Fat; Fatty Oil; Ester-type Wax; Higher Fatty Acid (i.e., Having At Least Seven Carbon Atoms In An Unbroken Chain Bound To A Carboxyl Group); Oxidized Oil Or Fat Patents (Class 435/134)
  • Publication number: 20150104839
    Abstract: The present invention discloses a powdery lipase preparation which is a granulated material comprising a lipase derived from Rhizopus oryzae and/or a lipase derived from Rhizopus delemar and a soybean powder having a fat content of 5 mass % or more. A lipase activity is improved by using this powdery lipase preparation.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Junko SUZUKI, Yoshie Yamauchi, Tamami Manabe, Satoshi Negishi
  • Publication number: 20150104557
    Abstract: The invention relates to an optimized method for cultivating microorganisms of the genus Thraustochytriales, according to which the microorganisms are cultivated in a low salt medium without adding sodium salts and chloride salts, the total salt content being less than 3.5 g/L (corresponding to less than 10 percent of sea water salt content), whereupon the PUFAs are isolated from the microorganisms and/or the medium. The invention especially relates to novel optimized media having a substantially reduced total salt content, above all a particularly reduced NaCl content. The production of PUFAs can be substantially improved and significantly simplified by using a novel combination of different salts as a media composition in which the overall weight ratios of ions do not exceed 1.75 g/L. Furthermore, said medium preferably contains no added sodium salt and chloride salt at all, which helps prevent environmental damages caused by wastewaters containing salt.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 16, 2015
    Inventors: Matthias Rusing, Markus Luy
  • Patent number: 9005940
    Abstract: Recombinant microbial cells are disclosed herein that comprise (i) a down-regulation of an endogenous polynucleotide sequence encoding Sou2 sorbitol utilization protein, and (ii) a polyunsaturated fatty acid (PUFA) biosynthetic pathway. The down-regulation of the polynucleotide sequence encoding Sou2 sorbitol utilization protein can increase the lipid content of the microbial cells and/or decrease the total amount of sugar alcohols produced by the microbial cells. Also disclosed are methods of using the recombinant microbial cells to produce oil containing omega-3 polyunsaturated fatty acids such as EPA.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: April 14, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Quinn Qun Zhu, Seung-Pyo Hong, Dongming Xie, Zhixiong Xue, Hyeryoung Yoon, Michael Dauner
  • Patent number: 9005955
    Abstract: Cultures of Chlamydomonas are disclosed comprising greater than 340 mg/l triacylglycerols (TAG). The cultures can include buoyant Chlamydomonas. Methods of forming the cultures are also disclosed. In some embodiments, these methods comprise providing Chlamydomonas growing in log phase in a first culture medium comprising a nitrogen source and acetate, replacing the first culture medium with a second medium comprising acetate but no nitrogen source, and subsequently supplementing the second medium with additional acetate. In some embodiments, a culture can comprise at least 1,300 mg/l triacyglycerols. In some embodiments, cultures can be used to produce a biofuel such as biodiesel.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: April 14, 2015
    Assignee: Washington University
    Inventors: Ursula Goodenough, Carrie Goodson
  • Patent number: 9006287
    Abstract: The present invention provides a composition, such as a food and pharmaceutical agent, which comprises dihomo-?-linolenic acid, and which has the effect of preventing or treating skin diseases; a composition such as a food and pharmaceutical agent which comprises dihomo-?-linolenic acid and which has the effect of preventing or treating skin diseases; and a composition which comprises dihomo-?-linolenic acid and which has the effect of preventing or treating diseases related to increased mast cell count.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 14, 2015
    Assignee: Suntory Holdings Limited
    Inventors: Norifumi Tateishi, Hiroshi Kawashima
  • Patent number: 8999684
    Abstract: The invention relates to genetically engineered Candida tropicalis cells, use thereof and a method of production of ?-hydroxycarboxylic acids and ?-hydroxycarboxylic acid esters.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 7, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Markus Poetter, Hans-Georg Hennemann, Steffen Schaffer, Thomas Haas
  • Patent number: 8999663
    Abstract: Methods are provided for pelletizing a microbial biomass, extracting a refined lipid composition from the pelletized biomass under supercritical conditions and distilling the refined lipid composition, at least once under short path distillation conditions, to obtain a lipid-containing fraction. Also disclosed are methods of making lipid-containing oil concentrates therefrom, by transesterifying and enriching the lipid-containing fraction.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 7, 2015
    Assignee: E l du Pont de Nemours and Company
    Inventors: Marios Avgousti, Timothy Allan Bell, Richard E. Bockrath, Oliver Walter Gutsche, Keith W. Hutchenson, Shu-Chien Liang, Robert D. Orlandi
  • Patent number: 8999683
    Abstract: The invention is directed to a genetically modified microorganism for the extracellular production of free fatty acids and esters thereof, wherein said microorganism is characterized by a modified lipid biosynthesis metabolic pathway: for example reduced fatty acyl-coA synthetase activity that enables the microorganism to overproduce and secrete of esters of fatty acids (Biodiesel) into the surrounding medium, using one or more of: glucose, starch, lignocellulose and a glycerol-based substrate, as a carbon source. The invention further provides a method for the extracellular production of free fatty acids and esters thereof, comprising the use of said genetically modified organism, and a growth medium adapted for said method.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 7, 2015
    Assignee: Technical University of Denmark
    Inventors: Ambareesh Govind Phadnavis, Peter Ruhdal Jensen
  • Publication number: 20150094382
    Abstract: The present invention is directed to isolated microorganisms as well as strains and mutants thereof, biomasses, microbial oils, compositions, and cultures; methods of producing the microbial oils, biomasses, and mutants; and methods of using the isolated microorganisms, biomasses, and microbial oils.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventors: Joseph W. PFEIFER, III, Jon Milton HANSEN, Jose R. GARCIA, Xiao Daniel DONG, Paul Warren BEHRENS, Kirk E. APT
  • Publication number: 20150093785
    Abstract: The invention provides apparatus and processes for cultivating algae.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Ari KETOLA, Veikko LATVALA
  • Patent number: 8993841
    Abstract: The invention provides isolated nucleic acid molecules which encodes a novel fatty acid nECR. The invention also provides recombinant expression vectors containing nECR nucleic acid molecules, host cells into which the expression vectors have been introduced, and methods for large-scale production of long chain polyunsaturated fatty acids (LCPUFAs), e.g., ARA, EPA and DHA.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: March 31, 2015
    Assignee: BASF Plant Science Company GmbH
    Inventors: Johnathan A. Napier, Olga Sayanova, Frederic Beaudoin
  • Patent number: 8993281
    Abstract: The present invention relates to a genetically modified Acinetobacter host for lipid production. The Acinetobacter host has been genetically modified to be deficient of one or more of genes A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), wherein said host is capable of increased production of TAGs and/or of total lipids compared to the parent host; and/or B) a gene encoding lipase (EC:3.1.1.3), a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), and/or gene ACIAD 2177, or functional equivalents of any of said genes, wherein said host is capable of increased production of wax esters and/or total lipids compared to the parent host.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 31, 2015
    Assignee: Neste Oil Oyj
    Inventors: Suvi Myllyntausta, Virpi Kivinen, Antti Larjo, Tommi Aho, Perttu Koskinen, Matti Karp, Ville Santala
  • Patent number: 8993034
    Abstract: The present disclosure relates to the isolation, purification, and characterization of a diacylglycerol acyltransferase 2 (DGAT2), and genes encoding DGAT2, from algae. DGAT2 can incorporate very long-chain polyunsaturated fatty acids into triacylglycerol more efficiently than DGAT1. The disclosure concerns methods of regulating seed oil content, fatty acid synthesis and fatty acid composition using the DGAT2 gene and to tissues and plants transformed with the gene. The disclosure also relates to transgenic plants, plant tissues and plant seeds having a genome containing an introduced DNA sequence of the disclosure, and a method of producing such plants and plant seeds.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: March 31, 2015
    Assignees: Dow AgroSciences LLC, National Research Council Canada
    Inventors: Jitao Zou, Jingyu Xu, Zhifu Zheng
  • Patent number: 8993840
    Abstract: This invention relates to polynucleotide sequences encoding SUT2 or SUT4 sucrose transporter genes. Methods for increasing seed oil content and evaluating increased oil content in a plant seed are described. The compositions and methods disclosed herein employ a variety of sequences that encode sucrose transporters and a variety of sequences that influence fatty acid accumulation, including for example, DGAT, Lec1 and ODP1 transcription factor. In specific embodiments, overexpression of SUT2 and/or SUT4 sucrose transporters in combination with DGAT genes further increase plant seed oil production compared to a high oil plant comprising recombinant DNA constructs that do not overexpress SUT2 or SUT4 transporters.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: March 31, 2015
    Assignee: E I du Pont de Nemours and Compay
    Inventors: Stephen M. Allen, Howard Glenn Damude, John D. Everard, Knut Meyer, Byung-Chun Yoo
  • Publication number: 20150087031
    Abstract: The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 26, 2015
    Inventors: Robert Jansen, Claire Gregoire, philip Travisano, Lee Madsen, Neta Matis, Yael Har-Tal, Shay Eliahu, James Alan Lawson, Noa Lapidot, Luke Burke, Aharon M. Eyal, Timothy Allen Bauer, Hagit Sade, Paul Mcwilliams, Ziv-Vladimir Belman, Bassem Hallac, Michael Zviely, Yelena Gershinksy, Adam Carden
  • Patent number: 8986960
    Abstract: Disclosed are microorganisms of the genus Cupriavidus or Ralstonia, which are genetically modified to express phosphomannose isomerase (EC5.3.1.8) and facilitated diffusion protein (EC1.3.1.74) for mannose uptake, and optionally mannofructokinase (EC2.7.1.4). The microorganisms also may be genetically modified to express xylose isomerase (EC 5.3.1.5), xylulokinase (E 2.7.1.17) and xylose proton symporter E or a high affinity ABC-transporter. The genetically modified microorganisms are capable of growing on mannose, xylose, arabinose, glucose, or galactose, or a combination thereof as the carbon source.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 24, 2015
    Assignee: Neste Oil Oyj
    Inventors: Shanna Sichwart, Birgit Haschenhermes, Daniel Bröker, Alexander Steinbüchel, Stephan Hetzler, Perttu Koskinen
  • Publication number: 20150079645
    Abstract: Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.
    Type: Application
    Filed: June 23, 2014
    Publication date: March 19, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Gregory Stephanopoulos, Syed Hussain Imam Abidi
  • Patent number: 8980589
    Abstract: Mutant delta-9 elongases having the ability to convert linoleic acid [18:2, LA] to eicosadienoic acid [20:2, EDA] and/or ?-linolenic [18:3, ALA] to eicosatrienoic acid [20:3, ETrA] are disclosed herein. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding mutant delta-9 elongases, along with a method of making long chain polyunsaturated fatty acids [“PUFAs”] using these mutant delta-9 elongases in oleaginous yeast are also disclosed.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 17, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Michael W. Bostick, Hongxian He, Yougen Li, Quinn Qun Zhu
  • Patent number: 8980578
    Abstract: The present invention provides fungal xylanase and/or beta-xylosidase enzymes suitable for use in saccharification reactions. The present application further provides genetically modified fungal organisms that produce xylanase and/or beta-xylosidases, as well as enzyme mixtures exhibiting enhanced hydrolysis of cellulosic material to fermentable sugars, enzyme mixtures produced by the genetically modified fungal organisms, and methods for producing fermentable sugars from cellulose using such enzyme mixtures.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Codexis, Inc.
    Inventors: Ryan Fong, Xiyun Zhang, Chris Noriega, Nicholas Agard, Anupam Gohel, Derek Smith
  • Patent number: 8980590
    Abstract: Methods of separating renewable materials, such as lipids, from microorganisms, such as oleaginous yeasts, may include conditioning cell walls of the microorganisms to form, open or enlarge pores, and removing at least a portion of the renewable material through the pores. These methods may result in delipidated microorganisms with cell walls that are substantially intact and with mesopores. These delipidated microorganisms may be used to produce biofuels.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 17, 2015
    Inventors: Martin J. Sellers, David Jeffers, Jean-Charles Dumenil, Vidya Pai, Jacob Borden
  • Patent number: 8980591
    Abstract: The present invention relates to a protein having an activity to promote fatty acid chain elongation, a polynucleotide encoding the same, etc. The present invention provides, for example, a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 1 or 4, a polynucleotide encoding a protein which consists of the amino acid sequence shown in SEQ ID NO: 2, an expression vector and a transformant, each containing such a polynucleotide, a method for preparing lipids or fatty acids by using such a transformant, or a food or the like containing lipids or fatty acids prepared by such a method.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 17, 2015
    Assignee: Suntory Holdings Limited
    Inventor: Misa Ochiai
  • Publication number: 20150068108
    Abstract: The present invention describes bacterial strains CECT 7968, CECT 7969 and NCIMB 42026 of the species B. subtilis, capable of expressing the heterologous synthetic mutated genes: pdc and adhB, originating from Z. mobilis, 'tesA, originating from E. coli, and atfl, originating from Acinetobacter sp. ADP1. Furthermore, said strains may overexpress at least one of the genes of the ACC (acetyl-CoA carboxylase) and acyl-CoA synthetase enzymatic complexes. The use of said strains produces an increase in the production of biofuel, preferably biodiesel from glycerin as the carbon source. Moreover, the present invention describes the use of said bacterial strains for the production of said biofuel, biodiesel, from glycerin, as well as a process for synthesising biofuel, preferably biodiesel, using the strains described in the present invention and the biofuel duly obtained.
    Type: Application
    Filed: August 17, 2012
    Publication date: March 12, 2015
    Applicant: IDEN BIOTECHNOLOGY, S.L.
    Inventors: Gustavo Enrique Schujman, Diego De Mendoza
  • Publication number: 20150073163
    Abstract: The invention provides methods of cultivating oil-bearing microbes using xylose as a fixed carbon source. Also provided are microorganisms that have been genetically engineered to metabolize xylose as a fixed carbon source allowing them to convert xylose into oils. Particular advantages of the processes provided herein include production of oils rather than alcohols through the microbial fermentation processes utilizing xylose.
    Type: Application
    Filed: September 1, 2014
    Publication date: March 12, 2015
    Inventors: Penelope Chua, Aravind Somanchi
  • Publication number: 20150064749
    Abstract: A method for producing a polyunsaturated fatty acid (PUFA) or a lipid containing a PUFA, a microbial cell containing a PUFA, and use of the microbial cell are provided. A method for producing a polyunsaturated fatty acid (PUFA) or a lipid containing a PUFA including culture of a microorganism capable of producing arachidonic acid (ARA) and/or dihomo-gamma-linolenic acid (DGLA) is provided, the method including at least one of the following steps: (a) adding an organic acid in an amount of 0.01 to 5 w/v % to a culture medium after the beginning of main culture; (b) increasing the pH of the culture medium to a range effective for culture after the beginning of the main culture; and (c) adding a metal sulfate in an amount of 0.01 to 0.5 w/w % to the main culture medium.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Applicant: SUNTORY HOLDINGS LIMITED
    Inventors: Kenji KATANO, Hiroshi KAWASHIMA
  • Patent number: 8969050
    Abstract: Methods of producing renewable materials may include consuming a fermentation feedstock with a fermentation organism to produce a renewable material in fermentation broth; water may then be separated from the feedstock or broth using one or more phase separations, or the renewable material may be concentrated from the feedstock or broth using one or more phase separations. Methods of producing biofuel components may include consuming a lignocellulosic or sugar fermentation feedstock with a fermentation organism to produce either ethanol or butanol in fermentation broth; cooling the feedstock or broth to solidify at least some water therein; and separating the solidified water from the feedstock or broth using a solid-liquid phase separation.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 3, 2015
    Assignee: BP Corporation North America Inc.
    Inventors: Glen Austin, Binita X. Bhattacharjee, Leslie W. Bolton, Jacob Borden, Martin E. Carrera, Amit A. Gokhale, Chris Horler, Aidan Hurley, Eric T. Mack
  • Patent number: 8969605
    Abstract: A process for producing bio-oil from municipal solid waste, the process including: a) liquifying municipal solid waste, to obtain a mixture containing an oily phase containing bio-oil, a solid phase, and a first aqueous phase; b) treating the first aqueous phase from a) with an adsorbing material, to obtain a second aqueous phase; c) fermenting the second aqueous phase from b), to obtain a biomass; d) subjecting the biomass obtained in c) to the liquification a). The bio-oil obtained is advantageously used in the production of biofuels for motor vehicles or for the generation of electric energy or heat.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 3, 2015
    Assignee: ENI S.p.A.
    Inventors: Aldo Bosetti, Giuliana Franzosi
  • Patent number: 8969074
    Abstract: The present invention relates to an electromagnetic bioaccelerator for obtaining biomass by simulating environmental marine conditions, comprising at least the following elements: octagonal biomass converters (1), seawater reserve tanks (3), particle filters (4), UV light filters (5), feedback and mixture tanks (6), pressurization feed tanks (8), manometers (9), pressure controllers (10), buffer tanks (11), expansion tanks with a safety valve (12), heat exchangers (13), temperature control thermostats (14), recycled water feedback tanks (15), reinjection pumps (16), centrifuges for separating the biomass from the water (17), desuperheaters (18); control panels (25), recirculation pumps (26), densimeters (27), biomass mechanical extraction systems by means of centrifugation (32) and biomass accumulation tanks (33).
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 3, 2015
    Assignee: Bio Fuel Systems, S.L.
    Inventors: Bernard A. J. Stroïazzo-Mougin, Cristian Gomis Catala
  • Patent number: 8969049
    Abstract: Promoter regions associated with the Yarrowia lipolytica diacylglycerol acyltransferase 2 (dgat2) gene are disclosed and have been found to be particularly effective for the expression of heterologous genes in yeast. These promoter regions will be useful for driving high-level expression of genes involved in the production of omega-3 and omega-6 fatty acids.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: March 3, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Quinn Qun Zhu, Zhixiong Xue
  • Publication number: 20150056671
    Abstract: Provided is a method of producing a fatty acid ester in a high yield through a simple operation using Euglena as a material. The method of producing a fatty acid ester comprises the following steps (a) and (b): (a) adding 0.001 to 9.5 [PU/g-dry cell] of at least one kind of protease to Euglena to react the Euglena and the protease in an aqueous phase; and (b) performing phase separation and collection of a fatty acid ester from a reaction liquid of the step (a).
    Type: Application
    Filed: April 1, 2013
    Publication date: February 26, 2015
    Inventors: Saki Hamada, Hiroyuki Konishi, Takaaki Watanabe
  • Publication number: 20150057465
    Abstract: The present invention provides various combinations of genetic modifications to a transformed host cell that provide increase conversion of carbon to a chemical product. The present invention also provides methods of fermentation and methods of making various chemical products.
    Type: Application
    Filed: March 17, 2014
    Publication date: February 26, 2015
    Inventors: Hans LIAO, Christopher Patrick MERCOGLIANO, Travis Robert WOLTER, Michael Tai Man LOUIE, Wendy Kathleen RIBBLE, Tanya LIPSCOMB, Eileen Colie SPINDLER, Michael D. LYNCH
  • Publication number: 20150056672
    Abstract: Provided herein are systems and methods for producing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and/or derivatives and/or mixtures thereof by growing algae that produce the oils containing EPA and/or DHA and/or derivatives and/or mixtures thereof, harvesting the algae with fish in one or more enclosed systems, and then processing fish to separate and purify the EPA and/or DHA. The multi-trophic systems provided herein comprise at least one enclosure that contains the algae and the fishes, and means for controllably feeding the algae to the fishes. Also provided herein are the lipid compositions extracted from the fishes.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 26, 2015
    Applicant: LiveFuels, Inc.
    Inventors: Benjamin Chiau-pin Wu, David Stephen, Gaye Elizabeth Morgenthaler, David Vancott Jones
  • Publication number: 20150057461
    Abstract: The present invention relates to a transformant which is transformed to express Baeyer-Villiger monooxygenase (BVMO), a method for producing C5-C14 medium-chain ?-hydroxy fatty acids, ?,?-dicarboxylic acids, ?-amino fatty acids, or alcohols from C16-C20 long-chain fatty acids by biotransformation using the transformant, a method for producing a fatty acid derivative having an ester group which is introduced into the chain thereof from keto fatty acid using the BVMO, and novel ?-hydroxy fatty acids which are prepared by the method. Degradation products such as C5 to C14 ?-hydroxy fatty acids, ?,?-dicarboxylic acids, ?-amino fatty acids, alcohols can be produced in a large amount from C16 to C20 long-chain fatty acids contained in a medium by biotransformation using a transformant capable of expressing BVMO of the present invention. Therefore, it can be widely used to produce ?-hydroxy fatty acids, ?,?-dicarboxylic acids, ?-amino fatty acids or alcohols in a more safe and economic manner.
    Type: Application
    Filed: April 5, 2013
    Publication date: February 26, 2015
    Inventors: Jin Byung Park, Ji Won Song, Eun Yeong Jeon
  • Patent number: 8962299
    Abstract: The invention relates to methods for producing a wax ester in recombinant host cells engineered to express a thioesterase, an acyl-CoA synthetase, an alcohol-forming fatty acyl reductase, and a wax ester synthase. The methods of the invention may take place in photosynthetic microorganisms, and particularly in cyanobacteria. Isolated nucleotide molecules and vectors expressing the thioesterase, acyl-CoA synthetase, alcohol-forming fatty acyl reductase, and wax ester synthase, recombinant host cells expressing the thioesterase, acyl-CoA synthetase, alcohol-forming fatty acyl reductase, and wax ester synthase, and systems for producing a wax ester via a pathway using these four enzymes, are also provided.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: February 24, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Erik Holtzapple, John H. Verruto
  • Publication number: 20150050707
    Abstract: A process for the treatment of biomass comprising subjecting biomass to microbial digestion to produce volatile fatty acids and/or solvents followed by wet oxidation to reduce biosolid volume while retaining or increasing the concentration of the volatile fatty acids and/or solvents.
    Type: Application
    Filed: February 27, 2014
    Publication date: February 19, 2015
    Inventors: Daniel James Gapes, Trevor Raymond Stuthridge, Peter James Strong, Robert Jason Lei, Anderson Aggrey
  • Patent number: 8956834
    Abstract: The present invention provides novel genes encoding Class II acyl-ACP thioesterases and variants thereof that are active on C8, C10, C12, C14, C16, and C18 acyl-ACP substrates. The thioesterases can be introduced into transgenic organisms, including microorganisms and photosynthetic organisms, for producing fatty acids and fatty acid products.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 17, 2015
    Assignee: Synthetic Genomics, Inc.
    Inventors: Paul Gordon Roessler, Gena Roy
  • Publication number: 20150044356
    Abstract: The present invention describes a bio-based process to produce high quality protein concentrate (HQPC) and lipids by converting plant derived materials into bioavailable protein and lipids via solid state fermentation (SSF) and hybrid-SSF, including the use of such HQPC and lipids so produced as nutrients, including use as a fish meal replacement in aquaculture diets. Also disclosed is a SSF reactor and method of using the reactor.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: PRAIRIE AQUATECH
    Inventors: Jason A. Bootsma, William R. Gibbons, Michael L. Brown
  • Publication number: 20150044737
    Abstract: New strains of microalgae belonging to the Nitzschia genus, allow high-yield production of lipids, in particular of docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) and/or carotenoids, in particular fucoxanthin, in mixotrophic mode, and a method for selecting and culturing such strains, using a variable and/or discontinuous light source, in particular a flashing light.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 12, 2015
    Applicant: FERMENTALG
    Inventors: Khadidja Romari, Francois Godart, Pierre Calleja
  • Publication number: 20150040467
    Abstract: There is provided a method for culturing microalgae in which microalgae capable of forming a biofilm on a liquid surface are cultured so as to form a biofilm on a liquid surface of a liquid medium, and microalgae capable of forming the biofilm on the liquid surface, for example, microalgae closely related to Botryococcus sudeticus.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Hideyuki KANEHARA, Tadashi MATSUNAGA, Tsuyoshi TANAKA, Masayoshi TANAKA
  • Publication number: 20150045537
    Abstract: The invention relates to methods for harvesting macromolecules such as lipids and proteins by culturing in growth medium a photo synthetic cyanobacteria that secretes vesicles into the growth medium, and separating the secreted vesicles from the cyanobacteria and/or from the growth medium.
    Type: Application
    Filed: March 12, 2013
    Publication date: February 12, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Sallie Watson Chisholm, Steven James Biller, Anne Williford Thompson
  • Publication number: 20150044738
    Abstract: New strains of microalgae belonging to the Euglena genus, allow production of lipids, in particular of EPA and/or ARA, in mixotrophic mode, and a method for selecting and culturing such strains, using a variable and/or discontinuous light source, in particular a flashing light.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 12, 2015
    Applicant: FERMENTALG
    Inventors: Khadidja Romari, Pierre Calleja
  • Publication number: 20150044736
    Abstract: Described are compositions and methods relating to a fungal cutinase cloned from Magnaporthe grisea, polynucleotides encoding the cutinase, and methods of use thereof. The compositions and methods have particular application in detergent cleaning compositions and synthesis reactions.
    Type: Application
    Filed: July 23, 2014
    Publication date: February 12, 2015
    Applicant: DANISCO US INC.
    Inventors: Christian D. Adams, Andrei Miasnikov
  • Patent number: 8951762
    Abstract: A method of increasing production of fatty acids comprising introducing into a host cell or organism and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid encoding a mutant acyl-ACP TE or a chimeric C. viscosissima acyl-ACP TE; a host cell or organism comprising the nucleic acid; a mutant acyl-ACP TE or chimeric C. viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: February 10, 2015
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Patent number: 8951776
    Abstract: Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: February 10, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory Stephanopoulos, Mitchell Tai, Sagar Chakraborty
  • Patent number: 8951761
    Abstract: The disclosed matter relates to immobilized enzymes and methods of use thereof.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: February 10, 2015
    Assignee: DSM Nutritional Products AG
    Inventors: Jaroslav A. Kralovec, Weijie Wang
  • Publication number: 20150037852
    Abstract: A method for reducing the free fatty acid content of a feedstock includes the steps of providing a free-fatty-acid-containing feedstock, treating the free-fatty-acid-containing feedstock to reduce the free fatty acid content thereof, where the step of treating includes combining at least one of an algae and a coagulant to the free-fatty-acid-containing feedstock, and producing a product from the treated feedstock.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 5, 2015
    Inventors: Lu-Kwang Ju, Majid Hosseini
  • Patent number: 8945908
    Abstract: Recombinant DNA techniques are used to produce oleaginous recombinant cells that produce triglyceride oils having desired fatty acid profiles and regiospecific or stereospecific profiles. Genes manipulated include those encoding stearoyl-ACP desturase, delta 12 fatty acid desaturase, acyl-ACP thioesterase, ketoacyl-ACP synthase, and lysophosphatidic acid acyltransferase. The oil produced can have enhanced oxidative or thermal stability, or can be useful as a frying oil, shortening, roll-in shortening, tempering fat, cocoa butter replacement, as a lubricant, or as a feedstock for various chemical processes. The fatty acid profile can be enriched in midchain profiles or the oil can be enriched in triglycerides of the saturated-unsaturated-saturated type.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: February 3, 2015
    Assignee: Solazyme, Inc.
    Inventors: Scott Franklin, Aravind Somanchi, George Rudenko, Riyaz Bhat, Xinhua Zhao, Risha Bond, Walter Rakitsky, Alejandro Marangoni, Diza Braksmayer
  • Patent number: 8945886
    Abstract: A method for producing a polyunsaturated fatty acid (PUFA) or a lipid containing a PUFA, a microbial cell containing a PUFA, and use of the microbial cell are provided. A method for producing a polyunsaturated fatty acid (PUFA) or a lipid containing a PUFA including culture of a microorganism capable of producing arachidonic acid (ARA) and/or dihomo-gamma-linolenic acid (DGLA) is provided, the method including at least one of the following steps: (a) adding an organic acid in an amount of 0.01 to 5 w/v % to a culture medium after the beginning of main culture; (b) increasing the pH of the culture medium to a range effective for culture after the beginning of the main culture; and (c) adding a metal sulfate in an amount of 0.01 to 0.5 w/w % to the main culture medium.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: February 3, 2015
    Assignee: Suntory Holdings Limited
    Inventors: Kenji Katano, Hiroshi Kawashima
  • Publication number: 20150030577
    Abstract: Provided are compounds and compositions derived from Pseudomonas sp., particularly, Pseudomonas fluorescens or Pseudomonas protegens and more particularly strain having the identifying characteristics of Pseudomonas ATCC 55799 having antimicrobial properties and particularly, antibacterial properties.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 29, 2015
    Applicant: Marrone Bio Innovations, Inc.
    Inventors: Ratnakar Asolkar, Ana Lucia Cordova-Kreylos, Carly Todd
  • Publication number: 20150031077
    Abstract: The efficient production of ethanol from low-cost biomass (e.g., corn, sugar beets, sugar cane, switchgrass and/or paper) has become increasingly important in making ethanol competitive with gasoline and decreasing the United States' dependence on foreign oil. For example, to reduce the cost of transporting biomass to ethanol production facilities, mobile systems for producing ethanol from biomass are provided. Also provided are small-scale ethanol production facilities. For example, instead of transporting biomass to the production facility, the facility is transported to the biomass or is located nearby the source of the biomass. The ethanol production facilities or components thereof may be transported via land, water, or air. Production of other products, such as hydrocarbons, natural gas, hydrogen gas, plastics, polymers, and proteins, can also be made by the methods and facilities. Any product described herein can be made in finished form or un-finished form and moved, e.g., to a fixed facility, e.g.
    Type: Application
    Filed: September 9, 2014
    Publication date: January 29, 2015
    Inventor: Marshall Medoff
  • Publication number: 20150031097
    Abstract: The present invention improves biodiesel production in several ways. Unique combinations of unit operations and flow configurations are disclosed in mobile processing units that are feedstock-flexible and can be dynamically deployed in a distributed way. In some embodiments, a process includes introducing a waste oil and an alcohol into a reactor with an esterification-transesterification enzymatic catalyst. Free fatty acids are reacted with alcohol to produce fatty acid alkyl esters, and glycerides are reacted with alcohol to produce fatty acid alkyl esters and glycerin. A membrane separator removes glycerin, water, and alcohol. Unreacted free fatty acids are then separated and recycled, to generate a product stream with fatty acid alkyl esters. A genset may be provided for combusting glycerin to produce electrical power and thermal heat as co-products. This biodiesel process may be energy self-sufficient, require no external utilities, and avoid direct discharge of wastewater.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 29, 2015
    Inventors: James M. Rethore, Julie E. Wheeler, Luca Zullo