Ketone Patents (Class 435/148)
  • Publication number: 20130115661
    Abstract: A method for utilizing cultivated plant biomass components, namely cellulose, hemicellose, and lignin, and converting them to value-added biobased chemical products is described herein. The present method provides treatments to obtain a plurality of component streams from cultivated plant biomass for producing derivative products while minimizing waste products.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: THESIS CHEMISTRY, LLC
    Inventors: John R. Peterson, Christopher M. Yost, Jian Wu
  • Patent number: 8426158
    Abstract: The present invention relates to methods for increasing hydrolysis of a cellulosic material, comprising: hydrolyzing the cellulosic material with an enzyme composition in the presence of a polypeptide having peroxidase activity.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: April 23, 2013
    Assignee: Novozymes, Inc.
    Inventors: Feng Xu, Jason Quinlan
  • Patent number: 8420375
    Abstract: A non-naturally occurring microbial organism has at least one exogenous nucleic acid encoding a MEK pathway enzyme expressed in a sufficient amount to produce MEK. The MEK pathway includes an enzyme selected from an acetoacetyl-CoA dehydrogenase (bifunctional), an acetoacetyl-CoA aldehyde dehydrogenase, a 3-oxobutyraldehyde reductase, a 3-oxobutanol dehydratase, an MEK oxidoreductase, a 3-oxobutyraldehyde aminotransferase, a 4-aminobutan-2-one deaminase, a 2-amino-4-ketopentanoate (AKP) thiolase, an AKP aminotransferase, a 2,4-dioxopentanoate decarboxylase, an AKP deaminase, an acetylacrylate decarboxylase, an AKP decarboxylase, a glutamate dehydrogenase, a 3-oxobutyraldehyde oxidoreductase (aminating) and an AKP oxidoreductase (aminating). A 2-butanol pathway further includes an MEK reductase. A method for producing MEK or 2-butanol includes culturing these organisms under conditions and for a sufficient period of time to produce MEK or 2-butanol.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: April 16, 2013
    Assignee: Genomatica, Inc.
    Inventors: Robin E. Osterhout, Wei Niu, Anthony P. Burgard
  • Publication number: 20130089892
    Abstract: The present invention relates to yeast species which are normally capable of producing sophorolipids but which are modified in such way that they are incapable producing the latter compounds. These sophorolipid-negative strains surprisingly display equal growth characteristics and biomass formation as their wild type counterparts and are hence useful for the production of compounds such as recombinant proteins, glycolipids, polyhydroxyalkanoates and carotenoides. In addition, the present invention discloses two glucosyltransferase genes with key-functions in sophorolipid production.
    Type: Application
    Filed: June 10, 2011
    Publication date: April 11, 2013
    Applicant: Universiteit Gent
    Inventors: Wim Soetaert, Sofie De Maeseneire, Karen Saerens, Sofie Roelants, Inge Van Bogaert
  • Publication number: 20130067619
    Abstract: Nucleic acid molecules encoding polypeptides having polyketide synthase activity have been identified and characterized. Expression or over-expression of the nucleic acids alters levels of cannabinoid compounds in organisms. The polypeptides may be used in vivo or in vitro to produce cannabinoid compounds.
    Type: Application
    Filed: April 15, 2011
    Publication date: March 14, 2013
    Inventors: Jonathan E. Page, Steve Gagne
  • Publication number: 20130059332
    Abstract: The present invention relates to a process for the production of an aqueous glucose solution from maize or maize kernels. The invention also relates to a glucose solution obtainable by this process, and to its use for the production of organic compounds. The process according to the invention comprises: a) fractionating dry milling of maize kernels, where the maize kernels are separated into a maize-starch-comprising endosperm fraction and a high-oil germ fraction and, if appropriate, a bran fraction; b) enzymatic liquefaction and saccharification of the maize starch in an aqueous suspension of the endosperm fraction, which gives an aqueous glucose solution comprising maize gluten; and c) depletion of the maize gluten and, if appropriate, any bran present from the aqueous glucose solution.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 7, 2013
    Applicant: BASF SE
    Inventors: Matthias Boy, Jong-Kyu Choi, Jin Won Chung, Markus Lohscheidt, Jong In Choi, Jae Yeol Seo, Jörg Braun, Mo Se Kim, Sung Hyun Kim, Arno Kochner
  • Publication number: 20130052700
    Abstract: The invention provides a biocatalytic process for oxidation of organic compounds with the aid of an alkL gene product, and microorganisms used in this process.
    Type: Application
    Filed: March 15, 2011
    Publication date: February 28, 2013
    Inventors: Markus Poetter, Andreas Schmid, Bruno Buehler, Hans-Georg Hennemann, Mattijs Kamiel Julsing, Steffen Schaffer, Thomas Haas, Manfred Schrewe, Sjef Cornelissen, Martin Roos, Harald Haeger
  • Publication number: 20130045512
    Abstract: Microbial production of pyruvate and metabolites derived from pyruvate in cells exhibiting reduced pyruvate dehydrogenase activity compared to wild-type cells. Acetate and glucose are supplied as a carbon sources.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 21, 2013
    Applicant: University of Georgia Research Foundation, Inc.
    Inventors: Mark A. EITEMAN, Elliot Altman, Yihui Zhu
  • Publication number: 20130045513
    Abstract: A process for the enzymatic reduction of an enoate (1) wherein the C?C bond of the enoate (1) is stereoselectively hydrogenated in the presence of an enoate-reductase and an oxidizable co-substrate (2) in a system which is free of NAD(P)H, a. b. in which c. A is a ketone radical (—CRO), an aldehyde radical (—CHO), a carboxyl radical (—COOR), with R?H or optionally substituted C1-C6-alkyl radical, d. R1, R2 and R3 are independently of one another H, —O—C1-C6-alkyl, —O—W with W=a hydroxyl protecting group, C1-C6-alkyl, which can be substituted, C2-C6-alkenyl, carboxyl, or an optionally substituted carbo- or heterocyclic, aromatic or nonaromatic radical, or one of R1, R2 and R3 is a —OH radical, or R1 is linked to R3 so as to become part of a 4-8-membered cycle, or R1 is linked to R so as to become part of a 4-8-membered cycle, with the proviso that R1, R2 and R3 may not be identical.
    Type: Application
    Filed: October 23, 2012
    Publication date: February 21, 2013
    Applicant: BASF SE
    Inventors: Stephan Maurer, Bernhard Hauer, Melanie Bonnekessel, Kurt Faber, Clemens Stückler
  • Publication number: 20130040350
    Abstract: A dense but oxygen permeable membrane separates the oxygen supply compartment from the fermentation compartment, which contains all microorganisms, a nutrient medium and the pretreated lignocellulose. The oxygen, necessary for the growth and the activity of the aerobic cellulolytic enzymes producing microorganisms is solely transported from the oxygen supply compartment through the membrane, which leads to an oxygen gradient within the biofilm growing on the membrane. The oxygen rich zone of the biofilm lies on the membrane whereas the biofilm further away from the membrane as well as the surrounding nutrient medium are oxygen depleted. In the aerobic biofilm the extra-cellular enzymes are produced in situ and are released into the nutrient medium where they hydrolyse the cellulose and hemicellulose into soluble monosugars, which are then converted to the desired fermentation product by suitable microorganisms in the anaerobic zones of the reactor.
    Type: Application
    Filed: April 12, 2011
    Publication date: February 14, 2013
    Applicant: ETH ZURICH
    Inventors: Michael Hans-Peter Studer, Simone Brethauer Studer
  • Patent number: 8372612
    Abstract: Using screening of transposon random insertion mutants, genes involved in accumulation of (p)ppGpp were found to be involved in bacterial cell response to butanol. Reduced production of proteins with enzymatic activity for (p)ppGpp biosynthesis confers increased butanol tolerance. Bacterial strains with reduced (p)ppGpp accumulation and having a butanol or 2-butanone biosynthetic pathway are useful for production of butanol or 2-butanone.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 12, 2013
    Assignee: Butamax(TM) Advanced Biofuels LLC
    Inventors: Robert A. Larossa, Dana R. Smulski, Vasantha Nagarajan
  • Publication number: 20130031676
    Abstract: The present invention relates to isolated polypeptides having glucoamylase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 31, 2013
    Applicant: Novozymes A/S
    Inventors: Ming Li, Junxin Duan, Zheng Liu, Shiro Fukuyama, Keiichi Ayabe, Guillermo Coward-Kelly, Randall Deinhammer
  • Publication number: 20120329111
    Abstract: Provided herein is a non-naturally occurring microbial organism having a cyclohexanone pathway and comprising at least one exogenous nucleic acid encoding a cyclohexanone pathway enzyme. Also provided herein is a method for producing cyclohexanone, including culturing these non-naturally occurring microbial organisms.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicant: Genomatica, Inc.
    Inventors: Anthony Burgard, Robin E. Osterhout, Jun Sun, Priti Pharkya
  • Publication number: 20120309065
    Abstract: Strict anaerobic thermophilic bacterium belonging to the group of Thermoanaerobacter italicus subsp. marato subsp. nov. and mutants and derivatives thereof. The bacterium is particularly suitable for the production of fermentation products such as ethanol, lactic acid, acetic acid and hydrogen from lignocellulosic biomass.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 6, 2012
    Applicant: BIOGASOL IPR APS
    Inventors: Thomas Kvist, Marie Just Mikkelsen, Rasmus Lund Andersen
  • Patent number: 8323950
    Abstract: The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO2 and/or H2 to acetyl-coenzyme A (acetyl-CoA), methyl tetrahydrofolate (methyl-THF) or other desired products, wherein the microorganism lacks the ability to convert CO or CO2 and H2 to acetyl-CoA or methyl-THF in the absence of the one or more exogenous proteins. For example, the microbial organism can contain at least one exogenous nucleic acid encoding an enzyme or protein in an acetyl-CoA pathway. The microbial organism is capable of utilizing synthesis gases comprising CO, CO2 and/or H2, alone or in combination with methanol, to produce acetyl-CoA.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 4, 2012
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Christophe H. Schilling, Anthony P. Burgard, John D. Trawick
  • Publication number: 20120295318
    Abstract: Cyclic alkynes (e.g., cyclooctynes such as dibenzocyclooctynes) can be photochemically generated from cyclopropenones as disclosed herein. The cyclic alkynes can be reacted (e.g., in situ) with materials having alkyne-reactive groups (e.g., azide groups in a “click” reaction). In preferred embodiments, the generation and reaction of the cyclic alkyne can proceed in the absence of a catalyst (e.g., Cu(I)). These reactions can be useful, for example, for the selective labeling of living cells that are metabolically modified with azido-containing surface monosaccharides, or for light-directed surface patterning.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 22, 2012
    Applicant: University of George Research Foundation, Inc.
    Inventors: VLADIMIR V. POPIK, Andrei A. Poloukhtine, Geert-Jan Boons, Margaretha Wolfert
  • Patent number: 8313934
    Abstract: There are provided bioproducts and methods of improving production of the bioproducts from engineered microbial cells, the methods comprising: providing a fermentation broth comprising a crude carbon source; inoculating said fermentation broth with said microbial cells; and incubating the inoculated fermentation broth; wherein said bioproduct is a hydrophobic solvent immiscible with said fermentation broth, and wherein a toxic side product present in said crude carbon source is soluble in said hydrophobic solvent. Also, provided are kits for practicing the methods of improving production of bioproducts.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 20, 2012
    Assignee: LS9, Inc.
    Inventors: Monica Bhatia, Michael C. M. Cockrem, Stephen B. del Cardayre, Fernando A. Sanchez-Riera
  • Patent number: 8313540
    Abstract: The present invention provides non-petroleum high-octane fuel derived from biomass sources, and a method of producing same. The method of production involves reducing the biomass feedstocks to sugars, fermenting the sugars using microorganisms or mutagens thereof to produce ethanol or acetic acid, converting the acetic acid or ethanol to acetone, and converting the acetone to mesitylene and isopentane, the major components of the renewable engine fuel. Trimerization of acetone can be carried out in the presence of a catalyst containing at least one metal selected from the group consisting of niobium, iron and manganese. The ethanol can be converted to mesitylene in a dehydration reaction in the presence of a catalyst of zinc oxide/calcium oxide, and unreacted ethanol and water separated from mesitylene by distillation.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: November 20, 2012
    Assignee: Swift Fuels, LLC
    Inventors: John J Rusek, Mary-Louise Rusek, Jonathon D Ziulkowski, Justin D Zink
  • Publication number: 20120288907
    Abstract: A method is disclosed for restoring a Glu+ phenotype to a PTS?/Glu? bacterial cell which was originally capable of utilizing a phosphotransferase transport system (PTS) for carbohydrate transport. Bacterial cells comprising the Glu+ phenotype have modified endogenous chromosomal regulatory regions which are operably linked to polynucleotides encoding galactose permeases and glucokinases.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 15, 2012
    Applicant: DANISCO US INC.
    Inventors: Marguerite A. Cervin, Philippe Soucaille, Fernando Valle, Gregory M. Whited
  • Publication number: 20120288891
    Abstract: The present disclosure relates to the use of pantothenate compounds as a non-genetic switch for the production of heterologous acetyl-CoA derived (HACD) compounds in microbial host cells. The invention provides genetically modified microorganisms that are more stable when stored and initially cultured under reduced pantothenate concentrations, cell culture media having reduced concentrations of pantothenate compounds, and methods of producing HACD compounds using the cell culture media and the genetically engineered microorganisms of the invention.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Applicant: AMYRIS, INC.
    Inventor: Adam Meadows
  • Publication number: 20120278952
    Abstract: The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 5, 2010
    Publication date: November 1, 2012
    Applicants: NOVOZYMES A/S, NOVOZYMES, INC.
    Inventors: Elena Vlasenko, Brett McBrayer, Dominique Skovlund, Sara Landvik
  • Publication number: 20120272410
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 5, 2010
    Publication date: October 25, 2012
    Applicants: NOVOZYMES A/S, NOVOZYMES, INC.
    Inventors: Elena Vlasenko, Brett McBrayer, Mary Stringer, Kirk Schnorr
  • Patent number: 8293504
    Abstract: The present invention relates to a process for the production of an aqueous glucose solution from maize or maize kernels. The invention also relates to a glucose solution obtainable by this process, and to its use for the production of organic compounds. The process according to the invention comprises: a) fractionating dry milling of maize kernels, where the maize kernels are separated into a maize-starch-comprising endosperm fraction and a high-oil germ fraction and, if appropriate, a bran fraction; b) enzymatic liquefaction and saccharification of the maize starch in an aqueous suspension of the endosperm fraction, which gives an aqueous glucose solution comprising maize gluten; and c) depletion of the maize gluten and, if appropriate, any bran present from the aqueous glucose solution.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: October 23, 2012
    Assignee: BASF SE
    Inventors: Matthias Boy, Jong-Kyu Choi, Jin Won Chung, Markus Lohscheidt, Jong In Choi, Jae Yeol Seo, Jörg Braun, Mo Se Kim, Sung Hyun Kim, Arno Kochner
  • Publication number: 20120246767
    Abstract: Provided are modified valencene synthase polypeptides and methods of using the modified valencene synthase polypeptides. Also provided are methods for producing modified terpene synthases.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 27, 2012
    Inventors: Jean Davin Amick, Eunyoung Park, Bryan N. Julien, Richard P. Burlingame
  • Publication number: 20120214197
    Abstract: The present invention relates to isolated polypeptides having glucoamylase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 30, 2010
    Publication date: August 23, 2012
    Applicants: NOVOZYMES NORTH AMERICA, INC., NOVOZYMES A/S
    Inventors: Sara Landvik, Marc Dominique Morant, Keiichi Ayabe, Guillermo Coward-Kelly
  • Publication number: 20120196340
    Abstract: The invention relates to sesquiterpene synthases and methods for their production and use. Particularly, the invention provides nucleic acids comprising the nucleotide sequence of citrus valencene synthase (CVS) which codes for at least one CVS. The invention further provides nucleic acids comprising the nucleotide sequence coding for amino acid residues forming the tier 1 and tier 2 domains of CVS. The invention also provides for methods of making and using the nucleic acids and amino acids of the current invention.
    Type: Application
    Filed: March 6, 2012
    Publication date: August 2, 2012
    Inventors: Joseph Chappell, Bryan Greenhagen
  • Patent number: 8227218
    Abstract: The invention relates to a method for the enzymatic reduction of alkyne derivatives of the formula (1), wherein R1 represents H, C1-C6-alkyl, C2-C6-alkenyl, or an optionally substituted carbocyclic or heterocyclic, aromatic or non-aromatic group, R2 represents H, C1-C6-alkyl, C2-C6-alkenyl, by reaction in the presence of special reductases.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 24, 2012
    Assignee: BASF SE
    Inventors: Rainer Stürmer, Bernhard Hauer, Bettina Rosche, André Mueller
  • Patent number: 8222458
    Abstract: Disclosed is a process for the synthesis of (3R)-3-hydroxy-?-ionone and its (3S)-enantiomer in high optical purity from commercially available (rac)-?-ionone. The key intermediate for the synthesis of these hydroxyionones is 3-keto-?-ionone ketal that was prepared from (rac)-?-ionone after protection of this ketone as a 1,3-dioxolane. Reduction of 3-keto-?-ionone ketal followed by deprotection, lead to 3-hydroxy-?-ionone that was transformed into (rac)-3-hydrox-?-ionone by base-catalyzed double bond isomerization in 46% overall yield from (rac)-?-ionone. The racemic mixture of these hydroxyionones was then resolved by enzyme-mediated acylation in 96% ee. (3R)-3-Hydroxy-?-ionone and its (3S)-enantiomer were respectively transformed to (3R)-3-hydroxy-(?-ionylideneethyl)triphenylphosphonium chloride [(3R)-C15-Wittig salt] and its (3S)-enantiomer [(3S)-C15-Wittig salt] according to known procedures.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: July 17, 2012
    Assignee: University of Maryland, College Park
    Inventors: Frederick Khachik, An-Ni Chang
  • Publication number: 20120171719
    Abstract: Disclosed herein are transformed Yarrowia lipolytica comprising an exogenous polynucleotide encoding a polypeptide having sucrose invertase activity. Also disclosed are methods of using the transformed Y. lipolytica.
    Type: Application
    Filed: November 15, 2011
    Publication date: July 5, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Seung-Pyo Hong, John E. Seip, Quinn Qun Zhu
  • Publication number: 20120165490
    Abstract: In certain aspects, the disclosure provides methods for producing polymers from alkenone-producing algae, such as algae species of the Isochrysis family.
    Type: Application
    Filed: November 17, 2011
    Publication date: June 28, 2012
    Inventors: Scott R. Lindell, Christopher M. Reddy
  • Publication number: 20120156735
    Abstract: The present invention is related to recombinant host cells comprising: (i) at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide that converts pyruvate to acetaldehyde, acetyl-phosphate or acetyl-CoA; and (ii) a heterologous polynucleotide encoding a polypeptide having phosphoketolase activity. The present invention is also related to recombinant host cells further comprising (iii) a heterologous polynucleotide encoding a polypeptide having phosphotransacetylase activity.
    Type: Application
    Filed: June 15, 2011
    Publication date: June 21, 2012
    Applicant: BUTAMAX(TM) ADVANCED BIOFUELS LLC
    Inventors: Michael Dauner, Lori Ann Maggio-Hall, Jean-Francois Tomb
  • Publication number: 20120149076
    Abstract: Herein disclosed is a method comprising a) fermenting biomass to produce a fermentation broth; b) separating the fermentation broth into a liquid stream and a solid or slurry stream; c) passing the liquid stream through a reverse osmosis membrane to obtain a permeate and a retentate; and d) concentrating the retentate. Herein disclosed is a method comprising a) fermenting biomass in a first fermentor to produce a first fermentation broth; b) separating the first fermentation broth into a first liquid stream and a first solid or slurry stream; c) introducing the first solid or slurry stream into a second fermentor to produce a second fermentation broth, wherein the second fermentor comprises a lower fermentation products concentration than the first fermentor; d) separating the second fermentation broth into a second liquid stream and a second solid or slurry stream; and e) passing the second liquid stream through a reverse osmosis membrane.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 14, 2012
    Applicant: TERRABON MIX-ALCO, INC.
    Inventor: Cesar B. Granda
  • Publication number: 20120149886
    Abstract: The present disclosure provides systems for producing engineered oleaginous yeast or fungi that express carotenoids.
    Type: Application
    Filed: April 10, 2009
    Publication date: June 14, 2012
    Applicant: MICROBIA, INC.
    Inventors: Richard B. Bailey, Kevin T. Madden, Joshua Trueheart, Reed Doten, Maria Mayorga, Joshua Griffin Dunn, Dan Dueppen
  • Publication number: 20120122169
    Abstract: The present invention concerns a method for the production of a biochemical selected among acetol and 1,2-propanediol, 1,3-propanediol, ethylene glycol and 1,4-butanediol comprising culturing a microorganism modified for an improved production of the biochemical selected among acetol and 1,2-propanediol, 1,3-propanediol, ethylene glycol and 1,4-butanediol in an appropriate culture medium and recovery of the desired biochemical which may be further purified wherein the microorganism expresses a YqhD enzyme which catalytic efficiency toward NADPH is increased. The present invention also relates to a mutant YqhD enzyme comprising at least one amino acid residue in the protein sequence of the parent enzyme replaced by a different amino acid residue at the same position wherein the mutant enzyme has retained more than 50% of the YqhD activity of the parent enzyme and the catalytic efficiency toward NADPH of the mutant YqhD is increased as compared with the catalytic efficiency toward NADPH of the parent enzyme.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 17, 2012
    Applicant: METABOLIC EXPLORER
    Inventors: Francois Voelker, Laurence Dumon-Seignovert, Philippe Soucaille
  • Publication number: 20120122166
    Abstract: The present invention concerns a method for the production of a biochemical selected among lactic acid, acetol and 1,2-propanediol, comprising culturing a microorganism modified for an improved production of the biochemical selected among lactic acid, acetol and 1,2-propanediol in an appropriate culture medium and recovery of the desired biochemical which may be further purified wherein the microorganism expresses a methylglyoxal synthase (MGS) enzyme which activity is not inhibited by orthophosphate. The present invention concerns a mutant methylglyoxal synthase (MGS) comprising at least one amino acid residue in the protein sequence of the parent enzyme replaced by a different amino acid residue at the same position wherein the mutant enzyme has retained more than 50% of the methylglyoxal synthase activity of the parent enzyme and the methylglyoxal synthase activity of the mutant MGS is not inhibited by orthophosphate as compared to the parent enzyme.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 17, 2012
    Applicant: METABOLIC EXPLORER
    Inventors: Francois Voelker, Laurence Dumon-Seignovert, Philippe Soucaille
  • Patent number: 8178325
    Abstract: There is provided is a process for producing a sulfur-containing ?-hydroxycarboxylic acid compound represented by the formula (2): wherein R1 represents hydrogen, C1-8 alkyl, or C6-20 aryl, which comprises subjecting a sulfur-containing ketol represented by the formula (1): wherein R1 is the same as defined above, to the action of microbial cells of a microorganism belonging to the genus Pseudomonas, Rhodococcus or Bacillus capable of converting the ketol into a corresponding ?-hydroxycarboxylic acid compound, or a treated material thereof, thereby producing the sulfur-containing ?-hydroxycarboxylic acid without using a hydroxynitrile compound as a starting material.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 15, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hiroyuki Asako, Koji Hagiya
  • Publication number: 20120100583
    Abstract: The invention relates to new methods of enzymatic synthesis of polymers such as polyorganosilicones and polyesters, and new polymers made by these methods.
    Type: Application
    Filed: May 24, 2011
    Publication date: April 26, 2012
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Rajesh Kumar, Arthur C. Watterson, Virinder Singh Parmar, Jayant Kumar, Lynne Ann Samuelson
  • Publication number: 20120100584
    Abstract: An object of the present invention is to provide a DOI synthase having properties such as stability to heat and pH, which are superior to those of conventional enzymes, and a method for producing DOI using the above-mentioned enzyme. The present invention provides a 2-deoxy-scyllo-inosose synthase having the properties described in the following (1), (2), (4), (6) and (7), and also having the properties described in the following (3) and/or (5): (1) action: the enzyme has a function to convert glucose-6-phosphate to 2-deoxy-scyllo-inosose; (2) optimum pH range: pH 7.0 to 7.7; (3) stable pH range: pH 6.0 to 8.0; (4) optimum temperature range: 55° C. to 70° C.; (5) stable temperature range: 20° C. to 46° C.; (6) coenzyme used: NAD+; and (7) molecular weight: 39,000 to 42,000.
    Type: Application
    Filed: March 26, 2010
    Publication date: April 26, 2012
    Inventors: Kazunobu Konishi, Shinichi Imazu
  • Patent number: 8158402
    Abstract: A high-yield bacterial strain for producing acetoin named Bacillus pumilus XH195 has been deposited in a microorganism deposit center in Germany. The deposit number is DSM 16187. The bacteria of the strain are rod-shaped, 1.5 ?m to 3.0 ?m in length, and 0.6 ?m to 0.7 ?m in diameter. The colony color of the bacterial strain is yellow or white. The strain has the typical fatty acid profile of Bacillus and its physiological and biochemical characteristics align with those of Bacillus pumilus. When the bacteria of strain were cultured at 37° C. for 60 hours with shaking, the yield of acetoin could reach 63.0 g/L or 58.1 g/L, when glucose or sucrose was used as the substrate, respectively.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: April 17, 2012
    Assignee: Shanghai Apple Flavor & Fragrance Co., Ltd.
    Inventors: Ping Xu, Zijun Xiao, Yi Du, Zhonghao Wei
  • Publication number: 20120088274
    Abstract: The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Applicant: NOVOZYMES. INC.
    Inventors: Paul Harris, Kristian Krogh
  • Patent number: 8153408
    Abstract: A process for the racemization of an optically active alpha-hydroxyketone by incubating said alpha-hydroxyketone in the presence of an acetoin racemase of Lactobacillus.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 10, 2012
    Assignee: BASF SE
    Inventors: Bernhard Hauer, Rainer Stürmer, Bettina M. Nestl, Wolfgang Kroutil, Kurt Faber
  • Patent number: 8153850
    Abstract: According to an embodiment, a biomass conversion subsystem produces methane and/or alcohol and residual biomass. A pyrolysis or a gasification subsystem is used to produce thermal energy and/or process gasses. The thermal energy may be stored thermal energy in the form of a pyrolysis oil. A fuel conversion subsystem produces liquid hydrocarbon fuels from the methane and/or alcohol using thermal energy and/or process gasses produced by the gasification or pyrolysis subsystem. Because the biomass production system integrates the residual products from biomass conversion and the residual thermal energy from pyrolysis or gasification, the overall efficiency of the integrated biomass production system is greatly enhanced.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 10, 2012
    Assignee: The Texas A&M University System
    Inventors: Kenneth R. Hall, Mark T. Holtzapple, Sergio C. Capareda
  • Patent number: 8148579
    Abstract: Methods are disclosed for forming heptan-4-one, and, optionally, heptan-4-ol, from fermentable sugars. The sugars are fermented using a bacteria or yeast that predominantly forms butyric acid. The butyric acid is subjected to catalytic ketonization conditions to form heptan-4-one, with concomitant loss of water and carbon dioxide. The heptan-4-one can be subjected to catalytic hydrogenation to form heptan-4-ol, an either of these can be included in gasoline compositions. In one aspect, the fermentable sugars are derived from lignocellulosic materials such as wood products, switchgrass, or agricultural wastes, which are delignified to form lignin, cellulose and hemicellulose. The cellulose and hemicellulose can be depolymerized to form glycose and xylose, either or both of which can be fermented by the bacteria.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: April 3, 2012
    Assignee: CPS Biofuels, Inc.
    Inventor: David Bradin
  • Publication number: 20120070867
    Abstract: A process for the enzymatic reduction of an enoate (1) wherein the C?C bond of the enoate (1) is stereoselectively hydrogenated in the presence of an enoate-reductase and an oxidizable co-substrate (2) in a system which is free of NAD(P)H, a. b. in which c. A is a ketone radical (—CRO), an aldehyde radical (—CHO), a carboxyl radical (—COOR), with R?H or optionally substituted C1-C6-alkyl radical, d. R1, R2 and R3 are independently of one another H, —O-C1-C6-alkyl , —O—W with W=a hydroxyl protecting group, C1-C6-alkyl, which can be substituted, C2-C6-alkenyl, carboxyl, or an optionally substituted carbo- or heterocyclic, aromatic or nonaromatic radical, or one of R1, R2 and R3 is a —OH radical, or R1 is linked to R3 so as to become part of a 4-8-membered cycle, or R1 is linked to R so as to become part of a 4-8-membered cycle, with the proviso that R1, R2 and R3 may not be identical.
    Type: Application
    Filed: May 31, 2010
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Steffen Maurer, Bemhard Hauer, Melanie Bonnekesse, Kurt Faber, Clemens Stückler
  • Publication number: 20120064587
    Abstract: The present invention relates a recombinant Clostridium expressing one or more heterologous Wood-Ljungdahl (WL) genes. In particular, the recombinant Clostridium produces a metabolite at an increased level. The present invention also relates to a method for producing a metabolite by the recombinant Clostridium.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: University of Delaware
    Inventors: Eleftherios T. Papoutsakis, Mohab Ali Al-Hinai, Shawn William Jones, Dinesh Chanukya Indurthi, Daniel Knox Mitchell, Alan Fast
  • Publication number: 20120052535
    Abstract: Methods for producing heterologous terpenes, terpenoids and/or small molecules in transgenic glandular trichome-bearing plants are provided, as well as the transgenic glandular trichome-bearing plants capable of producing the heterologous terpenes, terpenoids and small molecules. The genetically engineered glandular trichome-bearing plants contain and express one or more genes which encode proteins active in the biosynthetic pathways which produce the terpenes, terpenoids and small molecules. As a result, the essential oil of the transgenic plant is enriched for the heterologous or homologous terpenes, terpenoids and/or small molecules Storage of the essential oil in the glandular trichomes of the plant reduces the volatility and cytotoxic capacity of the heterologous molecules, thereby increasing yield and decreasing damage to the transgenic plant.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 1, 2012
    Inventors: Bernd Markus Lange, Rigoberto Rios-Estepa, Glenn W. Turner
  • Publication number: 20120045806
    Abstract: Polypeptide with an amino acid sequence according to SEQ ID No. 1 or a variant in which up to 10% of the amino acids have been altered by insertions, deletions or substitution.
    Type: Application
    Filed: November 24, 2009
    Publication date: February 23, 2012
    Applicant: N-ZYME BIOTEC GMBH
    Inventors: Holger Zorn, Marco Alexander Fraatz, Stephanie Johanna Luise Reimer, Meike Takenberg, Ulrich Krings, Ralf Günter Berger, Stefan Marx
  • Publication number: 20120045807
    Abstract: A process for converting a substrate such as carbon monoxide to useful chemicals has been developed. The process involves providing a substrate comprising CO to a bioreactor which contains a culture of one or more micro-organisms and anaerobically fermenting the substrate to produce 2,3-butanediol (BDO). The BDO is next converted to one or more of butane, butadiene and/or methyl ethyl ketone which in turn can be converted to other compounds. The source of the CO can be an industrial process such as the ferrous metal products manufacturing. The microorganism can be Clostridium autoethanogenum, Clostridium ljundahlii or Clostridium ragsdalei.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 23, 2012
    Applicant: LANZATECH NEW ZEALAND LIMITED
    Inventors: Sean D. Simpson, Shane E. Fleming, Alice M Havill, Simon RTrevethick
  • Publication number: 20120036599
    Abstract: This invention relates to novel enzymes and novel methods for producing the same. More specifically this invention relates to a variety of fungal enzymes. Nucleic acid molecules encoding such enzymes, compositions, recombinant and genetically modified host cells, and methods of use are described. The invention also relates to a method to convert lignocellulosic biomass to fermentable sugars with enzymes that degrade the lignocellulosic material and novel combinations of enzymes, including those that provide a synergistic release of sugars from plant biomass. The invention also relates to methods to use the novel enzymes and compositions of such enzymes in a variety of other processes, including washing of clothing, detergent processes, deinking and biobleaching of paper and pulp, and treatment of waste streams.
    Type: Application
    Filed: April 5, 2011
    Publication date: February 9, 2012
    Applicant: DYADIC INTERNATIONAL , INC.
    Inventors: Alexander Vasilievich Gusakov, Peter J. Punt, Jan Cornelis Verdoes, Arkady Panteleimonovich Sinitsyn, Elena Vlasenko, Sandra Wilhelmina Agnes Hinz, Mark Gosink, Zhijie Jiang, Jacoba Van der Meij
  • Publication number: 20120030838
    Abstract: This invention relates to novel enzymes and novel methods for producing the same. More specifically this invention relates to a variety of fungal enzymes. Nucleic acid molecules encoding such enzymes, compositions, recombinant and genetically modified host cells, and methods of use are described. The invention also relates to a method to convert lignocellulosic biomass to fermentable sugars with enzymes that degrade the lignocellulosic material and novel combinations of enzymes, including those that provide a synergistic release of sugars from plant biomass. The invention also relates to methods to use the novel enzymes and compositions of such enzymes in a variety of other processes, including washing of clothing, detergent processes, deinking and biobleaching of paper and pulp, and treatment of waste streams.
    Type: Application
    Filed: April 5, 2011
    Publication date: February 2, 2012
    Applicant: DYADIC INTERNATIONAL, INC.
    Inventors: Alexander Vasilievich Gusakov, Peter J. Punt, Jan Cornelis Verdoes, Arkady Panteleimonovich Sinitsyn, Elena Vlasenko, Sandra Wilhelmina Agnes Hinz, Mark Gosink, Zhijie Jiang, Jacobs Van der Meij