Having Means For Supplying Reactant Or Electrolyte Patents (Class 429/513)
  • Patent number: 8715882
    Abstract: A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along some of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 6, 2014
    Assignee: Lawrene Livermore National Security, LLC.
    Inventors: David A. Sopchak, Jeffrey D. Morse, Ravindra S. Upadhye, Jack Kotovsky, Robert T. Graff
  • Patent number: 8715870
    Abstract: A gas reclaiming system is disclosed. The gas reclaiming system includes a getter device adapted to receive mixed gases and separate the mixed gases into at least one gas of interest and constituent gases. A recirculation loop is disposed in fluid communication with the getter device and adapted to receive the at least one gas of interest from the getter device. A gas reclaiming method is also disclosed.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: May 6, 2014
    Assignee: Ford Motor Company
    Inventors: Milos Milacic, William Schank, Kurt Osborne
  • Patent number: 8715884
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 6, 2014
    Assignee: Micronas GmbH
    Inventors: Mirko Lehmann, Claas Muller, Holger Reinecke, Mirko Frank, Gilbert Erdler
  • Patent number: 8709675
    Abstract: The fuel cell base module stacking structure has large compactness, very litte ohmic losses and ease as for implementing the seal of the assembly. It consists of a concentric stack of several fuel cell base cells each consisting on either side of an interconnector (24) sandwiching an anode (21), an electrolyte (22) and a cathode (23), each cell being thereby placed upon each other. The module is completed with two cases for distributing combustible gases. Application to gas fuel cells of the SOFC type.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: April 29, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Damien Gallet, Franck Blein, Jean-Luc Sarro
  • Patent number: 8703359
    Abstract: A fuel cell capable of being thinned while maintaining a stable electric power supply is provided. A fuel cell includes a power generation section, a fuel tank, a fuel supply section (pump), and a fuel vaporization section. The power generation section has a structure in which a combined body is sandwiched between a cell plate and a cell plate. The combined body has a structure in which an anode electrode and a cathode electrode are oppositely arranged with an electrolyte film in between. In particular, the fuel supply section and the fuel vaporization section are integrally provided, and are connected by a nozzle section buried therein. A fuel contained in the fuel tank is pumped by the fuel supply section according to the state of the power generation section, and then is vaporized by the fuel vaporization section, and is supplied to the power generation section side.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 22, 2014
    Assignee: Sony Corporation
    Inventors: Kazuaki Fukushima, Shuji Goto, Jusuke Shimura
  • Patent number: 8703358
    Abstract: Fuel feed systems capable of providing substantially consistent flow of fuel to a fuel cell and also capable of tolerating varying pressures from a reservoir (also referred to as fuel supply or fuel cell cartridge) and the fuel cell while maintaining substantially consistent control flow to the fuel cell are disclosed.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: April 22, 2014
    Assignee: MTI Microfuel Cells, Inc.
    Inventors: John Meschter, Bryan Grygus, Nagaraja K. Yaddanapudi, Keith Brown, James Prueitt, Karen Thatcher, Michael Chen, George Allen, Wenpeng Liu, Zhigang Qi, Garrick D. S. Smith
  • Patent number: 8703351
    Abstract: A fuel cell component includes a first fluid distribution layer, a second fluid distribution layer, a cap layer, a third fluid distribution layer, and a pair of fluid diffusion medium layers. The individual layers are polymeric, mechanically integrated, and formed from a radiation-sensitive material. The first fluid distribution layer, the second fluid distribution layer, the cap layer, the third fluid distribution layer, and the pair of fluid diffusion medium layers are coated with an electrically conductive material. A pair of the fuel cell components may be arranged in a stack with a membrane electrode assembly therebetween to form a fuel cell.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, Steven G. Goebel, Gerald W. Fly, Alan J. Jacobsen, Joanna A. Kolodziejska, Hung D. Nguyen
  • Patent number: 8691471
    Abstract: A polymer electrolyte fuel cell of the present invention includes a membrane electrode assembly (5) having a pair of electrodes (4a, 4b) sandwiching a portion of a polymer electrolyte membrane (1) which is inward relative to a peripheral portion thereof, a first separator (6a), and a second separator (6b), the first separator (6a) is provided with a first reaction gas channel (8) on one main surface, the second separator (6b) is provided with a second reaction gas channel (9) on one main surface such that the second reaction gas channel (9) has a second rib portion (12), the first reaction gas channel (8) is formed such that a ratio of a first reaction gas channel width of an upstream portion (18b) to the second rib portion (12) is set larger than a ratio of a first reaction gas channel width of a downstream portion (18c) to the second rib portion (12), and the ratio of the first reaction gas channel width of the upstream portion (18b) to the second rib portion (12) is a predetermined ratio.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeou Okanishi, Naotsugu Koashi, Shinsuke Takeguchi, Yoichiro Tsuji
  • Patent number: 8679696
    Abstract: A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly is disclosed. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. A plurality of outlets is formed intermediate the first end and the second end. A plurality of flow channels is formed in the hollow insert providing fluid communication between the inlet and the outlets to deliver the fluid to a plurality of fuel cells of the fuel cell assembly, wherein a total flow volume and flow resistance of each of the flow channels is substantially the same to provide for a substantially simultaneous delivery of the reactant gas to the fuel cells.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd D. Bogumil, Steven G. Goebel, Gary M. Robb, Clipson M. Class
  • Patent number: 8679703
    Abstract: An exemplary flow field plate for use in a fuel cell includes a plurality of inlet flow channels. A plurality of outlet flow channels are also included. The flow channels are arranged such that at least two of the inlet flow channels are immediately adjacent each other on a first side of the two of the inlet flow channels. At least one of the outlet flow channels is immediately adjacent each of the two inlet flow channels on a second, opposite side of each of the two inlet flow channels.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: March 25, 2014
    Assignee: United Technologies Corporation
    Inventor: Robert Mason Darling
  • Publication number: 20140080026
    Abstract: A direct Fuel Cell is based on organic liquid hydrogen storage materials, and includes a fuel cell unit connected to load through AC/DC convert circuit. The outlet and inlet of hydrogen storage materials on the fuel cell unit is connected to hydrogen storage tank through hydrogen storage output pipe and hydrogen storage input pipe, respectively. There is a pump for hydrogenated hydrogen storage materials on the hydrogenated hydrogen storage materials input pipe; the second outlet for water and gas on the fuel cell unit is connected to water tank through the second water output pipe. The water and gas inlet on the fuel cell unit is connected with oxygen input pipe; there is a gas outlet on the top of the water tank; the hydrogen storage materials tank contains hydrogen storage materials. The mentioned hydrogen storage materials are a multi-component mixture of liquid unsaturated heterocyclic aromatics.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: CHINA UNIVERSITY OF GEOSCIENCES (WUHAN)
    Inventors: Hansong Cheng, Gang Ni, Ming Yang, Chaoqun Han, Bo Han, Shengping Wang, Jinping Wu
  • Publication number: 20140065506
    Abstract: A fuel cell stack (10) having a plurality of modules (12) and each module (12) having an elongate hollow member (14). Each hollow member (14) has a first flat surface (16) and a second flat surface (18) arranged parallel to the first flat surface (16). At least one of the modules (12) includes a plurality of fuel cells (20). The fuel cells (20) are arranged on at least one of the first and second flat surfaces (16,18) of the at least one module (12). A first end (30) and a first side (32) of each module (12) has a first integral feature (34) to provide a spacer and a connection with an adjacent module (12) and a second end (38) and a second side (40) of each module (12) has a second integral feature (42) to provide a spacer and a connection with another adjacent module (12).
    Type: Application
    Filed: October 23, 2013
    Publication date: March 6, 2014
    Applicant: LG FUEL CELL SYSTEMS INC.
    Inventors: Gary Wright, Nigel T. Hart, Gerard D. Agnew, Christopher Burrows
  • Publication number: 20140057197
    Abstract: Fuel supplies including multiple valve components and fuel cell systems having increased operational resistance to the insertion and/or removal of fuel supplies are disclosed.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Inventors: Paul Adams, Andrew J. Curello, Floyd Fairbanks, Anthony Sgroi
  • Publication number: 20140057196
    Abstract: A mains power adaptor (1) incorporating a fuel cell (5) for providing alternative power to a low voltage portable device when no mains power is available. The adaptor (1) includes electrical pins (4) configured to connect with a mains power supply socket; a power converter circuit (7) having an input coupled to the electrical pins (4) for converting mains power to a lower voltage supply (8); an electrical output (2) of the lower voltage supply (8); and a fuel cell (5) switchably coupled to said electrical output. The adaptor (1) has a fluid connection port (12) for coupling a fluid fuel outlet of a fuel cartridge (not shown) to a fuel inlet of the fuel cell (5) and the fluid connection port (12) is disposed in a face (3) of the adaptor (1) from which the electrical pins (4) extend. A valve of the fuel cartridge is operable by engagement with the electrical pins (4) of the adaptor (1).
    Type: Application
    Filed: February 6, 2012
    Publication date: February 27, 2014
    Applicant: INTELLIGENT ENERGY LIMITED
    Inventors: Henri Winand, Michael Provost, Mark Bignell
  • Patent number: 8658322
    Abstract: In a fuel cell system including a stack of polymer electrolyte fuel cells, the wet state of electrolyte membranes in the fuel cell stack is detected according to a variation in measurement value of an alternating current impedance (AC impedance) of the fuel cell stack. In an adequate level of water content of the electrolyte membranes, the measurement value of the AC impedance is substantially constant and has a very little variation. In an excess level of water content of the electrolyte membranes, the measurement value of the AC impedance has a significant variation. The AC impedance of the fuel cell stack is determinable by frequency analysis of high-frequency noise generated by an inverter included in the fuel cell system.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: February 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Nobuyuki Kitamura
  • Publication number: 20140050995
    Abstract: An electrocatalyst material comprising a functionalized catalytic substrate, the catalytic substrate comprising an electron-accepting material adsorbed thereto. In one embodiment, the catalytic substrate comprises carbon nanotubes or graphene sheets having a nitrogen-containing or nitrogen-free polyelectrolyte, e.g., poly(diallyldimethylammonium chloride) (PDDA), adsorbed thereto. The electrocatalyst material exhibits excellent catalytic activity, as well as broad fuel selectivity, resistance to poisoning effects, and durability. The electrocatalyst can be used as part of an electrode structure, e.g., a cathode, that can be used in a wide range of electrochemical devices.
    Type: Application
    Filed: March 1, 2012
    Publication date: February 20, 2014
    Inventor: Liming Dai
  • Patent number: 8652708
    Abstract: A fluid flow plate of a fuel cell includes a main body and a supporting frame. The main body includes a plurality of fluid channels and an opening, wherein the fluid channels converge at the opening. The supporting frame, mounted on the periphery of the opening, is annular shaped and frames the fluid channels. The supporting frame includes a pair of supporting walls respectively disposed on two sides of the fluid channels.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 18, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Huan-Ruei Shiu, Chi-Chang Chen, Shiqah-Ping Jung, Wen-Chen Chang, Fanghei Tsau
  • Publication number: 20140045089
    Abstract: Among other things, a gas storage system includes a group of capsules and an activation element coupled to the group. The group of capsules are formed within a substrate and contain gas stored at a relatively high pressure compared to atmospheric pressure. The activation element is configured to deliver energy in an amount sufficient to cause at least one of the capsules to release stored gas.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: ENCITE LLC
    Inventors: Stephen Alan Marsh, Donald M. Parker, William J. Grande
  • Publication number: 20140038083
    Abstract: A forward check valve and a fuel cell system are provided which include a valve portion including a valve body, a supporting portion, a hole, and a fixation portion. The valve body contacts a valve seat when the valve portion is accommodated in an opening. The supporting portion supports the valve body so that the valve body is movable in directions in which the valve body moves towards and away from the valve seat. The fixation portion contacts an inner peripheral surface defining the opening of a valve housing to fix the supporting portion when the valve portion is accommodated in the opening. The fixation portion includes protruding portions that protrude from a mount surface of the valve housing when the valve portion is accommodated in the opening. By fitting the valve portion to the opening, the valve portion is accommodated in the opening of the valve housing.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Masahiro SASAKI, Yuzo HIGASHIYAMA
  • Patent number: 8642222
    Abstract: A power request controller that prevents a power request signal to a fuel cell stack controller from providing more compressor air and hydrogen gas than is necessary to meet the current power demands of the vehicle. The stack controller generates a signal of the available current from the fuel cell stack. This signal and the measured current actually being drawn from the stack are received by a proportional-integral (P-I) controller in the power request controller. If the available stack current is significantly greater than the stack current being used, the P-I controller will provide an output signal that reduces the power request signal to the stack controller so that the current produced by the stack and the current being drawn from the stack are substantially the same. A transient detector turns off the P-I controller so that it does not reduce the power request signal during an up-power transient.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jochen Schaffnit, Jochen Lenz, Peter Willimowski, Andreas Voigt
  • Publication number: 20140023945
    Abstract: An aircraft system comprising a fuel storage system comprising a first fuel tank capable of storing a first fuel and a second fuel tank capable of storing a second fuel is disclosed herein. The aircraft system further comprises a fuel cell system comprising a fuel cell capable of producing electrical power using at least one of the first fuel or the second fuel, and a fuel delivery system capable of delivering a fuel from the fuel storage system to the fuel cell system.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 23, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Jay Epstein, Randy M. Vondrell, Robert Harold Weisgerber, Georgia C. Karvountzi
  • Patent number: 8632921
    Abstract: An electrochemical cell includes a first electrode configured to operate as an anode to oxidize a fuel when connected to a load. The first electrode includes a permeable electrode body configured to allow flow of an ionically conductive medium therethrough. An electrode holder includes a cavity for holding the first electrode. A diffuser is positioned in the cavity between the first electrode and the electrode holder with a gap formed between the diffuser and the electrode holder. The diffuser includes openings configured to allow flow of the ionically conductive medium therethrough and to distribute the flow through the first electrode. A second electrode is positioned in the cavity on a side of the first electrode that is opposite the diffuser, and is configured to operate as a cathode when connected to the load and in contact with the ionically conductive medium.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: January 21, 2014
    Assignee: Fluidic, Inc.
    Inventors: Cody A. Friesen, Grant Friesen, Ramkumar Krishnan, Todd Trimble
  • Patent number: 8632927
    Abstract: A direct fuel cell comprises a cathode comprising electroactive catalyst material; and an anode assembly comprising an anode having a porous layer and electroactive catalyst material in the porous layer. The electrode characteristics of the anode assembly are selected so that fuel supplied to the anode is reacted within the anode so that cross-over from the anode to the cathode does not have more than a 10% negative effect on voltage or a 25 mV voltage loss when at peak power and steady state conditions. The anode and cathode each have a first major surface facing each other in non-electrical contact and without a microporous separator or ion exchange membrane therebetween.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 21, 2014
    Assignee: National Research Council of Canada
    Inventors: David P. Wilkinson, Alfred Lam
  • Publication number: 20140017600
    Abstract: An electrochemical cell includes a flow chamber disposed between two plate elements and having a flow inlet and a flow outlet for a flow medium permeating the flow chamber and defining a main flow direction of the flow medium between the flow inlet and the flow outlet. One of the plate elements has protrusions for supporting the plate element on the other plate element in a regular grid structure, between which a network of flow channels passing through the flow chamber runs in at least one flow channel direction. The regular grid structure is configured in such a way that the grid of the flow channels has two or more flow channel directions each enclosing an angle differing from zero degrees relative to the main flow direction of the flow medium.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 16, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Torsten Brandt, Joachim Hoffmann, Arno Mattejat
  • Publication number: 20140011117
    Abstract: An assembly of a fuel cell for an electroportable device and of a connection adapter for connecting the fuel cell and a fuel reservoir, the adapter being arranged for receiving a member for supplying the cell and an ejection nosepiece of the reservoir, the adapter comprising a valve arranged for being actuated by the ejection nosepiece of the reservoir and switched from a plugging condition, before connection, to a fuel transmission condition, after connection. Thanks to the invention, the fuel cell is permanently maintained under fuel supply.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 9, 2014
    Applicant: SOCIETE DE PROSPECTION ET D'INVENTIONS TECHNIQUES SPIT
    Inventor: Christian Ricordi
  • Publication number: 20130337366
    Abstract: The design and method of fabrication of a three-dimensional, porous flow structure for use in a high differential pressure electrochemical cell is described. The flow structure is formed by compacting a highly porous metallic substrate and laminating at least one micro-porous material layer onto the compacted substrate. The flow structure provides void volume greater than about 55% and yield strength greater than about 12,000 psi. In one embodiment, the flow structure comprises a porosity gradient towards the electrolyte membrane, which helps in redistributing mechanical load from the electrolyte membrane throughout the structural elements of the open, porous flow structure, while simultaneously maintaining sufficient fluid permeability and electrical conductivity through the flow structure.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 19, 2013
    Inventors: Scott Blanchet, Roger Van Boeyen
  • Publication number: 20130330654
    Abstract: A method of depositing a thin gold coating on bipolar plate substrates for use in fuel cells includes depositing a gold coating onto at least one surface of the bipolar plate substrate followed by annealing the gold coating at a temperature between about 200° C. to 500° C. The annealed gold coating has a reduced porosity in comparison with a coating which has not been annealed, and provides improved corrosion resistance to the underlying metal comprising the bipolar plate.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael P. Balogh, Gayatri Vyas Dadheech, Nicholas P. Irish, Misle M. Tessema, Daniel P. Miller, Mahmoud H. Abd Elhamid
  • Publication number: 20130330645
    Abstract: There is provided a vehicular fuel cell system. A fuel gas supply path is configured to supply fuel gas from a fuel gas container to a fuel cell stack. A primary decompression valve is disposed on the fuel gas supply path. A secondary decompression valve is disposed on the fuel gas supply path at a downstream side of the primary decompression valve. The secondary decompression valve is fixed to the fuel cell stack.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 12, 2013
    Inventors: Kazuyuki HIROTA, Shinichiro TAKADA, Naoki OZAWA
  • Patent number: 8603702
    Abstract: Provided is a zinc air fuel cell with enhanced cell performance which includes a separator-electrode assembly including a perforated metal plate as a cathode current collector, a catalyst-coated carbon paper, a separator, a perforated metal plate as an anode current collector, and a tilted nonconductive support. A metal plate may be placed on the tilted nonconductive support and connected to the anode current collector in the separator-electrode assembly to enlarge the active area of the anode current collector. Performance may be efficiently enhanced by minimizing a distance between the anode current collector and the cathode current collector, and by adding a metal plate which plays a role of an additional anode current collector on the tilted nonconductive support so as to increase the overall active area of anode current collector contacting with zinc pellets and to resultantly enhance the ionization of zinc.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 10, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Hong Gon Kim, Dong Jin Suh, Chang Soo Kim, Hyun Joo Lee, Byoung Koun Min
  • Patent number: 8603700
    Abstract: A fuel cell system includes a fuel cell body that generates electricity through electrochemical reaction of a first reactive gas and a second reactive gas, a first gas supply passage and a second gas supply passage supplying the first reactive gas and the second reactive gas to the fuel cell body, a first gas discharge passage and a second gas discharge passage discharging an off-gas of the first reactive gas and an off-gas of the second reactive gas from the fuel cell body, and a branch passage branching out from one of the first gas discharge passage or the second gas discharge passage. The off-gas discharged by the other one of the first gas discharge passage or the second gas discharge passage is arranged to flow through the branch passage.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Nobuo Fujita
  • Patent number: 8597856
    Abstract: A direct methanol fuel cell includes a cathode catalyst layer; an electrolyte membrane; an anode catalyst layer; a first fuel control layer that is water-repellent and conductive and that has pores; a second fuel control layer that is water-repellent and conductive and that has larger pores than the those of the first fuel control layer; a third fuel control layer that is water-repellent and conductive and that has smaller porous than those of the first fuel control layer and those of the second fuel control layer; and an anode GDL layer that is water-repellent and conductive, wherein the membrane and the layers above are arranged in the above order.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Akasaka, Masato Akita, Ryosuke Yagi, Hiroyasu Sumino, Kazuhiro Yasuda, Taishi Fukazawa
  • Publication number: 20130309593
    Abstract: This gas diffusion layer for a PEMFC includes at least one hydrophilic electronically-conductive thread, advantageously formed of a carbon thread, of an electronically conductive hydrophilic material thread, or of a polymer thread loaded with electronically-conductive particles.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 21, 2013
    Applicant: Commissariat A L'Energie Atomique Et Aux Energie Alternatives
    Inventors: Ludovic ROUILLON, Joël PAUCHET
  • Patent number: 8586261
    Abstract: Techniques for packaging and utilizing solid hydrogen-producing fuel are described herein. The fuel may be in the form of a bonded/compressed powder, granules, or pellets. The fuel is packaged in cartridges having hydrogen-permeable enclosures. In operation, the fuel undergoes a hydrogen-releasing Thermally Initiated Hydrolysis (TIH) reaction. A cartridge may comprise one or more fuel chambers, and several cartridges may be assembled together.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 19, 2013
    Assignee: Protonex Technology Corporation
    Inventors: Michael T. Kelly, Jeffrey V. Ortega
  • Publication number: 20130302720
    Abstract: To achieve smooth drawing of air into a fuel cell, the air-flow resistance of an exhaust passage is reduced and intrusion of water into an exhaust duct is prevented. In the present invention, in an exhaust device of a fuel cell vehicle, an exhaust chamber is attached to a lower surface of the front hood, the exhaust duct extends upward in a vertical direction from a rear portion of a fuel cell case, an exhaust port at an upper end of the exhaust duct opens to an interior of the exhaust chamber, a penetrating hole through which the inside of the exhaust chamber communicates with the outside space, is formed in the front hood in a portion in front of the exhaust port in a vehicle front and rear direction, the penetrating hole is covered with a cover, and an opening portion opening toward a rear side of the vehicle and being positioned above and away from an upper surface of the front hood, is formed in the cover.
    Type: Application
    Filed: February 29, 2012
    Publication date: November 14, 2013
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Naoki Ozawa, Shiro Matsumoto, Kengo Ikeya
  • Publication number: 20130302713
    Abstract: An air supply and exhaust structure for supplying a reaction air to a fuel cell and exhausting the reaction air passing through the fuel cell includes: an intake duct configured to guide reaction air to the fuel cell; an exhaust duct configured to discharge the reaction air passing through the fuel cell to an outside of the fuel cell; a blower provided in the exhaust duct and configured to suck the reaction air passing through the fuel cell to promote discharge of the reaction air; and an exhaust side shield unit which is disposed inside the exhaust duct and between the fuel cell and the blower and configured to temporarily block the reaction air discharged from the fuel cell and to retain the reaction air in a periphery of the fuel cell so as to introduce the reaction air to the fuel cell.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 14, 2013
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Tomoharu YAMAMOTO, Kengo IKEYA, Yoshifumi TAKAI
  • Patent number: 8580458
    Abstract: A fuel cell system that includes a cell unit comprising a fuel cell, a fuel tank unit for storing a fuel to be supplied to the cell unit, and a fuel feed unit for supplying the fuel from the fuel tank unit to the cell unit in a thin housing having a substantially rectangular parallelepiped shape. The fuel tank unit, the fuel feed unit, and the cell unit are located in a specific order in one direction between two opposite ends of the housing. The fuel tank unit includes a valve, which supplies fuel to the fuel feed unit and opens to supply the fuel to the fuel feed unit only when the fuel tank unit is mounted. The fuel feed unit connects sides of the fuel tank unit and the cell unit that face each other and reduces a pressure of a gaseous fuel supplied from the fuel tank unit.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Nakakubo, Ken Eguchi, Mitsuhiro Watanabe
  • Patent number: 8580459
    Abstract: A fuel cell includes plural single cells and first sidewalls disposed on the outer side of a cell stack including the plural single cells. In the first sidewalls, holes for supplying the reactive gas to the cell stack are formed. The single cells are disposed in a row shape along a jetting direction (lateral direction) of the reactive gas jetted from the holes. The holes are formed such that a part of the reactive gas jetted from the holes brushes against at least the single cells disposed in positions closest to the first sidewalls and the remaining part of the reactive gas does not brush against the single cells disposed in the closest positions.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 12, 2013
    Assignee: Toto Ltd.
    Inventors: Yousuke Akagi, Naoki Watanabe, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8580452
    Abstract: A fuel cell apparatus (A1) includes a stack structure (B) including a plurality of solid electrolyte cell units (10) stacked with interspaces separating one another, and a case (20) enclosing the stack structure (B). The fuel cell apparatus (A1) further includes an inlet port (30) to introduce a reactant gas into the case (20), an outlet port (40) to discharge the reactant gas from the case (20), and a gas guide extending from the inlet port (30) along an outer periphery of the stack structure (B). The gas guide may include at least one guide member (50), and a heat transfer section.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: November 12, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tatsuya Yaguchi, Keiko Kushibiki, Yasushi Nakajima, Shigeo Ibuka, Kenji Ohara
  • Publication number: 20130295491
    Abstract: Disclosed is a fuel cell system in which a hydrogen distribution system is configured in a compact size. High-pressure hydrogen gas from a hydrogen tank is decompressed in an injector and is then supplied to a cell stack manifold. A portion of a high-pressure supply system on the upstream side of the injector is formed as a first within-end-plate flow passage, and a portion of a low-pressure supply system on the downstream side of the injector is formed as a second within-end-plate flow passage. The second within-end-plate flow passage is a recess portion or a groove formed in the end plate and is formed as an open channel flow passage.
    Type: Application
    Filed: June 28, 2011
    Publication date: November 7, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Makoto Takeyama
  • Publication number: 20130288160
    Abstract: A fuel cell system includes a fuel cell having a housing that encases the fuel cell, a supply line for a fuel cell fuel, and an exhaust gas line for fuel-cell exhaust gas. In this arrangement the supply line extends in the exhaust gas line, and the exhaust gas line encases the supply line while forming a space. Any leakage in the supply line thus results in the fuel being flushed out by means of the exhaust gases flowing in the exhaust gas line so that higher system reliability and a reduction in costs can be achieved.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 31, 2013
    Inventors: Jens-Dietrich Kurre, Claus Hoffjann
  • Patent number: 8568941
    Abstract: A separator for use in a fuel cell of the present disclosure includes: a plate; a first gas manifold hole (51) for supplying a reactant gas, formed to penetrate said plate in a thickness direction thereof; a second gas manifold hole (52) for discharging the reactant gas, formed to penetrate said plate in a thickness direction thereof; one or more groove-like first main gas channels (18) formed on a surface of said plate to have one end connected to said first gas manifold hole (51) and the other end connected to said second gas manifold hole; a groove-like first sub-gas channel (28) formed on the surface of said plate to have one end connected to at least one of said first gas manifold hole (51) and said second gas manifold hole (52); and a groove-like second sub-gas channel (38) formed on the surface of said plate to have one end branching from said first sub-gas channel (28) and the other end being closed.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 29, 2013
    Assignee: Panasonic Corporation
    Inventors: Shinsuke Takeguchi, Takashi Nakagawa, Yoichiro Tsuji
  • Publication number: 20130280631
    Abstract: Collector plates made of bulk-solidifying amorphous alloys, the bulk-solidifying amorphous alloys providing ruggedness, lightweight structure, excellent resistance to chemical and environmental effects, and low-cost manufacturing, and methods of making such collector plates from such bulk-solidifying amorphous alloys are provided.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 24, 2013
    Inventor: Trevor WENDE
  • Publication number: 20130280634
    Abstract: The present invention relates to a unit cell of a metal-supported solid oxide fuel cell in which a manifold is formed integrally with electrodes, and includes a metal support; a first electrode formed on a surface of the metal support; an electrolyte formed on a surface of the first electrode; and a second electrode formed on a surface of the electrolyte and having a polarity opposed to that of the first electrode, wherein the metal support, the first electrode, the electrolyte, and the second electrode are formed with a manifold, a fluid passage. The present invention also relates to a method of manufacturing a unit cell of a metal-supported solid oxide fuel cell, and a stack using the solid oxide fuel cell.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 24, 2013
    Applicant: POSCO
    Inventors: Young-Min Park, Jung-Hoon Song, Jin-Soo Ahn, Hong-Youl Bae
  • Patent number: 8563196
    Abstract: A ventilation system for a fuel cell power module is provided. The ventilation system includes a ventilation enclosure for evacuating fluids from the fuel cell power module, the ventilation enclosure having an air inlet for providing ingress of air to the enclosure. The ventilation system further concludes a ventilation shaft in fluid communication with the ventilation enclosure and an evacuation pump arranged to exhaust fluid from the ventilation enclosure to a desired location.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: October 22, 2013
    Assignees: Hydrogenics Corporation, American Power Conversion Corporation
    Inventors: David George Frank, Vincente Nunes, Claus Andersen, Jacob Schmidt
  • Patent number: 8563192
    Abstract: Among other things, a gas storage system includes a group of capsules and an activation element coupled to the group. The group of capsules are formed within a substrate and contain gas stored at a relatively high pressure compared to atmospheric pressure. The activation element is configured to deliver energy in an amount sufficient to cause at least one of the capsules to release stored gas.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Encite LLC
    Inventors: Stephen A. Marsh, Donald M. Parker, William J. Grande
  • Patent number: 8557476
    Abstract: A fuel cell system of the present invention includes a fixing unit that fixes or releases hydrazine; a releasing liquid supplying unit that supplies a water-based releasing liquid for releasing hydrazine fixed in the fixing unit to the fixing unit; a fuel cell to which hydrazine released in the fixing unit is supplied as fuel; a sensing unit for detecting an amount of hydrazine supplied to the fuel cell; and a detection unit that detects an amount of hydrazine fixed in the fixing unit based on a predetermined theoretical hydrazine supply amount to the fuel cell and a hydrazine supply amount detected by the sensing unit.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: October 15, 2013
    Assignee: Daihatsu Motor Co., Ltd.
    Inventors: Koichiro Asazawa, Koji Yamada, Hirohisa Tanaka
  • Patent number: 8557479
    Abstract: A power generator including one or more fuel cells, a fuel chamber enclosing a hydrogen generating fuel, and one or more slideable cylindrical valves in contact with the fuel chamber. The one or more valves include an inner cylindrical component with first perforations, and a slideable cylindrical component with second perforations and having a plurality of separated flexible sections. The valves are useful in controlling the flow of hydrogen into the anode portion of the fuel cell.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 15, 2013
    Assignee: Honeywell International Inc.
    Inventors: Steven J. Eickhoff, Bob Ellman
  • Patent number: 8557459
    Abstract: A fuel cell system includes a fuel cell stack, an oxygen-containing gas supply apparatus, a fuel gas supply apparatus, a pressure reduction apparatus, and a dilution apparatus. The oxygen-containing gas supply apparatus supplies an oxygen-containing gas to the fuel cell stack. The oxygen-containing gas supply apparatus is capable of supplying the air to the fuel gas flow field at the time of stopping operation of the fuel cell system. The fuel gas supply apparatus supplies a fuel gas to the fuel cell stack. The pressure reduction apparatus suctions gases in the oxygen-containing gas flow field and the fuel gas flow field. The dilution apparatus dilutes the fuel gas suctioned by the pressure reduction apparatus using the air.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: October 15, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takeshi Matsubara, Takao Fukumizu, Masahiro Mohri, Ryugo Suzuki, Hiromichi Yoshida, Fusao Nakagawa
  • Patent number: 8557480
    Abstract: A fuel cell according to one embodiment includes a porous electrolyte support structure defining an array of microchannels, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and oxidant electrodes formed along other of the microchannels. A method of making a fuel cell according to one embodiment includes forming an array of walls defining microchannels therebetween using at least one of molding, stamping, extrusion, injection and electrodeposition; processing the walls to make the walls porous, thereby creating a porous electrolyte support structure; forming anode electrodes along some of the microchannels; and forming cathode electrodes along other of the microchannels. Additional embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 15, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jeffrey D. Morse, Ravindra S. Upadhye, Christopher M. Spadaccini, Hyung Gyu Park
  • Patent number: 8535840
    Abstract: A self-contained system for the generation of electrical energy from biomass by gasification combines several process units in one self-contained system. The global properties are greater than the sum of the individual properties of the process units.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: September 17, 2013
    Assignee: Paul Scherrer Institut
    Inventors: Serge Biollaz, Markus Jenne, Florian Nagel, Tilman J. Schildhauer