assignee: Societe Bic
    Inventors: Alain Rosenzweig, Kurt Rath, Jean Yves Laurent, Bruno Vallon, Andrew J. Curello
  • Patent number: 8481229
    Abstract: In a fuel cell stack, a cell stack formed by laminating a membrane electrode assembly and a separator and sandwiching them from the both sides in the laminating direction with a pair of end plates is fastened by being tightened in the laminating direction with a first plate spring. The first plate spring includes two arm sections for pressing the pair of end plates and a connecting section connecting the arm sections, and has a C-shaped cross-section.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: July 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Katsumi Kozu, Shinsuke Fukuda
  • Publication number: 20130171545
    Abstract: The disclosure relates to an electrochemical assembly and a method of making an electrochemical assembly.
    Type: Application
    Filed: December 21, 2012
    Publication date: July 4, 2013
    Applicant: ENERFUEL, INC.
    Inventor: EnerFuel, Inc.
  • Patent number: 8470498
    Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 25, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takeharu Kuramochi, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto
  • Patent number: 8470494
    Abstract: A membrane-electrode assembly for a fuel cell including a first substrate and a second substrate and a catalyst layer between the first substrate and the second substrate is provided, where the first substrate is a polymer electrolyte membrane and the second substrate is a electrode substrate, or the first substrate is the electrode substrate and the second substrate is the polymer electrolyte membrane. The catalyst layer has a h1/t1 ratio of about 0.5 or more, where s1 represents a point on the first substrate at one end of the catalyst layer, h1 represents a distance between the first substrate and the second substrate, s2 represents a point on the first substrate closest to s1 at which a height (h) of the catalyst layer becomes h1, and t1 represents the distance between the s1 and the s2. The membrane-electrode assembly can include a greater amount of catalyst by decreasing a shadow effect, and thereby increasing its energy density.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 25, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Han-Kyu Lee, Ho-Jin Kweon, Kah-Young Song
  • Publication number: 20130149629
    Abstract: According to one embodiment, a fuel-cell power generation system includes a fuel cell that generates electricity by electrochemical reaction using fuel and an oxidizer and a resin module that includes a flow path through which fuel, air, or water flows, inner walls defining the flow path being made of resin.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 13, 2013
    Applicants: Toshiba Fuel Cell Power Systems Corporation, KABUSHIKI KAISHA TOSHIBA
    Inventors: KABUSHIKI KAISHA TOSHIBA, Toshiba Fuel Cell Power Systems Corporation
  • Patent number: 8459385
    Abstract: A structure for mounting a fuel cell on an object is provided. This structure is equipped with a fuel cell stack, a motor, and a drive shaft. The fuel cell stack has first and second end plates and at both ends. The motor is driven by the power generated by the fuel cell stack and is fixed to the fuel cell stack. The drive shaft is connected to the output shaft of the motor and extends to both sides of the motor. The fuel cell stack is equipped with a support portion for supporting the drive shaft at the first end plate. The drive shaft is supported by the support portion and the motor.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: June 11, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Katano
  • Patent number: 8455154
    Abstract: A solid oxide fuel cell (SOFC) includes a plurality of subassemblies. Each subassembly includes at least one subcell of a first electrode, a second electrode and an electrolyte between the first and second electrodes. A first bonding layer is at the second electrode and an interconnect layer is at the first bonding layer distal to the electrolyte. A second bonding layer that is compositionally distinct from the first bonding layer is at the interconnect layer, whereby the interconnect partitions the first and second bonding layers. A method of fabricating a fuel cell assembly includes co-firing at least two subassemblies using a third bonding layer that is microstructurally or compositionally distinct from the second bonding layer.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: June 4, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Oh-Hun Kwon, Yeshwanth Narendar, Rakesh Kapoor
  • Patent number: 8450027
    Abstract: The present invention provides a method of assembling a fuel cell stack, in which a fixing block and a fixing pin are used to assemble the fuel cell stack instead of a bolt, thereby reducing the time and process required for assembly of the fuel cell stack, enabling an assembly process using an automated device to be realized, and facilitating mass production.
    Type: Grant
    Filed: July 5, 2008
    Date of Patent: May 28, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Duck Whan Kim, Young Bum Kum, Young Woo Noh, Sae Hoon Kim, Kwi Seong Jeong
  • Patent number: 8445159
    Abstract: Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: May 21, 2013
    Assignee: The Regents of The University of California
    Inventors: Michael C. Tucker, Craig P. Jacobson, Lutgard C. De Jonghe, Steven J. Visco
  • Patent number: 8435656
    Abstract: A secondary battery including a first bare cell, a second bare cell disposed to face at least a portion of the first bare cell, and a protection circuit module including a circuit board having an electrical circuit device mounted thereon and at least one connection tab between the first and second bare cells, the connection tab electrically connecting the circuit board to the first and second bare cells.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok Koh, Seokryun Park
  • Patent number: 8435655
    Abstract: A secondary battery including a bare cell, a protection circuit module electrically coupled to the bare cell, and a holder between the bare cell and the protection circuit module, wherein the protection circuit module includes a flexible printed circuit board having an upper and a lower surface, a charging/discharging terminal on the upper surface of the flexible printed circuit board and a protection circuit unit on the lower surface of the flexible printed circuit board opposite to the charging/discharging terminal, and the holder is disposed on the protection circuit unit on the lower surface of the flexible printed circuit board.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok Koh, Eunok Kwak
  • Publication number: 20130108943
    Abstract: A fuel cell includes a chromium-containing metal support, a ceramic electrode layer on the metal support and an electroconductive ceramic layer between the chromium-containing metal support and the ceramic electrode layer. The electroconductive ceramic layer includes a ceramic material selected from lanthanum-doped strontium titanate and perovskite oxides.
    Type: Application
    Filed: May 4, 2011
    Publication date: May 2, 2013
    Inventors: Jean Yamanis, Tianli Zhu, Neal Magdefrau, Mark A. Hermann
  • Patent number: 8431284
    Abstract: A fuel cell assembly and method of forming the same is disclosed, the fuel cell assembly including a membrane electrode assembly, a plurality of diffusion media, and a plurality of bipolar plates, wherein the diffusion media are adhered to the bipolar plates with an adhesive layer adapted to minimize an electrical resistance within the fuel cell assembly.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: April 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Michael K. Budinski
  • Patent number: 8431261
    Abstract: A fuel cell component includes a fuel cell component body having a surface, and an identification information display portion provided on the fuel cell component body. The identification information display portion is provided at a recessed region of the fuel cell component body recessed relative to the surface.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 30, 2013
    Assignees: Aisin Seiki Kabushiki Kaisha, Toyoyta Jidosha Kabushiki Kaisha
    Inventor: Katsuhiro Kajio
  • Patent number: 8424878
    Abstract: A device including a metal substrate and a ceramic substrate including a back-tapered groove separated from each other by a sealed flexible link. The link includes: a metal element including an end connected to the metal substrate and at another end housed in the groove of the ceramic substrate, the metal element being elastically deformable both in the groove along a direction radial to the groove and, in the separation space between the metal substrate and the ceramic substrate along the separation direction, and a joint-forming mass with a greater thermal expansion coefficient than that of the ceramic substrate and adhesively bonded to the end of the metal element housed in the back-tapered groove, the joint fitting with direct contact a portion of the height of convergent sidewalls of the groove.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 23, 2013
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Magali Reytier, Philippe Bucci
  • Patent number: 8420278
    Abstract: A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 16, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Anthony J. De Rose, Subhasish Mukerjee, Karl Jacob Haltiner, Jr.
  • Patent number: 8404398
    Abstract: According to an embodiment, a gas delivery device for a fuel cell system includes a hollow ceramic element comprising a dielectric material having at least one groove in one end face of the ceramic element and a first metal tube, wherein an end of the first metal tube is inserted into the groove of the hollow ceramic element. According to an embodiment, a fuel cell system includes a fuel cell stack or column, a gas delivery line fluidly connected to the stack or column, and a coefficient of thermal expansion compensator/isolator located in the gas delivery line, where the coefficient of thermal expansion compensator/isolator includes a hollow ceramic element made of a dielectric material having at least one groove in one end face of the ceramic element, a first metal tube, where an end of the first metal tube is inserted into the groove of the hollow ceramic element, and a hollow flexible element which compensates for differences in coefficients of thermal expansion between components of the fuel cell system.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: March 26, 2013
    Assignee: Bloom Energy Corporation
    Inventors: Martin Perry, Michael Petrucha, Andy Ta, Brandon Snow
  • Patent number: 8404397
    Abstract: The present invention features a fuel cell stack that preferably includes an electricity generating assembly having a plurality of unit cells that are suitably disposed one after another; a pair of end plates pressedly disposed respectively at upper and lower ends of the electricity generating assembly; and a joining device suitably engaging the end plates by a rope, where pressure is applied to the electricity generating assembly by means of tension of the rope, and the length and tension of the rope is suitably controlled.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 26, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Advanced Institute of Science and Technology
    Inventors: Haeng Jin Ko, Young Bum Kum, Young Woo Noh, Sae Hoon Kim, Sang Hyun Cho, Jung Do Suh, Kwi Seong Jeong, Junghan Yu, Byung Ki Ahn, Duck Whan Kim, Sung Keun Lee, Dai Gil Lee, Ha Na Yu
  • Patent number: 8377604
    Abstract: A fuel cell stack structure is basically provided with a stack entity and at least one tie rod. The stack entity includes a plurality of solid electrolyte fuel cell units stacked together in a stacking direction. The tie rod extends through the stack entity to fasten the solid electrolyte fuel cell units so that the solid electrolyte fuel cell units are pressed against each other in the stacking direction. The tie rod has an outer cylinder, an inner shaft fitting into the outer cylinder, and a joining material disposed between the outer cylinder and the inner shaft. The joining material fastens the outer cylinder and the inner shaft together in an axial direction of the tie rod and is configured and arranged to maintain a cured state at an operating temperature.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 19, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasushi Nakajima, Tatsuya Yaguchi, Hiroki Sakamoto, Yu Owada, Hiroshi Sakurai, Yoshiteru Yasuda
  • Publication number: 20130040220
    Abstract: An oxidation-resistant ferritic stainless steel comprising: a ferritic stainless steel comprising Cr, wherein a {110} grain orientation fraction of a surface of the ferritic stainless steel as measured using electron back scattered diffraction pattern (EBSD) is about 5% or more; and a chromium oxide layer formed on the surface of the ferritic stainless steel is provided.
    Type: Application
    Filed: September 8, 2011
    Publication date: February 14, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Dong-Ik KIM, Young Whan CHO, Jae Pyoung AHN, Woo Sang JUNG, Jae-Hyeok SHIM, Jin-Yoo SUH, In Suk CHOI, Young-Su LEE, Ju heon KIM
  • Patent number: 8367268
    Abstract: The invention concerns an elastomer seal (3) arranged in a generally rectangular groove of a bipolar plate (1), comprising in at least two opposite corners one first loop (6) urged to be attached on a corner pin (7) of the plate (1) and at least a second loop (8) designed to be urged to be attached, when the two plates are assembled enclosing between them an exchanging membrane, to a corner pin of the other polar plate. The seal further comprises studs (10) received in recesses of the plate and forms projecting lugs (11) for crimping the terminals of electronic components. The invention is applicable to the production of fuel cells.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: February 5, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Pierre Charlat, Thierry Novet, Guillaurne Roberge
  • Patent number: 8354203
    Abstract: The invention relates to bipolar plates for fuel cell systems. According to the invention, the component sheets of a bipolar plate (1) are formed for a welded joint (4, 5), such that between the profile regions (6) of the channel ducts (2), only small local surfaces remain as welding zones (10). The above is achieved by means of a corresponding shape of the profile molding (8, 9) of the component sheets. As a result of said reduction of the welding zones to small regions of the total surface, a larger proportion of the area is available for the channels (2), in other words, the channel cross-section and hence the coolant flow can be increased. At the same time the structure for the use of gas diffusion layers made from non-wovens, textiles or paper can be optimized.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: January 15, 2013
    Assignee: Daimler AG
    Inventors: Florian Finsterwalder, Joerg Kleemann, Thomas Kunick, Markus Schudy
  • Patent number: 8343682
    Abstract: A method is provided for making a gasketed fuel cell membrane electrode assembly (MEA) comprising the steps of: i) selecting a fluid transport layer sheet material; ii) selecting a target level of compression Ct % for use of said fluid transport layer sheet material in a fuel cell membrane electrode assembly; iii) measuring the pressure Pt for which the fluid transport layer sheet material achieves compression of Ct %; iv) positioning between the platens of a press a membrane electrode assembly comprising: a) a polymer electrolyte membrane; b) an anode catalyst material; c) a cathode catalyst material; d) an anode-side fluid transport layer comprising the selected fluid transport layer sheet material; and e) a cathode-side fluid transport layer comprising the selected fluid transport layer sheet material; v) depositing a gasket material in the outer edge portions of the anode and cathode faces of the polymer electrolyte membrane; vi) compressing the membrane electrode assembly to a pressing pressure Pp which
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: January 1, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: David Allen Wald, Michael Andrew Yandrasits
  • Patent number: 8343686
    Abstract: Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: January 1, 2013
    Assignee: The Regents of the University of California
    Inventors: Lutgard DeJonghe, Craig Jacobson, Michael Tucker, Steven Visco
  • Patent number: 8343683
    Abstract: A fuel cell stack including a plurality of fuel cells each formed by stacking separators and an electrolyte membrane-electrode assembly. The electrolyte membrane-electrode assembly includes an electrolyte membrane provided with a pair of electrodes on the opposite sides thereof. A stacked body formed by stacking the fuel cells is provided with a pair of end plates at the opposite ends thereof in a stacking direction. The end plates are integrally fixed by fastening members with the distance between the end plates maintained. A load measurement mechanism including a plurality of load sensors integrally connected to a connector member is provided between one of the end plates and the stacked body. The one of the end plates is provided with a pressure mechanism. The pressure mechanism presses the load measurement mechanism toward the stacked body to thereby apply a tightening load to the stacked body via the load sensors.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 1, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Go Morimoto, Tadashi Nishiyama, Hiroyuki Tanaka
  • Patent number: 8338056
    Abstract: A tubular fuel cell includes an inner current collector, a membrane-electrode assembly, and seal portions provided at the axial end portions of the membrane-electrode assembly, respectively. The membrane-electrode assembly includes an inner catalyst layer provided on the inner current collector, an electrolyte membrane provided on the inner catalyst layer, and an outer catalyst layer provided on the electrolyte membrane. The axial length of the outer catalyst layer is shorter than the axial lengths of the electrolyte membrane and the outer catalyst layer. The axial end face of the outer catalyst layer and the axial end face of the inner catalyst layer are located on the opposite sides of the seal portion in each side of the tubular fuel cell.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Hirokazu Ishimaru, Yuichiro Hama, Yoshihisa Tamura
  • Patent number: 8338052
    Abstract: A method for manufacturing a composite electrolyte membrane including: a first folding process of folding a laminate (10A) obtained by laminating and integrating an electrolyte sheet (11) having an electrolyte as an electrolyte layer and a reinforcing sheet (12) having a porous polymer material as a reinforcing layer, so that a part of a surface of the laminate (10A) lies on another part of the surface; an impregnation process of impregnating the electrolyte of the folded laminate (10B) into the reinforcing layer; and a hydrolysis process of hydrolyzing the electrolyte impregnated in the laminate (10C).
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Suzuki
  • Patent number: 8329322
    Abstract: In a solid polyelectrolyte fuel cell, with a frame including a frame body main part placed along a peripheral edge portion of a membrane, a plurality of first retaining portions which are arrayed so as to protrude from an inner edge of the frame body main part and which retain the front surface side of the membrane, and a plurality of second retaining portions which are arrayed so as to protrude from the inner edge of the frame body main part and which retain the back surface side of the membrane, the first retaining portions and the second retaining portions are so arrayed that retaining positions of the membrane by the first retaining portions and retaining positions of the membrane by the second retaining portions are alternately placed.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Takashi Morimoto, Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Mitsuo Yoshimura