Containing A Carboxyl Group Patents (Class 435/136)
  • Patent number: 10568960
    Abstract: The invention relates to the fields of vaccines and vaccine adjuvants, and generally relates to polynucleotide adjuvants, polynucleotide vaccines and vaccine compositions. More specifically, the invention relates to said polynucleotides and vaccine compositions for use in inducing or enhancing a prophylactic or therapeutic immune response in a mammalian subject. Furthermore, it relates to said polynucleotides and vaccine compositions for use in the prophylactic or therapeutic treatment of an infectious disease, such as in the prophylactic or therapeutic treatment of leishmaniasis.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: February 25, 2020
    Assignee: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS
    Inventors: Pedro José Alcolea Alcolea, Ana María Alonso Ayala, Vincente Emilio Larraga Rodríguez De Vera
  • Patent number: 10526624
    Abstract: Methods and systems to produce product compositions comprising caprylate products using chain-elongating bacteria. For example, the caprylate product in the product composition is n-caprylic acid (C8) and the n-caprylic (C8) to n-caproic (C6) acid ratio is higher than 1:1. These methods use chain elongation towards C8 rather than C6. High n-caprylate productivity and specificity was accomplished by: 1) feeding a substrate with, for example, ethanol as the carbon source or alternatively, a high ethanol-to-acetate ratio as the carbon source; 2) extracting caprylate product(s) (e.g., n-caprylate product) from the bioreactor broth; and 3) acclimating an efficient chain-elongating microbiome. The methods can produce caprylate products such as, for example, n-caprylic acid, which is a higher value chemical than C4 and C6.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 7, 2020
    Assignee: Cornell University
    Inventors: Largus T. Angenent, Leo Kucek
  • Patent number: 10407704
    Abstract: The invention relates to methods of saccharifying a cellulosic material comprising subjecting the cellulosic material to a cellulolytic enzyme composition and a GH61 polypeptide, and optionally a catalase in the presence of dissolved oxygen at a concentration in the range of 0.5 to 10% of the saturation level. The invention also related to methods of producing desired fermentation products, such as ethanol, using a method including a saccharification step of the invention.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: September 10, 2019
    Assignee: Novozymes A/S
    Inventors: Jesper Frickmann, Armindo Ribiero Gaspar, Mark Stevens, Hui Xu, Katja Salomon Johansen
  • Patent number: 10351887
    Abstract: The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: July 16, 2019
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Mark J. Burk
  • Patent number: 10294500
    Abstract: To provide a method for directly and efficiently producing methacrylic acid in a single step from renewable raw materials and/or biomass arising from the utilization of the renewable raw materials. Further provided is a method for producing methacrylic acid using microbes having the ability to produce methacrylic acid, from renewable raw materials and/or biomass arising from the utilization of the renewable raw materials, as a carbon source and/or energy source. The method for producing methacrylic acid enables methacrylic acid to be safely and easily produced from biomass, without using petroleum-derived raw materials, by utilizing microbes having the ability to produce methacrylic acid.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: May 21, 2019
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Eiji Sato, Michiko Yamazaki, Eiji Nakajima, Fujio Yu, Toshio Fujita, Wataru Mizunashi
  • Patent number: 10227246
    Abstract: There is provided a method for treating spent metal working fluid (MWF), comprising the steps of: (a) providing a biofilm of microorganisms on a solid support matrix in a first bioreactor; (b) transferring at least a portion of the solid support matrix comprising the biofilm of microorganisms from the first bioreactor into a second bioreactor; and (c) incubating the microorganisms in the second bioreactor to reduce the chemical oxygen demand of the spent MWF contained therein.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 12, 2019
    Assignee: FORD MOTOR COMPANY LIMITED
    Inventors: Duane Ager, Timothy Goodall, William Pope
  • Patent number: 10138435
    Abstract: The invention provides methods of manufacturing alkanes from triglyceride oils produced through fermentation of oil-bearing microbes. The processes provided herein can utilize a variety of carbohydrate feedstocks including cane bagasse, sugar beet pulp, corn stover, glycerol, corn starch, sorghum, molasses, waste glycerol, and other renewable materials. These processes further comprise hydrotreating, hydrocracking, isomerization, distillation, and other petrochemical processes for use with oil-bearing microbes and products derived therefrom to manufacture fuels. Particular embodiments include the manufacture of ASTM D975 and ASTM D1655 compliant fuels. Genetically engineered microbes provided herein can be used in the manufacture of renewable diesel and renewable jet fuel.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: November 27, 2018
    Assignee: CORBION BIOTECH, INC.
    Inventors: Donald E. Trimbur, Chung-Soon Im, Harrison F. Dillon, Anthony G. Day, Scott Franklin, Anna Coragliotti
  • Patent number: 10100342
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 16, 2018
    Assignee: CARGILL, INCORPORATED
    Inventors: Michael D Lynch, Ryan T. Gill, Tanya E. W. Lipscomb
  • Patent number: 10077455
    Abstract: Cells and cell cultures are provided that have improved tolerance to 3-hydroxypropionic acid (3HP). Genetic modifications to provide a mutated or overexpressed SFA1 gene or other enhancement of 3HP detoxification via a glutathione-dependent dehydrogenase reaction, including medium supplementation with glutathione, may be combined with a 3HP producing metabolic pathway.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: September 18, 2018
    Assignee: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Kanchana Rueksomtawin Kildegaard, Irina Borodina, Jochen Förster, Jens Nielsen
  • Patent number: 10066247
    Abstract: The invention relates to a process for producing a fuel, in particular a liquid fuel, or another organic product, from a carbon-based matter feedstock, comprising the following steps: a/ gasification of the carbon-based matter feedstock in a first reactor, termed gasifier (1), b/ downstream of the gasification, fermentation of the synthesis gas produced according to step a/, by means of microorganisms, water and nutrients in a second reactor, termed fermenter (2), c/ recovery, downstream of the fermenter, of the microorganisms and of the water, d/ injection of at least a part of the recovered microorganisms and, where appropriate, of at least a part of the recovered water at the inlet (10) of the gasifier.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: September 4, 2018
    Assignee: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Pierre-Alexandre Setier, Florian Delrue
  • Patent number: 10023891
    Abstract: The patent discloses herein a process for the chiral resolution of racemic cyclic and acyclic acetates to obtain (R)-alcohol. Further, it discloses the resolution of racemic cyclic and acyclic acetates to obtain enantiomerically pure (R)-(?)-alcohol as single enantiomer through fungal catalyzed deacylation in single fermentation, wherein fungal strains are F. proliferatum.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: July 17, 2018
    Assignee: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Dipesh Dattu Jadhav, Nilofer Jahan Khairunnasar Siddiqui, Swati Pramod Kolet, Hirekodathakallu Thulasiram
  • Patent number: 9970016
    Abstract: A genetic engineered bacteria without or comprising a plurality of important metabolic enzyme related genes is provided. When the by-product or waste of fruit and vegetable is used as the culture medium, a large quantity of succinic acid or lactic acid can be produced via fermentation. A method of producing succinic acid and lactic acid using the genetic engineered bacteria is also provided.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 15, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Pei-Ching Chang, Guang-Way Jang, Hsi-Yen Hsu, Hsiang-Yuan Chu, Jhong-De Lin, Ya-Lin Lin
  • Patent number: 9944893
    Abstract: The invention relates to a method and an apparatus for hydrolyzing and acidifying homogenized organic waste fed into a closed and gas tight reactor using enzymatic bacteria under thermophilic conditions where water may be added to said reactor and the content of the reactor can be mixed and subjecting during hydrolysis and acidification an adequate part of a suspension formed in the reactor to—i. a separation step isolating—a permeate comprising an aqueous solution of soluble carbon, volatile fatty acids (VFA) and valuable nutrients, —an organic slurry comprising an aqueous solution of insoluble organic solids rich in enzymatic thermophilic bacteria and non-hydrolyzed organic solids, and the remaining part of soluble carbon, VFA and valuable nutrients, thereafter to—ii. a recirculation step re-feeding said organic slurry into the reactor for further hydrolysis and acidification.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: April 17, 2018
    Assignee: RENEW TECHNOLOGIES LTD
    Inventor: Charandeep Singh Bhasin
  • Patent number: 9938469
    Abstract: The present disclosure relates generally to processes and systems for the hydrodeoxygenation of an oxygenate feedstock that increases the conversion of oxygenates to hydrocarbons while avoiding detrimental effects resulting from increasing the severity of the hydrodeoxygenation reaction.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: April 10, 2018
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Alexandru Platon, Edgar Lotero Alegria
  • Patent number: 9914943
    Abstract: The present invention provides a modified bacterial strain capable of fermenting both hexose and pentose sugars for production of bioalcohol wherein a promoter of pyruvate dehydrogenase operon (PDH) is replaced with a promoter of a gene that is expressed under anaerobic conditions. The present invention further provides a method of obtaining modified bacterial strain capable of fermenting both hexose and pentose sugar for production of bioalcohol. The present invention also provides a method of fermenting lignocellulosic biomass having hexose and pentose sugar using the modified bacteria for production of biomass.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: March 13, 2018
    Assignees: DEPARTMENT OF BIOTECHNOLOGY MINISTRY OF SCIENCE & TECHNOLOGY, INTERNATIONAL CENTRE FOR GENETIC ENGINEERING AND BIOTECHNOLOGY (ICGEB)
    Inventors: Syed Shams Yazdani, Neha Munjal, Anu Jose Mattam
  • Patent number: 9909134
    Abstract: Compositions and methods are provided for altering carbon partitioning in biomass isolated from Duckweed.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: March 6, 2018
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Joachim Messing, Wenqin Wang
  • Patent number: 9783834
    Abstract: The present invention relates to a process for producing a dicarboxylic acid, comprising fermenting a recombinant fungal cell in a suitable fermentation medium, in the presence of high carbon dioxide concentrations.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: October 10, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Mickel Leonardus August Jansen, Rene Verwaal
  • Patent number: 9777298
    Abstract: The present invention provides tools and methods for producing organic acids using strains of Monascus which are tolerant to high organic acid concentrations at low pH.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 3, 2017
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Alexander Ruud Weusthuis, Emil Johan Harald Wolbert, Jan Springer, John Van Der Oost, Gerrit Eggink
  • Patent number: 9757713
    Abstract: The present invention relates to an improved process for the preparation of 2,5-dimethylfuran and furfuryl alcohol over ruthenium supported catalysts. Further, the present invention disclosed a process for the selective hydrogenolysis of biomass derived 5-hydroxymethylfurfural (HMF) into 2,5-dimethylfuran (DMF) using Ru nanoparticles supported on NaY zeolite as a catalyst.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: September 12, 2017
    Assignee: Council of Scientific and Industrial Research
    Inventors: Satyanarayana Vera Venkata Chilukuri, Atul Sopan Nagpure, Nishita Satyendra Lucas
  • Patent number: 9663805
    Abstract: The invention relates to a method for preparing 6-aminocaproic acid (hereinafter also referred to as ‘6-ACA’) using a biocatalyst. The invention further relates to a method for preparing e-caprolactam (hereafter referred to as ‘caprolactam’) by cyclising such 6-ACA. The invention further relates to a host cell, a micro-organism, or a polynucleotide which may be used in the preparation of 6-ACA or caprolactam.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: May 30, 2017
    Assignee: Genomatica, Inc.
    Inventors: Petronella Catharina Raemakers-Franken, Martin Schurmann, Axel Christoph Trefzer, Stefaan Marie Andre De Wildeman
  • Patent number: 9562240
    Abstract: A method of biologically producing an aromatic carboxylic acid by contacting a substrate containing an aromatic carboxylic acid having a para-hydroxy group with a biocatalyst that removes the para-hydroxy group.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: February 7, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Won Jae Choi, Jin Ho Ahn, Jong Won Byun, Young Wan Ha
  • Patent number: 9518275
    Abstract: The present invention provides a method for decreasing pyruvate catabolism and increasing the accumulation of pyruvate in microbes. By overexpressing wild type dihydrolipoamide acetyltransferase or dihydrolipoamide acetyltransferase mutants which have mutations at conservative active sites, the present invention provide a method to decrease overall activity of pyruvate dehydrogenase complex and pyruvate catabolism, and thus increase the accumulation of extracellular pyruvate without killing the pyruvate-producing microbes. Overexpressing dihydrolipoamide acetyltransferase mutants is an effective way to increase pyruvate accumulation.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: December 13, 2016
    Assignee: Jiangnan University
    Inventors: Jian Chen, Jingwen Zhou, Hongwei Guo, Yongkun Lv, Guocheng Du
  • Patent number: 9434909
    Abstract: The invention provides methods of manufacturing alkanes from triglyceride oils produced through fermentation of oil-bearing microbes. The processes provided herein can utilize a variety of carbohydrate feedstocks including cane bagasse, sugar beet pulp, corn stover, glycerol, corn starch, sorghum, molasses, waste glycerol, and other renewable materials. These processes further comprise hydrotreating, hydrocracking, isomerization, distillation, and other petrochemical processes for use with oil-bearing microbes and products derived therefrom to manufacture fuels. Particular embodiments include the manufacture of ASTM D975 and ASTM D1655 compliant fuels. Genetically engineered microbes provided herein can be used in the manufacture of renewable diesel and renewable jet fuel.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: September 6, 2016
    Assignee: SOLAZYME, INC.
    Inventors: Donald E. Trimbur, Chung-Soon Im, Harrison F. Dillon, Anthony G. Day, Scott Franklin, Anna Coragliotti
  • Patent number: 9428778
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: August 30, 2016
    Assignee: Cargill, Incorporated
    Inventors: Michael D. Lynch, Ryan T. Gill, Tanya E.W. Lipscomb
  • Patent number: 9388419
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: July 12, 2016
    Assignees: Cargill, Incorporated, The Regents of the University of Colorado, a Body Corporate
    Inventors: Michael D. Lynch, Ryan T. Gill, Tanya E. W. Lipscomb
  • Patent number: 9322134
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with lignosulfonic acids, to generate cellulose-rich solids; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The strong lignosulfonic acids created during delignification give a pH less than 1 and hydrolyze preferentially the amorphous regions of cellulose. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of lignin onto the cellulose surface.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: April 26, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Patent number: 9272976
    Abstract: Disclosed is a method for removing and purifying carboxylic acids from fermentation broths, comprising removing biomass and any solids present from the fermentation broth, finely cleaning up the biomass-free and solids-free fermentation broth by nanofiltration, and removing the carboxylic acid from the finely cleaned, biomass-free, and solids free fermentation broth by adsorption to one or more solid phases having tertiary amino groups.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: March 1, 2016
    Assignee: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Joachim Schulze, Wolfgang Tietz, Isabel Waengler, Klaus Kuehlein
  • Patent number: 9249258
    Abstract: When industrially separating and purifying poly-3-hydroxyalkanoic acid produced by a microorganism, to obtain poly-3-hydroxyalkanoic acid agglomerates having an arbitrary volume mean particle diameter with favorable productivity and with decreased amount of an organic solvent used is enabled while decreasing contaminants derived from constitutive components of cellular bodies. According to the present invention, agglomerates of poly-3-hydroxyalkanoic acid are obtained by adjusting the pH of an aqueous poly-3-hydroxyalkanoic acid suspension to fall within an acidic region.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: February 2, 2016
    Assignee: Kaneka Corporation
    Inventors: Masaki Takita, Yoshifumi Yanagita
  • Patent number: 9234218
    Abstract: The present invention relates to a process for the preparation of methacrylic acid or methacrylic esters, comprising the process steps of IA) preparation of 3-hydroxyisobutyric acid by a process comprising the process step of bringing a cell which has been genetically modified in comparison with its wild type in such a way that it is capable of forming more 3-hydroxyisobutyric acid, or polyhydroxyalkanoates based on 3-hydroxyisobutyric acid in comparison with its wild type, into contact with a nutrient medium comprising, as carbon source, carbohydrates, glycerol, carbon dioxide, methanol, L-valine or L-glutamate under conditions under which 3-hydroxyisobutyric acid or polyhydroxyalkanoates based on 3-hydroxyisobutyric acid are formed from the carbon source, if appropriate, isolation of the 3-hydroxyisobutyric acid from the nutrient medium and also, if appropriate, neutralization of the 3-hydroxyisobutyric acid, IB) dehydration of the 3-hydroxyisobutyric acid with formation of methacrylic acid and also, where
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: January 12, 2016
    Assignee: EVONIK ROEHM GmbH
    Inventors: Achim Marx, Markus Poetter, Stefan Buchholz, Alexander May, Hermann Siegert, Birgit Alber, Georg Fuchs, Lothar Eggeling
  • Patent number: 9162965
    Abstract: The present invention relates to an industrial process for producing a lactic ester containing in total at least seven carbon atoms, from a fermentation liquor containing ammonium lactate in order to avoid the inherent production of gypsum, with a high yield and according to which the loss of lactic ester in the form of lactamide is limited as much as possible.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: October 20, 2015
    Assignee: GALACTIC S.A.
    Inventors: Aurélie Bernard, Pierre-Antoine Mariage, Jean-Christophe Bogaert
  • Patent number: 9109193
    Abstract: Systems and methods for containing and manipulating liquids, including vessels and unit operations or components of cell culture, cell containment, bioreactor, and/or pharmaceutical manufacturing systems, are provided. In certain embodiments, such vessels and unit operations are directed to continuous perfusion reactor or bioreactor systems and may include one or more disposable components. For instance, in one aspect, a system includes an apparatus in the form of a bioreactor for harvesting cells which produce one or more products. The apparatus may include a disposable, collapsible bag adapted for containing a liquid, the collapsible bag in fluid communication with a liquid-solids (e.g., cell) separation device. For example, an outlet of the collapsible bag may be connected to an inlet of the separation device, and an outlet of the separation device may be connected to an inlet of the collapsible bag for recycle.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: August 18, 2015
    Assignee: GE Healthcare Bio-Sciences Corp.
    Inventors: Parrish M. Galliher, Geoffrey L. Hodge, Michael Fisher, Patrick Guertin, Dan Mardirosian
  • Patent number: 9096873
    Abstract: The present invention relates to a method for preparing an adipate ester or thioester. The invention further relates to a method for preparing adipic acid from said ester or thioester. Further the invention provides a number of methods for preparing an intermediate for said ester or thioester. Further the invention relates to a method for preparing 6-amino caproic acid (6-ACA), a method for preparing 5-formyl valeric acid (5-FVA), and a method for preparing caprolactam. Further, the invention relates to a host cell for use in a method according to the invention.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 4, 2015
    Assignee: Genomatica, Inc.
    Inventors: Liang Wu, Axel Christoph Trefzer, Stefaan Marie Andre De Wildeman, Marco Alexander Van Den Berg
  • Patent number: 9051579
    Abstract: The invention concerns a novel method for making herbicide-tolerant plants, in particular to HPPD inhibiting herbicides, the nucleic acid sequences coding for enzymes capable of being used in said method, expression cassettes containing them and transgenic plants comprising at least one of said expression cassettes.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 9, 2015
    Assignee: Bayer S.A.S.
    Inventors: Olivier Zink, Eric Paget, Anne Rolland, Alain Sailland, Georges Freyssinet
  • Publication number: 20150147786
    Abstract: A process for mechanical destructuring of starch-based biomass was developed that makes use of a short application of high compression, impact, and shearing forces. The biomass may be destructured using a specific energy input that is less than 40% of the total combustible energy of the biomass. The destructured starch-based biomass, with or without saccharification and/or in-feed glycosyl hydrolase enzymes, may be used in feed applications. The destructured starch-based may saccharified to produce syrups and fermentable sugars, and for production of products including ethanol using a biocatalyst.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 28, 2015
    Inventors: KATHLEEN A CLARKSON, F Glenn Gallagher, Aaron Perelman, Luis Fernando Romero Millan, Vivek Sharma, Jayarama K. Shetty, Daniel A. Slanac, Paula Johanna Maria Teunissen
  • Publication number: 20150140615
    Abstract: The present invention provides a fed-batch culture method comprising a step of fed-batch-feeding a carbon source base and a base in such a manner that the pH level can be maintained at a level suitable for the growth of microorganisms for fermentation of a carbon source. The present invention also provides a method for preparing organic acids using the fed-batch culture method. The present invention fed-batch-feeds a neutralizing agent such as ammonium bicarbonate, ammonium carbonate or alkali metal-containing weak base, and a carbon source substrate in preparing organic acids by microorganism fermentation. Thus, a pH level suitable for the survival of microorganisms for carbon source fermentation can be maintained, and the speed of injecting the carbon source base which is the source material can be appropriately adjusted.
    Type: Application
    Filed: May 21, 2013
    Publication date: May 21, 2015
    Inventors: Jae Yeon Park, Sin Young Kang, Woo Chan Park, Min Su Koo, In Ho Cho, Joong Min Park, Seung Yeop Lee, Dong Hyun Kim
  • Publication number: 20150140606
    Abstract: A method of producing a sugar liquid from cellulose-containing biomass includes (1) to (4): (1) subjecting a cellulose-containing biomass to a dilute sulfuric acid treatment and thereafter separating the treated cellulose-containing biomass into a dilute sulfuric acid-treated liquid and a cellulose-containing solid content; (2) adding a cellulase to the cellulose-containing solid content to hydrolyze the cellulose and thereafter obtaining a sugar liquid; (3) filtering the dilute sulfuric acid-treated liquid through a nanofiltration membrane at pH 2.5 or lower to thereby separate a sugar concentrated liquid as a retentate and at the same time recover a sulfuric acid aqueous solution as a permeate; and (4) reusing the whole amount or a part of the sulfuric acid aqueous solution obtained in (3) in the dilute sulfuric acid treatment in (1).
    Type: Application
    Filed: June 11, 2013
    Publication date: May 21, 2015
    Inventors: Atsushi Minamino, Hiroyuki Kurihara, Katsushige Yamada
  • Publication number: 20150140614
    Abstract: The invention relates to an isolated polynucleotide having promoter activity, a variant of the promoter of the gap gene coding for glyceraldehyde-3-phosphate dehydrogenase; and to a microorganism which produces and/or secretes a fine chemical, the microorganism including the isolated polynucleotide having promoter activity, which enables various genes to be overexpressed in comparison with the particular starting strain; and to a process for preparing fine chemicals using the microorganism.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: ALEXANDER RETH, BRIGITTE BATHE, STEPHAN HANS, WILFRIED CLAES
  • Publication number: 20150135369
    Abstract: Provided herein are transgenic plants that include increased expression of a coding region encoding a PAE poly-peptide compared to a control plant. In one embodiment, a transgenic plant includes a phenotype of decreased recalcitrance, increased growth, or the combination thereof. Also provided herein are methods for generating transgenic plants, and methods for using transgenic plants. Examples of methods for using transgenic plants include, for instance, processing a transgenic plant described herein to result in a processed pulp, and exposing a plant material obtained from a plant described herein to conditions suitable for the production of a metabolic product.
    Type: Application
    Filed: March 11, 2013
    Publication date: May 14, 2015
    Inventors: Debra A. Mohnen, Ajaya K. Biswal
  • Publication number: 20150132813
    Abstract: This disclosure describes, generally, recombinant cells modified to exhibit increased biosynthesis of pentanoic acid, methods of making such recombinant cells, and methods of inducing the cells to produce pentanoic acid. This disclosure also describes, generally, recombinant cells modified to exhibit increased biosynthesis of 2-methylbutyric acid, methods of making such recombinant cells, and methods of inducing the cells to produce 2-methylbutyric acid.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 14, 2015
    Inventors: Kechun Zhang, Yogesh K. Dhande
  • Publication number: 20150125912
    Abstract: The invention provides a process for the preparation of hydrocarbons substituted with at least one group containing at least one oxygen atom, comprising the process steps A) reaction of a carbon source comprising at least one selected from CO2 and CO to give acetate and/or ethanol with a first microorganism, B) separating off of the acetate from the first microorganism, C) reaction of the acetate to give a hydrocarbon substituted with at least one group containing at least one oxygen atom with a second microorganism and optionally D) purification of the hydrocarbon substituted with at least one group containing at least one oxygen atom.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 7, 2015
    Applicant: Evonik Industries AG
    Inventors: Thomas Haas, Eva Maria Wittmann
  • Publication number: 20150125903
    Abstract: The present invention provides fungal xylanase and/or xylosidase enzymes suitable for use in saccharification reactions. The present invention provides xylanase and xylosidase enzymes suitable for use in saccharification reactions. The present application further provides genetically modified fungal organisms that produce xylanase(s) and/or xylosidase(s), as well as enzyme mixtures exhibiting enhanced hydrolysis of cellulosic material to fermentable sugars, enzyme mixtures produced by the genetically modified fungal organisms, and methods for producing fermentable sugars from cellulose using such enzyme mixtures. In some embodiments, the xylanase and xylosidase enzyme(s) are M. thermophila enzymes.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventors: Nicholas John Agard, David Elgart, Jie Yang, Goutami Banerjee, Jeanne Bonomo Benoit, Dipnath Baidyaroy
  • Publication number: 20150125902
    Abstract: Provided are isolated polypeptides having glucoamylase activity, catalytic domains, and polynucleotides encoding the polypeptides, catalytic domains. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains.
    Type: Application
    Filed: August 24, 2012
    Publication date: May 7, 2015
    Applicant: Novozymes A/S
    Inventors: Tianqi Sun, Ming Li
  • Publication number: 20150126598
    Abstract: The present invention relates to a concentrated extract of cranberry (Vaccinium macrocarpon), the complex composition of which makes it possible to increase the antibacterial effects thereof, which is of use for the prevention or treatment of urinary infections, and in particular for the preventive treatment of urinary infections or treatment against the recurrence thereof. The invention also relates to a process for preparing such an extract, to food, nutraceutical or pharmaceutical compositions comprising the extract and to the use thereof in the treatment or prevention of urinary infections.
    Type: Application
    Filed: June 7, 2013
    Publication date: May 7, 2015
    Inventors: Philippe Sanoner, Valerie Bochard, Lucie Charissou, Benedicte Lastique, Morgane Jacob, Patrice Thomas
  • Publication number: 20150125906
    Abstract: The present invention relates to methods of degrading or converting biomass material enriched with hemicellulosic material into fermentable sugars.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventors: Prashant Iyer, Harry Showmaker, Hui Xu, Kishore Rane
  • Patent number: 9023632
    Abstract: The present invention relates to bacterial strains, capable of utilizing glycerol as a carbon source for the fermentative production of succinic acid, wherein said strains are genetically modified so that they comprise a deregulation of their endogenous pyruvate-formate-lyase enzyme activity, as well as to methods of producing organic acids, in particular succinic acid, by making use of such microorganism. The present invention also relates to the downstream processing of the produced organic acids by cation exchange chromatography.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: May 5, 2015
    Assignee: BASF SE
    Inventors: Hartwig Schröder, Stefan Haefner, Gregory Von Abendroth, Rajan Hollmann, Aline Raddatz, Hansgeorg Ernst, Hans Gurski
  • Patent number: 9006287
    Abstract: The present invention provides a composition, such as a food and pharmaceutical agent, which comprises dihomo-?-linolenic acid, and which has the effect of preventing or treating skin diseases; a composition such as a food and pharmaceutical agent which comprises dihomo-?-linolenic acid and which has the effect of preventing or treating skin diseases; and a composition which comprises dihomo-?-linolenic acid and which has the effect of preventing or treating diseases related to increased mast cell count.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 14, 2015
    Assignee: Suntory Holdings Limited
    Inventors: Norifumi Tateishi, Hiroshi Kawashima
  • Patent number: 8999684
    Abstract: The invention relates to genetically engineered Candida tropicalis cells, use thereof and a method of production of ?-hydroxycarboxylic acids and ?-hydroxycarboxylic acid esters.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 7, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Markus Poetter, Hans-Georg Hennemann, Steffen Schaffer, Thomas Haas
  • Publication number: 20150087036
    Abstract: Provided herein is an alkane-metabolizing cell that is unable to convert propionyl-CoA into methylmalonyl-CoA or 2-metylcitrate synthase. Depending on which enzymes are present in the cell, the cell can produce acrylate or a precursor for the same (e.g., propionate, 3-hydroxypropionyl-CoA, 3-hydroxypropionate, acrylyl-CoA) that can be readily converted to acrylate enzymatically (e.g., in the cell) or by chemical treatment. In one embodiment, the cell may contain a cytochrome P450 or alkane oxidase enzyme that allows the production of 3-hydroxypropionyl-CoA, which can be readily converted to 3-hydroxypropionate. In order to make such compounds, the cell may be grown in the presence of an odd-numbered chain alkane (e.g., pentane or heptane), although another odd-numbered chain alkane may be used. In another embodiment, the cell may contain acyl-CoA oxidase, enoyl-CoA hydratase, and hydrolase.
    Type: Application
    Filed: October 17, 2012
    Publication date: March 26, 2015
    Inventors: Joshua A. Silverman, Tom Purcell, Jon Edward Ness, Effendi Leonard
  • Publication number: 20150087032
    Abstract: A genetically engineered yeast cell that produces a pyruvate-based metabolite from pyruvate, wherein activity of a mitochondrial pyruvate carrier (MPC) is reduced compared to a parent yeast cell and a method of producing the pyruvate-based metabolite using the yeast cell.
    Type: Application
    Filed: July 21, 2014
    Publication date: March 26, 2015
    Inventors: Young-kyoung PARK, Chang-duk Kang, Ji-yoon Song, Ju-young Lee, Seung-hyun Lee, Kwang-myung Cho
  • Publication number: 20150087031
    Abstract: The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 26, 2015
    Inventors: Robert Jansen, Claire Gregoire, philip Travisano, Lee Madsen, Neta Matis, Yael Har-Tal, Shay Eliahu, James Alan Lawson, Noa Lapidot, Luke Burke, Aharon M. Eyal, Timothy Allen Bauer, Hagit Sade, Paul Mcwilliams, Ziv-Vladimir Belman, Bassem Hallac, Michael Zviely, Yelena Gershinksy, Adam Carden