Including Liquid Flow, Level, Or Volume Control Patents (Class 435/286.5)
  • Patent number: 10444223
    Abstract: A microclinical analyzer usable for analysis of one or more bio-objects, each bio-object including an organ or a group of cells includes a fluidic network having a plurality of fluidic switches, a plurality of fluidic paths in fluid communication with the plurality of fluidic switches, and one or more on-chip pumps coupled to corresponding fluidic paths; a sensor array coupled to the fluidic network; and a microcontroller for individually controlling the plurality of fluidic switches and the one or more on-chip pumps of the fluidic network as so to operably and selectively deliver an effluent of at least one bio-object to the sensor array for detecting properties of the effluent, or to a predetermined outlet destination.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 15, 2019
    Assignee: VANDERBILT UNIVERSITY
    Inventors: John P. Wikswo, David E. Cliffel, Dmitry A. Markov, John A. McLean, Lisa Joy McCawley, Phillip C. Samson, Ronald S. Reiserer, Frank Emmanuel Block, Jennifer Robin McKenzie
  • Patent number: 10422766
    Abstract: A manufacturing device and a manufacturing method of a test strip. The manufacturing device includes a fluid push module, a fluid flow module and a fluid output module. The fluid push module includes an actuator and a transmission unit. The transmission unit has at least a fluid delivery member. The fluid flow module includes a reagent storage unit and a reagent delivery unit. The reagent storage unit has at least one reagent storage chamber. The reagent delivery unit has at least one drain chamber, at least one first infusion line, at least a second infusion line and a plurality of check valves. The fluid output module includes a plurality of reagent outlets and a reagent output unit, and one end of each of the reagent outlets is configured with an inner recess. The reagent output unit has a plurality of channels corresponding to the reagent outlets.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 24, 2019
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventor: Chao-Min Cheng
  • Patent number: 10421936
    Abstract: Microfluidic devices and methods for perfusing a cell with perfusion fluid are provided herein, wherein the gravitational forces acting on the cell to keep the cell at or near a retainer or a retaining position exceed the hydrodynamic forces acting on the cell to move it toward an outlet. Also provided, are methods for assaying cell products within the microfluidic device.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: September 24, 2019
    Assignee: The University of British Columbia
    Inventors: Carl L. G. Hansen, Veronique Lecault, James M. Piret, Anupam Singhal
  • Patent number: 10316285
    Abstract: Provided is a microfluidic device, having at least one fluid compartment, an aerator, at least one connecting tube, and a peristaltic pump. The at least one fluid compartment has a base frame, a culture layer, and a flow layer. The culture layer has a base layer and an intermediate layer, and the intermediate layer has at least one opening formed through the intermediate layer to form at least one culture chamber. The flow layer has a top frame layer, a fluid layer, and a transparent layer. The top frame layer has two channels and a hollow. The fluid layer has at least one fluid chamber which communicates with the at least one culture chamber of the culture layer. The at least one connecting tube connects the two channels of the top frame layer of the fluid compartment, the aerator, and the peristaltic pump.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 11, 2019
    Inventors: Wen-Hong Su, Pei-Chin Chuang
  • Patent number: 10286361
    Abstract: A filtration assembly including: i) a hyperfiltration assembly including: a high pressure vessel including a feed port, concentrate port and permeate port, and a plurality of serially arranged spiral wound hyperfiltration membrane modules; ii) a bioreactor assembly including: a plurality of spiral wound bioreactors each comprising a flat sheet having two opposing bio-growth surfaces and a feed spacer spirally wound about an axis (Y); and iii) a fluid flow pathway adapted for fluid connection with a fluid feed source and extending in a parallel flow pattern through the bioreactors, and subsequently into the feed port of the high pressure vessel, successively through the spiral wound hyperfiltration membrane modules in a serial flow pattern and out of the concentrate port and permeate port.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: May 14, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Steven D. Jons, Jon E. Johnson
  • Patent number: 10240121
    Abstract: Disclosed herein are bioreactor systems and methods of utilizing said systems.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 26, 2019
    Assignee: KIYATEC INC.
    Inventors: Matthew R. Gevaert, David E. Orr, Margaret Rebecca Widener
  • Patent number: 10233132
    Abstract: An apparatus for producing an organic or organo-mineral fertilizer includes —a main tank receiving water, —a reactor providing cavitation and magnetic field for activating water or for treating a biological suspension, —a mixing tank containing a preliminary shredder, —an injector receiving and saturating the suspension with air, —a fermenter receiving the obtained mixture and creating a volumetric liquid-air flow passed therethrough and fermented by biological humus. The suspension is filtered and passed into a clearing tank. At predetermined conditions, the apparatus carries out a method encompassing a preliminary treatment of water in a looped circuit by connecting the main tank with the reactor via a pump. The activated water is supplied to the mixing tank added with preliminary shredded humus. The circuit is reconnected to further treat the suspension, finally shred its particles, supply it to the fermenter, additionally mix it with humus, filter it and thereby obtain the fertilizer.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: March 19, 2019
    Inventors: Oleksandr Galaka, Oleksandr Kozlovskyi, Yurii Matvienko
  • Patent number: 10220386
    Abstract: A fluidic device holder configured to orient a fluidic device. The device holder includes a support structure configured to receive a fluidic device. The support structure includes a base surface that faces in a direction along the Z-axis and is configured to have the fluidic device positioned thereon. The device holder also includes a plurality of reference surfaces facing in respective directions along an XY-plane. The device holder also includes an alignment assembly having an actuator and a movable locator arm that is operatively coupled to the actuator. The locator arm has an engagement end. The actuator moves the locator arm between retracted and biased positions to move the engagement end away from and toward the reference surfaces. The locator arm is configured to hold the fluidic device against the reference surfaces when the locator arm is in the biased position.
    Type: Grant
    Filed: November 22, 2014
    Date of Patent: March 5, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Erik Williamson, Bryan Crane, Patrick Leung, Drew Verkade, Mark T. Reed
  • Patent number: 10195610
    Abstract: Cartridge-based thermocyclers can include cartridges that are configured to move a fluid between distinct chambers. In some cases, the cartridge-based thermocyclers can be used for thermocycling a sample fluid comprising a deoxyribonucleic acid (DNA) target to perform polymerase chain reaction (PCR). Individual chambers can be heated, cooled, and/or compressed to mix fluid within the chamber or to propel fluid in the chamber into another chamber. The cartridges can have a laminate construction. The cartridges can be configured to enable multiplexed thermocycling and/or detection.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: February 5, 2019
    Assignee: Click Diagnostics, Inc.
    Inventors: Hamilton R. Tang, Adam De La Zerda, Kenneth I. Li, Kevin M. Limtao, Alan D. Baldwin, Gregory C. Loney
  • Patent number: 10190088
    Abstract: A system for culturing a photosynthetic organism such as a microalga has a liquid storage vessel for storing a liquid that absorbs more light in a short-wavelength range than light in a long-wavelength range, a culture vessel for storing a culture solution containing a photosynthetic organism to be cultured and disposed in the liquid storage vessel, a light quantity measuring unit for measuring the quantity of light that the culture vessel receives and a liquid depth controlling unit for controlling the liquid depth from the surface of the light-absorbing solution to the culture vessel based on the measurement result of the light quantity measuring unit. The light quantity measuring unit measures quantities of light which the culture vessel receives separately for different wavelength ranges.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 29, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Norihito Kuno, Hiroko Tada
  • Patent number: 10155923
    Abstract: A microorganism culture device and a method of using the device. The device includes an open chamber, wherein microorganisms are likely to be deposited within a liquid for subsequent study. The open chamber simplifies the deposition of the microorganisms. The chamber is further provided with retention features, whereby microorganisms can be retained therein. In addition, the device includes an overflow area, wherein capillary structures are configured to retain excess liquid overflowing from the open chamber, e.g. when covering the device with a cover. As such, it allows for confining microorganism in the chamber, while excess fluid is captured externally, e.g. to seal the device with a cover.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Robert Lovchik
  • Patent number: 10150115
    Abstract: A closed system for rehydrating powder and delivering the rehydrated powder to a reactor, may include a liquid reservoir for containing liquid; a syringe configured to contain powder to be rehydrated; a reactor; a controller for controlling operation of the syringe; and a conduit fluidically linking the liquid reservoir to a port of the syringe, fluidically linking the port to the reactor. The controller is configured to operate the syringe so as to draw liquid from the liquid reservoir into the syringe and rehydrate the powder, or to drive the rehydrated powder into the reactor.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: December 11, 2018
    Assignee: SpacePharma SA
    Inventors: Molly K. Mulligan, Alexander Pekin, Yair Glick, Ira Naot, Yair Feuchtwanger
  • Patent number: 10078075
    Abstract: In one aspect of the invention, an integrated bio-object microfluidics chip includes a fluidic network having a plurality of inlets for providing a plurality of fluids, a plurality of outlets, a bio-object chamber for accommodating at least one bio-object, a plurality of fluidic switches, and one or more pumps, coupled to each other such that at least one fluidic switch operably and selectively receives one fluid from a corresponding inlet and routes the received fluid, through the one or more pumps, to the bio-object chamber so as to perfuse the at least one bio-object therein, and one of the downstream fluidic switches selectively delivers an effluent of the at least one bio-object responsive to the perfusion to a predetermined outlet destination, or to the at least one fluidic switch for recirculation.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 18, 2018
    Assignee: VANDERBILT UNIVERSITY
    Inventors: John P. Wikswo, David E. Cliffel, Dmitry A. Markov, John A. McLean, Lisa Joy McCawley, Phillip C. Samson, Ronald S. Reiserer, Frank Emmanuel Block, Jennifer Robin McKenzie
  • Patent number: 10023832
    Abstract: The invention relates to a system of fluidic valves and pumps and associated fluidic channels integratable into a bio-object microfluidics module. The module includes input and output buses; upstream and downstream interconnection bus control valves (CVs) coupled to the input and output buses, respectively. It may include arterial, venous, wash and waste bus lines, each connecting between the upstream and downstream interconnection bus CVs. It may also include an input CV connecting to the arterial bus line, upstream interconnection bus CV, bio-object and inlets, and an output CV connecting to the bio-object, input CV, downstream interconnection bus CV and outlets; and a pump connecting between the input CV and bio-object. The system can be arranged to provide MicroFormulator functionality enabling precise mixtures of drugs, chemicals, or biochemicals to be delivered in a time-dependent fashion to biological entities housed in individual wells or chambers.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: July 17, 2018
    Assignee: VANDERBILT UNIVERSITY
    Inventors: John P. Wikswo, Dmitry A. Markov, Philip C. Samson, Frank E. Block, III, David K. Schaffer, Ronald S. Reiserer
  • Patent number: 9944900
    Abstract: A method for extracting stem cells from a non-embryonic stem cell source, including providing a non-embryonic stem cell source including stem cells; perfusing the non-embryonic stem cell source with a pulsatile flow of a perfusion solution to produce a perfusate including stem cells and a perfused non-embryonic stem cell source; and isolating the stem cells from the perfusate to produce isolated stem cells, is provided. Also provided is a non-embryonic stem cell line derived from a non-embryonic stem cell obtained using the pulsatile perfusion extraction method.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: April 17, 2018
    Inventor: Fred Gage
  • Patent number: 9890353
    Abstract: Devices and methods are provided for removing media from a culture vessel that decreases disruption of the interface between the cellular material and media within the vessel such that aspiration and removal of cells or cell clusters along with the media is minimized. In addition, the media fluid turbulence is decreased so as to minimize the activation or disruption of cells and cell clusters.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: February 13, 2018
    Assignee: Janssen Biotech, Inc.
    Inventors: Daina Laniauskas, Joseph Hammer
  • Patent number: 9763398
    Abstract: The cultivation, by optimized growth and harvesting of algae derived bio-mass may provide useful feedstock for various products and processes. The present invention provides an apparatus that allows for the optimized growth and harvesting of algae within a photo-bioreactor. The photo-bioreactor may include a channel and a propulsion unit for circulating an algae mixture through a channel while exposing the algae mixture to light to support photosynthesis and growth of the algae. A method is also provided for the optimizing the growth and harvesting of algae utilizing a number of different input streams. Further, a system including a programmable control assembly is provided for the growth and harvesting of algae.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: September 19, 2017
    Inventor: Arthur Arnott Deane
  • Patent number: 9739699
    Abstract: A device for performing a cell study. The device comprises a plate having a plurality of wells, each configured for containing aqueous solution and having a well bottom with a plurality of picowells and a plurality of biosensors each configured for measuring at least one cell characteristic while being in contact with the aqueous solution in a respective the well. The position of each the biosensor in a respective the well is limited by at least one pin.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: August 22, 2017
    Assignee: Seng Enterprises Ltd.
    Inventors: Mordechai Deutsch, Assaf Deutsch
  • Patent number: 9365418
    Abstract: A microfluidic device platform may include a valve manifold adapted to deliver a programmable pressure to a plurality of ports, a cell chamber having programmable environmental control, and a chip-to-world interface.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: June 14, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Carlo Joseph Quinonez
  • Patent number: 9267892
    Abstract: The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 23, 2016
    Assignee: STC.UNM
    Inventors: Larry A. Sklar, Bruce Edwards, Frederick Kuckuck
  • Patent number: 9220258
    Abstract: The present invention provides a method and apparatus for tissue, such as an allograft, storage and preservation for extended periods of time at room temperature in a sterile tissue culture chamber. The invention further provides a process for maintaining the sterility of tissue using the apparatus as described.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: December 29, 2015
    Assignees: The Curators of the University of Missouri, The Trustees of Columbia University in the City of New York
    Inventors: James L. Cook, Clark T. Hung, Eric Lima, Aaron Stoker
  • Patent number: 9105435
    Abstract: This invention provides for the efficient positioning of a sample to be analyzed by using either magnetic or electro-mechanical fields to retain the sample in the ionization region. In an embodiment of the present invention, the sample is contacted with a sampler device, which is inserted into a chamber and accurately positioned using electro-mechanical devices. In an embodiment of the invention, the influence of an electro-mechanical field on the sampler device enables the sample to be positioned in the ionization region to be contacted by particles that result in ionization of the sample whereby rendering the resulting ions available for analysis.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: August 11, 2015
    Assignee: IONSENSE INC.
    Inventor: Brian D Musselman
  • Patent number: 9052255
    Abstract: An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: June 9, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Richard G. Langlois, Fred P. Milanovich, Billy W. Colston, Jr., Steve B. Brown, Don A. Masquelier, Raymond P. Mariella, Jr., Kodomudi Venkateswaran
  • Patent number: 9040284
    Abstract: Systems and methods of sample processing and temperature control are disclosed. The invention may especially relate to temperature control, and may in some embodiments be methods of temperature control of an automated sample processing system and methods of automated sample processing. Specifically, the present invention provides temperature control in relation to sample processing systems and methods of processing samples, and in some embodiments provides temperature control in relation to sample carriers and processing materials such as reagents. Corresponding systems and devices are disclosed, including sample processing systems (1), sample carrier temperature regulation systems (60), reagent temperature regulation systems, sample processing control systems, and temperature regulation devices, among other embodiments.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: May 26, 2015
    Assignee: DAKO DENMARK A/S
    Inventors: Kristopher Buchanan, Marc Key, John Favuzzi, Rosanne Welcher, Benno Guggenheimer, Robert Clark, Michael Barber, Bob Lathrop
  • Patent number: 9040672
    Abstract: Devices and methods are provided for reducing matrix effects in protein precipitated bioanalytical samples comprising: a support, and a sorbent associated with the support capable of binding matrix interfering agents present in the bioanalytical sample, wherein the device further comprises filtering means for removing precipitated protein particles. The filtering means is a size exclusion filter or a polymeric or inorganic monolith having a maximum pore size less than or equal to the diameter of the particles to be removed from the sample, and can be integral with the sorbent or associated with the sorbent. The sorbent is characterized by sufficient selectivity between the matrix interfering agents and analytes of interest to provide retention of the matrix interfering agents while providing elution of the analytes of interest (e.g., a reversed phase or a polar modified reversed phase).
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: May 26, 2015
    Assignee: Agilent Technologies, Inc.
    Inventor: David C. Jones
  • Patent number: 9034636
    Abstract: A microfluidic hanging drop chip is disclosed. Also disclosed are methods for culturing cells and forming cell aggregates in hanging drops.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: May 19, 2015
    Assignees: NATIONAL HEALTH RESEACH INSTITUTES, NATIONAL TSING HUA UNIVERSITY
    Inventors: Chia-Hsien Hsu, Chih-Chen Chen
  • Patent number: 9023613
    Abstract: The present invention discloses a sperm selecting system and the method thereof. The brief concept of the present invention is to generate a flow field by hydraulic pressure difference then utilize the property that the sperm swims against the flow field so as to difference the sperms by vitality thereof. One of the main features of the present invention is that the sperms be selected are initially set at the entrance of the flow field instead of the exit of the system. Furthermore, an activating design can be selectively added to the present invention so as to activate the sperm be affected by the process of freeze storing.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: May 5, 2015
    Inventors: Fan-Gang Tseng, Jen-Kuei Wu, Peng-Chun Chen
  • Patent number: 9017993
    Abstract: An automated on-touch template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, an emulsion PCR (ePCR) thermocycling plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermocycling subsystem, in automated fashion. The ePCR subsystem can continuously thermocycle an inverse emulsion passed therethrough and includes static temperature zones and a consumable thermocycling plate. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 28, 2015
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, John Nobile, Brian Reed, Prasanna Thwar, Todd Roswech
  • Publication number: 20150111272
    Abstract: An organic waste processing system and method for producing an organic waste slurry for the production of bio-gas, transportation fuels or chemical products, wherein the system and method produces an organic waste slurry having substantially ten to fifteen percent in total solids and high levels of COD.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 23, 2015
    Inventor: James L. Denson, JR.
  • Patent number: 9012203
    Abstract: A microfluidic device for controlled encapsulation of particles of sub-millimetric dimensions, or clusters of such particles, the device comprising: a first duct for delivering a first liquid phase containing particles for encapsulating in suspension; a second duct for conveying a flow of a second liquid phase that is immiscible with said first liquid phase; the first duct opening out into the second duct and forming a fluidic junction therewith; at least one microfluidic duct for discharging the first liquid phase flowing in said first duct and provided with a mouth located upstream from said junction and liable to be obstructed, at least in part, by a particle in suspension, thereby causing pressure to rise in the first duct. The invention also provides a microfluidic system including such a device, and a method of encapsulation based on using such a device.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 21, 2015
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Florence Rivera, Jean Berthier, Sophie Le Vot
  • Patent number: 8999046
    Abstract: A cell expansion system includes an air removal chamber to provide a bubble trap so that air and/or gas bubbles do not enter the bioreactor of the cell expansion system. The air removal chamber includes a pair of ports situated at the bottom of the air removal chamber. An entrance port allows fluid to enter the air removal chamber, and an exit port allows fluid to exit the air removal chamber. In one embodiment the air removal chamber forms an element of a premounted fluid conveyance assembly for use with a cell expansion machine.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 7, 2015
    Assignee: Terumo BCT, Inc.
    Inventors: Thomas G. DiLorenzo, Edward Allan Stanton
  • Patent number: 8992961
    Abstract: This invention relates to stable non-aqueous single phase viscous vehicles and to formulations utilizing such vehicles. The formulations comprise at least one beneficial agent uniformly suspended in the vehicle. The formulation is capable of being stored at temperatures ranging from cold to body temperature for long periods of time. The formulations are capable of being uniformly delivered from drug delivery systems at an exit shear rate of between about 1 to 1×10?7 reciprocal second.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 31, 2015
    Assignee: Intarcia Therapeutics, Inc.
    Inventors: Stephen A. Berry, Pamela J. Fereira, Houdin Dehnad, Anna Muchnik
  • Publication number: 20150079663
    Abstract: A dispensing unit that sucks and discharges a blood specimen via a nozzle. A liquid level-measuring unit that measures the liquid level height. A serum volume-estimating unit that estimates the volume of the serum separated in the blood specimen, on the basis of the total blood volume, said total blood volume corresponding to the volume of the blood specimen and having been derived from the liquid level height, and a hematocrit value. A residual volume-estimating unit that calculates the volume of the serum remaining after suction, on the basis of the serum volume estimated by the serum volume-estimating unit and the volume of the serum that is going to be sucked by the dispensing unit. A controller that controls the suction procedure of the dispensing unit so that the estimated residual volume is not less than the desired volume of the serum to be left in the blood collection tube.
    Type: Application
    Filed: April 4, 2013
    Publication date: March 19, 2015
    Applicant: HITACHI ALOKA MEDICAL, LTD.
    Inventors: Hitomi Katagi, Haruki Shimokawabe
  • Publication number: 20150079664
    Abstract: Embodiments described herein generally relate to methods and systems for using an air removal chamber as a control for a process in a cell expansion system. The air removal chamber may be mounted on a fluid conveyance assembly for use with the system. Fluid is pumped into a fluid containment chamber of the air removal chamber, in which the level of fluid in the fluid containment chamber may be monitored through the use of one or more sensors. The sensors are capable of detecting air, a lack of fluid, fluid, and/or a gas/fluid interface, e.g., an air/fluid interface, at measuring positions within the air removal chamber. Protocols for use with the system may include one or more stop conditions. In an embodiment, the stopping of a process is automated based on the detection of air, a lack of fluid, and/or a gas/fluid interface in the air removal chamber.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicant: TERUMO BCT, INC.
    Inventors: Thomas G. DILORENZO, Edward Allan STANTON, IV, Glen Delbert ANTWILER, Michael E. KINZIE, Brian J. NANKERVIS, Monique GIVENS, Casey V. MEDINA, Jon A. DODD
  • Patent number: 8980177
    Abstract: Disclosed is a fluidic assay device for assaying at least one property of a liquid sample, the device comprising: (i) a liquid sample application region; (ii) at least one test flow path in liquid flow communication with the sample application region; (iii) a reference flow path in liquid flow communication with the sample application region; and (iv) a junction region, at which the test flow path and the reference flow path contact one another, the junction region typically comprising an outlet, conduit, chamber or other portion which permits the onward flow of liquid; wherein a liquid flowing along the reference flow path, upon reaching the junction region, has the effect of preventing the flow of liquid along the test flow path. The invention relates to a fluidic device for the passage of a liquid. It also relates to an assay device suitable for measurement of the amount and/or presence of an analyte in, or property of, a fluid sample.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 17, 2015
    Assignee: Alere Switzerland GmbH
    Inventors: Stephen John Carlisle, David Tolley
  • Publication number: 20150072401
    Abstract: In a closed system culture vessel to be used in an automated culture apparatus, some of the ports perform both liquid supply and gas supply functions. Culture medium is thereby made to flow always in one direction. The culture vessel is also configured so that, in the complete culture medium exchange process and the effluent recovery process for analyzing culture medium components, waste liquid medium does not get mixed into fresh culture medium.
    Type: Application
    Filed: March 29, 2012
    Publication date: March 12, 2015
    Inventors: Takayuki Nozaki, Guangbin Zhou, Ryota Nakajima, Shizu Matsuoka, Toyoshige Kobayashi, Naoko Senda
  • Publication number: 20150072372
    Abstract: The present invention is a system and methods by which in vitro experiments directed to a subject may be managed more efficiently. More particularly, the present invention is a system and methods that facilitate the more efficient use of the nutrient solution used in certain in vitro experimentation. Certain embodiments of the present invention include a retainer in which the subject of the experimentation and a nutrient solution is retainable and a recycling component that facilitates the restoration or reconditioning of the nutrient solution during the period of experimentation.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 12, 2015
    Inventors: Anna Dondzillo, Achim Klug, Tim C. Lei
  • Patent number: 8969074
    Abstract: The present invention relates to an electromagnetic bioaccelerator for obtaining biomass by simulating environmental marine conditions, comprising at least the following elements: octagonal biomass converters (1), seawater reserve tanks (3), particle filters (4), UV light filters (5), feedback and mixture tanks (6), pressurization feed tanks (8), manometers (9), pressure controllers (10), buffer tanks (11), expansion tanks with a safety valve (12), heat exchangers (13), temperature control thermostats (14), recycled water feedback tanks (15), reinjection pumps (16), centrifuges for separating the biomass from the water (17), desuperheaters (18); control panels (25), recirculation pumps (26), densimeters (27), biomass mechanical extraction systems by means of centrifugation (32) and biomass accumulation tanks (33).
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 3, 2015
    Assignee: Bio Fuel Systems, S.L.
    Inventors: Bernard A. J. Stroïazzo-Mougin, Cristian Gomis Catala
  • Patent number: 8969073
    Abstract: The invention describes an appliance and a method, with the help of which specific bio-particles, but also dissolved bio-molecules can be recognized in and separated from fluids making use of suitable carriers and known immobilization methods. The appliance can be used both discontinuously and also for direct and continuous treatment of fluids. Fields of application of the invention are animals, bio-technology (including biological research) and medicinal diagnostics. Areas of application of the invention comprise, among others, therapy of humans, in particular direct treatment of blood.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: March 3, 2015
    Assignee: pluriSelect GmbH
    Inventor: Hans Werner Heinrich
  • Patent number: 8962258
    Abstract: Provided are a multiple immunoassay apparatus on a chip in which a structure comprising multiple microfluidic channels is associated with a tissue sample, which allows immunohistochemical reactions to be conducted therein, to examine various markers specific for certain diseases, and a method for performing multiple immunoassays using the same. The multiple immunoassay apparatus comprises: at least one antibody-introducing unit through which at least one antibody is introduced into the apparatus; at least one reaction unit in which the antibody reacts with a sample in an immunohistochemical pattern; and at least one fluid outlet through which a fluid including the antibody is discharged outside the apparatus.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 24, 2015
    Assignees: Korea Advanced Institute of Science and Technology, National Cancer Center
    Inventors: Je-Kyun Park, MinSeok Kim, Eun Sook Lee, Sun-Young Kong, Solm Kwon
  • Publication number: 20150050719
    Abstract: A dispensing assembly comprising a cartridge holder is presented. The cartridge holder can receive a cartridge for dispensing a fluid. The cartridge can comprise a reservoir for receiving the fluid. The reservoir can comprise an outlet. The reservoir can have an adjustable volume for forcing the fluid through the outlet. The cartridge can further comprise a nozzle for dispensing the fluid. The nozzle can be connected to the outlet. The dispensing assembly can further comprise an actuator for actuating the adjustable volume. The dispensing assembly can further comprise an impulse generator for imparting an impulse to the nozzle. The impulse generator can comprise an actor for contacting the nozzle. The dispenser assembly can further comprise a controller for controlling the actor and the impulse generator.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 19, 2015
    Inventors: Stefan Borja Bammesberger, Andreas Ernst, Peter Koltay, Nadine Losleben, Laurent Tanguy
  • Patent number: 8956580
    Abstract: An analysis cartridge comprising a cartridge body, a first cover, a liquid storage box and a sealing film is disclosed. The cartridge body has an accommodation portion and a first side and a second side opposite to the first side. The first cover covers the first side or the second side of the cartridge body and has a first through hole. The liquid storage box is disposed in the accommodation portion and has a liquid through hole. The sealing film seals the liquid through hole of the said liquid storage box and passes through the first through hole of the first cover, wherein the liquid through hole is exposed by removing the sealing film.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 17, 2015
    Assignee: Lite-On Technology Corporation
    Inventors: Cheng-Chang Lai, Fu-Chun Huang, Yuh-Jiuan Lin
  • Publication number: 20150040626
    Abstract: Composting Appliances are useful in reducing waste.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Jennifer Melissa Ross DEVINE, Russell Lance SPEILLER, Arthur Hampton NEERGAARD
  • Patent number: 8951474
    Abstract: The present invention provides an apparatus for analyzing particles in a solution including a unit configured to place a flow cell having a flow path for flowing a sample solution containing the particles; a unit configured to illuminate the sample solution flowing through the flow path of the flow cell; a photodetector that detects a scattered light and/or fluorescence generated from the particles in the sample solution; and a unit configured to analyze the particles based on their signal intensities detected by the photodetector, wherein the flow cell has the flow path formed in a substrate, a reflection plane is formed on the side surface of the flow path, the reflection plane leads the lights generated in the flow path of the flow cell and advancing in the substrate in-plane direction to a specified region of the surface of the flow cell, and the photodetector detects the light exiting from the specified region to the outside.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 10, 2015
    Assignee: On-Chip Biotechnologies Co., Ltd.
    Inventor: Kazuo Takeda
  • Patent number: 8945914
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch
  • Patent number: 8945481
    Abstract: Exemplary embodiments provide microfludic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 3, 2015
    Assignee: Applied Biosystems, LLC
    Inventors: Mark F. Oldham, Kenneth J. Livak, Jason E. Babcoke, H. Pin Kao, Stephen J. Gunstream, Kevin S. Bodner, Douglas P. Greiner, Nigel P. Beard, Dar Bahatt
  • Publication number: 20150024472
    Abstract: A biological growth monitoring and parameter extraction system includes a comparison group platform and an experimental group platform. First environmental sensing modules of the comparison group platform extracts first environmental parameters of a biological comparison area, a first control module transmits the parameters to the experimental group platform, and a first biological inspection module extracts growth conditions of organisms of the biological comparison area. A biological experiment area of the experimental group platform emulates growth environment of the biological comparison area, second environmental sensing modules extract second environmental parameters of the biological experiment area, and the first environmental parameters are used as reference inputs of the experimental group platform, so as to enable the second control module to obtain an error value by comparing the second and the first environmental parameters.
    Type: Application
    Filed: April 17, 2014
    Publication date: January 22, 2015
    Applicant: National Taiwan University
    Inventors: Jui-Jen Chou, Mei-Wen Fang, Ming-Yen Lin
  • Patent number: 8936764
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyzes, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 20, 2015
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Publication number: 20150017711
    Abstract: An integrated cell culture system may include one or more cell culture vessels, manipulation apparatus, pumping apparatus, cell release apparatus, monitoring apparatus, and a control apparatus. The control apparatus may be used to monitor and control the system to facilitate effective cell culturing. The cell release apparatus may be used to release a plurality of cells adhered to the cell culture surfaces of the cell culture vessels.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 15, 2015
    Inventors: Scott Matthew Bennett, David Alan Kenney, Gregory Roger Martin, Allison Jean Tanner
  • Publication number: 20150017705
    Abstract: A method for cultivating photosynthetic microorganisms with optimal photosynthetic efficiency, comprising the steps of exposing the microorganisms grown in a culture tank of culture broth to light and carbon source; circulating the culture broth vertically from the bottom of the tank up to the surface of the tank to allow momentary exposure of the microorganisms to the light and carbon source, using one or more circulating means located within the culture tank which are regulated according to a selected cultivation mode; and maintaining the cultured microorganisms at a substantially constant areal density range of 300 to 12,000 g/m2 to attain the optimal photosynthetic efficiency of the cultivation.
    Type: Application
    Filed: November 29, 2012
    Publication date: January 15, 2015
    Inventor: TET SHIN HO