Methionine; Cysteine; Cystine Patents (Class 435/113)
  • Publication number: 20100209977
    Abstract: A bacterium belonging to the family Enterobacteriaceae, which has an ability to produce an amino acid such as L-cysteine and has been modified to have specific mutation in the yeas gene, is cultured in a medium, and the L-amino acid is collected from the medium.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 19, 2010
    Inventors: Kazuhiro Takumi, Gen Nonaka
  • Publication number: 20100203592
    Abstract: The invention provides a process for producing glutathione or ?-glutamylcysteine by culturing in a medium a microorganism with a higher activity of a protein having an activity to transport intracellular glutathione to the outside of cells, and a higher activity of a protein involved in glutathione or ?-glutamylcysteine biosynthesis, compared with that of the parent strain, forming and accumulating glutathione or ?-glutamylcysteine in the medium, and recovering the glutathione or ?-glutamylcysteine from the culture.
    Type: Application
    Filed: April 4, 2008
    Publication date: August 12, 2010
    Applicant: KYOWA HAKKO BIO CO., LTD.
    Inventors: Kazuhiko Tabata, Yoshiyuki Yonetani
  • Patent number: 7771976
    Abstract: The present invention provides a method for producing a non-aromatic L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to the genus Escherichia or Pantoea, which has been modified to attenuate expression of the csrA gene.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: August 10, 2010
    Assignee: Ajinomoto Co., Inc.
    Inventors: Andrey Yurievich Gulevich, Danila Vadimovich Zimenkov, Elena Vitalievna Klyachko, Tatyana Viktorovna Leonova, Yury Ivanovich Koslov, Vitaly Grigorievich Paraskevov, legal representative
  • Publication number: 20100197934
    Abstract: The present invention provides a simple industrial process for producing an L- or D-optically active ?-methylcysteine derivative or its salt, which is a useful pharmaceutical intermediate, from readily available, inexpensive raw materials. In a process for producing an L- or D-optically active ?-methylcysteine derivative or its salt, a racemic N-carbamoyl-?-methylcysteine derivative or its salt is D-selectively cyclized with hydantoinase to produce a D-5-methyl-5-thiomethylhydantoin derivative or its salt and an N-carbamoyl-?-methyl-L-cysteine derivative or its salt, which are then subjected to deprotection of the amino group and the sulfur atom, and hydrolysis.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Applicant: KANEKA CORPORATION
    Inventors: Takahiro Ohishi, Hirokazu Nanba, Masanobu Sugawara, Masashi Izumida, Tatsuya Honda, Kohei Mori, Satohiro Yanagisawa, Nobuo Nagashima, Kenji Inoue
  • Publication number: 20100184164
    Abstract: The present invention relates to a method for producing L-methionine and organic acid comprising the following steps: Step 1) preparing a strain producing L-methionine precursor and producing L-methionine precursor by the fermentation of the strain; Step 2) producing L-methionine and organic acid by the enzyme reaction process with the L-methionine precursor as a substrate, and microorganism strains used in each step.
    Type: Application
    Filed: July 30, 2007
    Publication date: July 22, 2010
    Applicant: CJ CHEILJEDANG CORPORATION
    Inventors: So-young Kim, Kwang-myung Cho, Yong-uk Shin, Hye-won Um, Kyung-oh Choi, Jin-sook Chang, Young-wook Cho, Young-hoon Park
  • Publication number: 20100159537
    Abstract: The invention relates to novel bacterial strains and constructs as well as methods for production of L-amino acids, including but not limited to L-threonine. Such novel bacterial strains may be characterized by, for instance, Escherichia coli strains in which an aspartate semialdehyde dehydrogenase (asd) gene is operably associated with at least one non-native promoter, non-native ribosome binding site, or both.
    Type: Application
    Filed: January 21, 2010
    Publication date: June 24, 2010
    Inventors: John N. D'Elia, Sean W. Jordan
  • Publication number: 20100159523
    Abstract: The invention relates to coryneform bacteria which have, in addition to at least one copy, present at the natural site (locus), of an open reading frame (ORF), gene or allele which codes for the synthesis of a protein or an RNA, in each case a second, optionally third or fourth copy of this open reading frame (ORF), gene or allele at in each case a second, optionally third or fourth site in a form integrated into the chromosome and processes for the preparation of chemical compounds by fermentation of these bacteria.
    Type: Application
    Filed: September 23, 2009
    Publication date: June 24, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: BRIGITTE BATHE, CAROLINE KREUTZER, BETTINA MOCKEL, GEORG THIERBACH
  • Publication number: 20100150871
    Abstract: The invention relates to a genetically-modified strain of yeast, in which the gene coding for adenosine kinase has been inactivated by genetic modification for the production of S-adenosylmethionine (SAM).
    Type: Application
    Filed: October 26, 2005
    Publication date: June 17, 2010
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQE
    Inventor: Dominique Thomas
  • Publication number: 20100143982
    Abstract: The present invention provides a method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to the genus Escherichia or Pantoea, which has been modified to attenuate expression of the aldH gene.
    Type: Application
    Filed: May 23, 2008
    Publication date: June 10, 2010
    Inventors: Dmitriy Vladimirovich Filippov, Elvira Borisovna Voroshilova, Tatyana Viktorovna Leonova, Mikhail Markovich Gusyatiner
  • Publication number: 20100124583
    Abstract: Biomass (e.g., plant biomass, animal biomass, microbial, and municipal waste biomass) is processed to produce useful products, such as food products and amino acids.
    Type: Application
    Filed: April 3, 2009
    Publication date: May 20, 2010
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Publication number: 20100099152
    Abstract: L-amino acids such as L-glutamic acid, L-glutamine, L-proline, L-arginine, L-leucine, and L-cysteine are produced by culturing in a medium a bacterium having an L-amino acid-producing ability and wherein the bacterium has been modified so that the phosphotransacetylase activity is enhanced.
    Type: Application
    Filed: July 25, 2008
    Publication date: April 22, 2010
    Inventors: Akito Chinen, Hisashi Yasueda, Jun Nakamura
  • Publication number: 20100093045
    Abstract: L-cysteine is produced by culturing an Escherichia bacterium having L-cysteine producing ability and containing a gene encoding an O-acetylserine sulphydrylase B or MalY regulatory protein that is modified so that cysteine desulfhydrase activity is reduced or eliminated. The bacterium is cultured in a medium to produce and cause accumulation of L-cysteine in the medium, and collecting L-cysteine from the medium.
    Type: Application
    Filed: December 10, 2009
    Publication date: April 15, 2010
    Inventors: Hiroshi Takagi, Shigeru Nakamori, Masaru Wada, Hirotada Mori
  • Publication number: 20100062496
    Abstract: A microorganism belonging to the family Enterobacteriaceae, which has an L-amino acid-producing ability and has been modified so that the kdp system is enhanced, is cultured in a medium to produce and accumulate an L-amino acid in the medium or cells of the microorganism, and the L-amino acid is collected from the medium or cells to produce the L-amino acid.
    Type: Application
    Filed: July 6, 2009
    Publication date: March 11, 2010
    Inventors: Rie Takikawa, Yoshihiko Hara
  • Publication number: 20100062493
    Abstract: A method is described for producing an L-amino acid or a nucleic acid by culturing a microorganism having an ability to produce the L-amino acid or nucleic acid in a liquid medium in a fermentation tank containing a stirring impeller, and optionally adding seed crystals to the medium as required to produce and accumulate crystals of the L-amino acid or nucleic acid in the medium, and collecting crystals of the L-amino acid or nucleic acid from the culture. The power density of the stirring impeller is controlled to be 2.4 kW/m3 or lower after either precipitation of the crystals or addition of the seed crystals.
    Type: Application
    Filed: August 14, 2009
    Publication date: March 11, 2010
    Inventors: Masayuki Araki, Yusuke Takahashi, Akihiro Watanabe, Fumito Ohnishi, Takahiro Asano, Kazuya Kondo, Wataru Hibino, Shintaro Iwatani, Satoshi Okutani
  • Publication number: 20100062498
    Abstract: The present invention relates to a polypeptide capable of increasing the production of L-methionine in a microorganism. In particular, the present invention relates to an YgaZ and YgaH polypeptide or a complex thereof, referred to herein as YgaZH polypeptide, which are novel putative L-methionine exporters, polynucleotides encoding the same, a recombinant vector comprising the polynucleotide, a microorganism transformed with the recombinant vector, and a method for producing L-methionine and/or S-adenosyl-methionine, comprising the steps of culturing the transformed microorganism to produce L-methionine and/or S-adenosyl-methionine, and isolating L-methionine and/or S-adenosyl-methionine.
    Type: Application
    Filed: December 28, 2007
    Publication date: March 11, 2010
    Applicant: CJ CHEILJEDANG CORPORATION
    Inventors: Young Hoon Park, Kwang Myung Cho, So Young Kim, Yong Uk Shin, Hye Won Um
  • Publication number: 20100055748
    Abstract: An L-amino acid can be produced by culturing an L-amino acid-producing bacterium which belongs to the Enterobacteriaceae family and which has been modified so that the expression of a yggG gene is enhanced.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 4, 2010
    Inventors: Masahito Taya, Motomu Nishioka, Yoshihiro Ojima, Mizuho Komaki, Shintaro Iwatani
  • Publication number: 20100047879
    Abstract: The present invention relates to a method for the production of methionine or its derivatives by culturing a microorganism in an appropriate culture medium comprising a source of carbon and a source of sulphur. The microorganism and/or the culture medium and/or the process parameters were modified in a way that the accumulation of the by-product N-acyl-methionine (NAM) is reduced. The isolation of methionine or its derivatives from the fermentation medium is also claimed.
    Type: Application
    Filed: February 12, 2009
    Publication date: February 25, 2010
    Inventors: Rainer Figge, Philippe Soucaille, Gwenaelle Bestel-Corre
  • Publication number: 20100047878
    Abstract: An L-amino acid is produced by culturing a microorganism belonging to the family Enterobacteriaceae having an L-amino acid-producing ability and modified so that glycerol dehydrogenase and dihydroxyacetone kinase activities are increased, in a medium containing glycerol as a carbon source to produce and accumulate an L-amino acid in the medium or cells, and collecting the L-amino acid from the medium or the cells.
    Type: Application
    Filed: August 24, 2009
    Publication date: February 25, 2010
    Inventors: Yuri Nagai, Kazuyuki Hayashi, Takuji Ueda, Yoshihiro Usuda, Kazuhiko Matsui
  • Publication number: 20100047880
    Abstract: The present invention claims an isolated polypeptide having L-amino-acid-N-acyl transferase enzymatic activity and a modified microorganism in which this enzyme is overexpressed. Substrates of said enzyme include mainly methionine and their derivatives or analogs. Overexpression in sulphur-containing amino acid producing microorganisms permits the production of large amounts of N-acylated sulphur-containing amino acids. The isolation of the N-acylated sulphur-containing amino acids from the fermentation medium is also claimed.
    Type: Application
    Filed: February 12, 2009
    Publication date: February 25, 2010
    Inventors: RAINER FIGGE, GUILLAUME BARBIER, GWENAELLE BESTEL-CORRE
  • Publication number: 20100047881
    Abstract: The present invention relates to microorganisms with improved efficiency of vitamin B12 utilization.
    Type: Application
    Filed: June 9, 2008
    Publication date: February 25, 2010
    Inventors: Oskar Zelder, Hartwig Schröder, Corinna Klopprogge, Andrea Herold, Stefan Haefner, Thomas A. Patterson
  • Patent number: 7666638
    Abstract: The invention relates to a selenium-enriched biomass containing live microorganisms selected from the group consisting of Lactobacillus reuteri, Lactobacillus ferintoshensis, Lactobacillus buchneri/parabuchneri and combinations thereof, a method of preparation of the said selenium-enriched biomass, as well as food preparations, nutraceutical products and food supplements containing the said biomass. Moreover, new strains of lactobacilli are described that are able to concentrate selenium in very high amounts, and are therefore particularly useful for use in the method of the invention.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: February 23, 2010
    Assignee: Bioman S.R.L.
    Inventors: Vincenzina Andreoni, Alberto Benedetti, Enrica Canzi, Salvatore Ciappellano, Michela Fumagalli
  • Publication number: 20100041108
    Abstract: The present invention provides a method for producing L-methionine by culturing a microorganism in a medium to produce and accumulate L-methionine in the medium, and collecting the L-methionine from the medium, where the microorganism is deficient in a repressor of L-methionine biosynthesis system and has L-methionine productivity.
    Type: Application
    Filed: September 8, 2009
    Publication date: February 18, 2010
    Applicant: AJINOMOTO CO., INC.
    Inventors: Yoshihiro USUDA, Osamu Kurahashi
  • Publication number: 20100041107
    Abstract: The present invention is directed to a method of reducing the amount of at least one polypeptide in a host cell by expressing a nucleotide sequence encoding for the polypeptide in the host cell wherein the nucleotide sequence uses codons that are rarely used according to the codon usage of the host organism. Furthermore, the present invention relates to nucleotide sequences encoding for a polypeptide with a codon usage that has been adjusted to use codons that are only rarely used according to the codon usage of the host organism. The present invention further relates to the use of such sequences and methods for producing fine chemicals such as amino acids, sugars, lipids, oils, carbohydrates, vitamins, cofactors etc.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 18, 2010
    Applicant: BASF SE
    Inventors: Andrea Herold, Corinna Klopprogge, Hartwig Schröder, Osker Zelder, Weol Kyu Jeong
  • Publication number: 20100035307
    Abstract: The present invention relates to nulceotide sequences encoding enzymatically active cobalamin-methionine synthase and functional fragments thereof being modified in comparison to the respective wild-type enzyme such that said enzymes show reduced product inhibition by methionine. The present invention also relates to polypeptides being encoded by such nucleotide sequences and host cells comprising such nucleotide sequences. Furthermore, the present invention relates to methods for producing methionine in host organisms by making use of such nucleotide sequences.
    Type: Application
    Filed: December 21, 2007
    Publication date: February 11, 2010
    Inventors: Oskar Zelder, Wolfgang Grabarse, Corinna Klopprogge, Hartwig Schröder, Stefan Haefner, Anja Knietsch, Andrea Herold
  • Publication number: 20100009416
    Abstract: The present invention relates to microorganisms and processes for the efficient preparation of L-methionine. In particular, the present invention relates to processes in which the amount of serine available for the metabolism of the microorganism is increased.
    Type: Application
    Filed: May 24, 2007
    Publication date: January 14, 2010
    Inventors: Oskar Zelder, Andrea Herold, Corinna Klopprogge, Hartwig Schröder, Elmar Heinzle, Christoph Wittmann, Jens Kroemer, Janice Pero, Rogers Yocum, Thomas Patterson, Mark Williams, Theron Hermann
  • Publication number: 20100003727
    Abstract: The present invention relates to microorganisms, in particular C. glutamicum in which the formation of N5,N10-methylene-THF is increased. The present invention also relates to the use of such microorganisms for producing methionine.
    Type: Application
    Filed: February 14, 2008
    Publication date: January 7, 2010
    Inventors: Oskar Zelder, Hartwig Schröder, Corinna Klopprogge, Andrea Herold, Stefan Haefner, Thomas A. Patterson, R. Rogers Yocum, Janice G. Pero
  • Publication number: 20090325242
    Abstract: The invention relates to mutants and alleles of the zwf gene of coryneform bacteria, which encode variants of the Zwf subunit of glucose 6-phosphate dehydrogenase (EC: 1.1.1.49), and to processes for preparing amino acids, in particular L-lysine and L-tryptophan, by using bacteria which harbor said alleles.
    Type: Application
    Filed: July 28, 2009
    Publication date: December 31, 2009
    Applicant: Degussa AG
    Inventors: Brigitte Bathe, Natalie Schischka, Georg Thierbach
  • Publication number: 20090325244
    Abstract: The present invention relates to a method of increasing the amount of at least one polypeptide in the host cell by expressing a modified nucleotide sequence encoding for a polypeptide in a host cell with said modified nucleotide sequence being derived from a different non-modified nucleotide sequence encoding for a polypeptide of identical amino acid sequence such that the codon usage of the modified nucleotide sequence is adjusted to the codon usage of abundant proteins in the host cell.
    Type: Application
    Filed: October 18, 2007
    Publication date: December 31, 2009
    Applicant: BASF SE
    Inventors: Andrea Herold, Corinna Klopprogge, Hartwig Schröder, Oskar Zelder, Weol Kyu Jeong
  • Publication number: 20090325243
    Abstract: The present invention relates to an amino acid-producing microorganism capable of simultaneously utilizing glycerol as a carbon source, a method for preparing the microorganism, and a method for producing amino acids using the microorganism. According to the present invention, amino acids can be efficiently produced using a byproduct of biodiesel production, glycerol, thereby substituting a cheaper material for the conventional fermentation materials such as glucose.
    Type: Application
    Filed: June 26, 2007
    Publication date: December 31, 2009
    Inventors: Young Hoon Park, Kwang Myung Cho, Yong Uk Shin, Hyun Ae Bae, Jin Sook Chang, Jae Yeong Ju
  • Publication number: 20090317876
    Abstract: The present invention provides a method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to genus Escherichia or Pantoea, which has been modified to have glycerol kinase in which feedback inhibition by fructose-1,6-bisphosphate is desensitized, thereby having enhanced ability to utilize glycerol.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 24, 2009
    Inventors: Konstantin Vyacheslavovich Rybak, Ekaterina Aleksandrovna Slivinskaya, Marina Evgenievna Sheremet'eva, Yulia Aleksandrovna Ovodova, Yury Ivanovich Kozlov, Vitaly Grigorievich Paraskevov
  • Patent number: 7635580
    Abstract: The invention relates to methods for the production of sulfur-containing fine chemicals, in particular L-methionine, by fermentation using bacteria in which a nucleotide sequence encoding an S-adenosylmethionine synthase (metK) gene is expressed.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: December 22, 2009
    Assignee: Evonik Degussa GmbH
    Inventors: Hartwig Schröder, Burkhard Kröger, Oskar Zelder, Corinna Klopprogge, Stefan Häfner
  • Publication number: 20090311756
    Abstract: The present invention relates to microorganisms and methods for producing methionine by reactivation of the MetH enzyme.
    Type: Application
    Filed: May 27, 2009
    Publication date: December 17, 2009
    Inventors: Oskar Zelder, Hartwig Schröder, Corinna Klopprogge, Andrea Herold, Stefan Haefner, R. Rogers Yocum, Thomas A. Patterson, Mark Williams
  • Patent number: 7632664
    Abstract: A method for producing 2-hydroxy-4-(methylthio)butyric acid which comprises the following steps (A), (B) and (C): Step (A): step of reacting 1,2-epoxy-3-butene with water to obtain 3-butene-1,2-diol, Step (B): step of reacting 3-butene-1,2-diol with methanethiol to obtain 4-(methylthio)butane-1,2-diol, Step (C): step of oxidizing 4-(methylthio)butane-1,2-diol to obtain 2-hydroxy-4-(methylthio)butyric acid.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 15, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Koji Hagiya, Hiroyuki Asako
  • Publication number: 20090298136
    Abstract: This invention relates to methionine producing recombinant microorganisms. Specifically, this invention relates to recombinant strains of Corynebacterium that produce increased levels of methionine compared to their wild-type counterparts and further to methods of generating such microorganisms.
    Type: Application
    Filed: July 18, 2006
    Publication date: December 3, 2009
    Applicant: BASF AG
    Inventors: Oskar Zelder, Stefan Haefner, Corinna Klopprogge, Hartwig Schroder, Andrea Herold, Thomas A. Patterson, Theron Hermann, R. Rogers Yocum, Mark K. William, Janice G. Pero
  • Publication number: 20090298135
    Abstract: A microorganism strain suitable for fermentative production of L-methionine and preparable from a starting strain, which comprises increased activity of a yjeH gene product or of a gene product of a yjeH homolog, compared to the starting strain.
    Type: Application
    Filed: January 30, 2004
    Publication date: December 3, 2009
    Inventors: Thomas Maier, Christoph Winterhalter, Kerstin Pfeiffer
  • Publication number: 20090298137
    Abstract: The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
    Type: Application
    Filed: October 23, 2006
    Publication date: December 3, 2009
    Applicant: BASF AG
    Inventors: Oskar Zelder, Andreas Herold, Corinna Klopprogge, Hartwig Schröder, Stefan Haefner, Elmar Heinzle, Christoph Wittmann, Jens Kroemer, Janice G. Pero, R. Rogers Yocum, Thomas A. Patterson, Mark Williams, Theron Herman
  • Publication number: 20090291478
    Abstract: An L-amino acid is produced by culturing a bacterium of the Enterobacteriaceae family which has an L-amino acid-producing ability in a medium containing fatty acids as the carbon source, particularly fatty acids which have been subjected to emulsification or homogenization, to thereby produce and accumulate the L-amino acid in a culture medium; and collecting the L-amino acid from the culture medium.
    Type: Application
    Filed: June 5, 2009
    Publication date: November 26, 2009
    Inventors: Yoshihiro Usuda, Seizaburo Shiraga, Kazuhiko Matsui, Shigeo Suzuki
  • Patent number: 7618804
    Abstract: There is provided a method for producing L-threonine, L-valine, L-proline, L-leucine, L-methionine and L-arginine using a bacterium belonging to the genus Escherichia wherein the L-amino acid productivity of the bacterium is enhanced by enhancing the activities of the proteins coded by the b2682 and b2683 genes, or the protein coded by the b1242 or b3434 gene.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: November 17, 2009
    Assignee: Ajinomoto Co., Inc.
    Inventors: Ekaterina Aleksandrovna Tabolina, Konstantin Vyacheslavovich Rybak, Evgeni Moiseevich Khourges, Elvira Borisovna Voroshilova, Mikhail Markovich Gusyatiner
  • Patent number: 7618803
    Abstract: A method for producing L-threonine, L-valine, L-proline, L-leucine, L-methionine and L-arginine is provided using Escherichia bacteria wherein the L-amino acid productivity of the bacteria is enhanced by increasing the activity of proteins encoded by the b2682 and b2683 genes, or proteins encoded by the b1242 or b3434 gene.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: November 17, 2009
    Assignee: Ajinomoto Co., Inc.
    Inventors: Ekaterina Aleksandrovna Tabolina, Konstantin Vyacheslavovich Rybak, Evgeni Moiseevich Khourges, Elvira Borisovna Voroshilova, Mikhail Markovich Gusyatiner
  • Publication number: 20090281353
    Abstract: The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ?metF organism or a ?metE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/MetE and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ?metF ?metB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
    Type: Application
    Filed: July 18, 2006
    Publication date: November 12, 2009
    Applicant: BASF AG
    Inventors: Oskar Zelder, Stefan Haefner, Andrea Herold, Corinna Klopprogge, Hartwig Schroder, R. Rogers Yocum, Mark K. Williams
  • Patent number: 7611873
    Abstract: L-Methionine is produced by culturing a microorganism which is deficient in repressor of L-methionine biosynthesis system and/or enhanced intracellular homoserine transsuccinylase activity is cultured in a medium so that L-methionine should be produced and accumulated in the medium, and collecting the L-methionine from the medium. The microorganism preferably further exhibits reduced intracellular S-adenosylmethionine synthetase activity, L-threonine auxotrophy, enhanced intracellular cystathionine ?-synthase activity and enhanced intracellular aspartokinase-homoserine dehydrogenase II activity. The present invention enables breeding of L-methionine-producing bacteria, and L-methionine production by fermentation.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: November 3, 2009
    Assignee: Ajinomoto Co., Inc.
    Inventors: Yoshihiro Usuda, Osamu Kurahashi
  • Publication number: 20090269819
    Abstract: The present invention provides a method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to genus Escherichia or Pantoea, which has been modified to attenuate expression of one or more of the cynT, cynS, cynX and/or cynR genes.
    Type: Application
    Filed: May 20, 2009
    Publication date: October 29, 2009
    Inventors: Dmitriy Vladimirovich Filippov, Elvira Borisovna Voroshilova, Mikhail Markovich Gusyatiner
  • Patent number: 7598062
    Abstract: A process for the production of L-amino acids, in particular L-threonine, in which the following steps are carried out: (a) fermentation of the microorganisms of the family Enterobacteriaceae producing the desired L-amino acid, in which the fruR gene or nucleotide sequences coding therefor are attenuated, in particular are switched off, (b) enrichment of the L-amino acid in the medium or in the cells of the bacteria, and (c) isolation of the L-amino acid.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: October 6, 2009
    Assignee: Evonik Degussa GmbH
    Inventors: Mechthild Rieping, Thomas Hermann
  • Publication number: 20090246836
    Abstract: The present invention relates to the use of nucleic acid sequences for regulating the transcription and expression of genes, the novel promoters and expression units themselves, methods for altering or causing the transcription rate and/or expression rate of genes, expression cassettes comprising the expression units, genetically modified microorganisms with altered or caused transcription rate and/or expression rate, and methods for preparing biosynthetic products by cultivating the genetically modified microorganisms.
    Type: Application
    Filed: December 15, 2004
    Publication date: October 1, 2009
    Applicant: PAIK KWANG INDUSTRIAL Co., LTD
    Inventors: Burkhard Kröger, Oskar Zelder, Corinna Klopprogge, Hartwig Schröder, Stefan Haefner
  • Publication number: 20090239267
    Abstract: The present invention provides a method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to genus Escherichia or Pantoea, which has been modified to attenuate expression of the cpxR gene.
    Type: Application
    Filed: January 22, 2008
    Publication date: September 24, 2009
    Inventors: Konstantin Vyacheslavovich Rybak, Aleksandra Yurievna Skorokhodova, Elvira Borisovna Voroshilova, Tatyana Viktorovna Leonova
  • Publication number: 20090239266
    Abstract: The present invention provides a method for producing a non-aromatic L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to the genus Escherichia or Pantoea, which has been modified to attenuate expression of the csrA gene.
    Type: Application
    Filed: July 31, 2007
    Publication date: September 24, 2009
    Inventors: Andrey Yurievich Gulevich, Danila Vadimovich ZIMENKOV, Elena Vitalievna KLYACHKO, Tatyana Viktorovna LEONOVA, Yury Ivanovich Kozlov, Vitaly Grigorievich PARASKEVOV
  • Patent number: 7588923
    Abstract: A process for producing high yields of enantioselective amino acids and chiral amines by reacting a keto acid or ketone and an amino acid donor in the presence of a transaminase biocatalyst to produce a keto acid by-product and an amino acid or amine product. Further reacting the keto acid by-product with a peroxide to increase the yield of additional amino acid or amine product.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: September 15, 2009
    Assignee: Richmond Chemical Corporation
    Inventors: Ian Fotheringham, Nicholas Oswald
  • Publication number: 20090226980
    Abstract: The present invention provides a method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to the genus Escherichia or Pantoea, which has been modified to attenuate expression of the kefB gene.
    Type: Application
    Filed: November 5, 2007
    Publication date: September 10, 2009
    Inventors: Dmitriy Vladimirovich Filippov, Elvira Borisovna Voroshilova, Mikhail Markovich Gusyatiner
  • Publication number: 20090226984
    Abstract: The present invention describes a bacterium belonging to the family Enterobacteriaceae which has L-cysteine-producing ability and has been modified to decrease the activity of a protein encoded by the d0191 gene. This bacterium is cultured in a medium, and L-cysteine, L-cystine, derivatives thereof, or a mixture thereof is collected from the medium.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Inventors: Gen Nonaka, Kazuhiro Takumi
  • Publication number: 20090226983
    Abstract: The present invention provides a bacterium belonging to the family Enterobacteriaceae which has L-cysteine-producing ability and has been modified to decrease the activity of the protein encoded by the yhaM gene. This bacterium is cultured in a medium, and L-cysteine, L-cystine, their derivatives, or a mixture thereof is collected from the medium.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Inventors: Gen Nonaka, Kazuhiro Takumi