Immunoglobulin Or Antibody Is Chimeric, Mutated, Or A Recombined Hybrid (e.g., Bifunctional, Bispecific, Rodent-human Chimeric, Single Chain, Rfv, Immunoglobuin Fusion Protein, Etc.) Patents (Class 435/328)
  • Publication number: 20150133638
    Abstract: The invention provides engineered heteromultimeric protein complexes constructed using one, two, or three tethers and methods for making, using, and purifying such complexes, such as antibodies with different binding properties.
    Type: Application
    Filed: August 8, 2014
    Publication date: May 14, 2015
    Applicant: GENENTECH, INC.
    Inventors: BERND WRANIK, DAN L. EATON, ERIN H. CHRISTENSEN, JIANSHENG WU
  • Publication number: 20150132307
    Abstract: The present invention relates to Bispecific antibodies against human TWEAK and human IL17 (bispecific TWEAK-IL17 antibodies), methods for their production, pharmaceutical compositions containing said antibodies, and uses thereof
    Type: Application
    Filed: October 3, 2014
    Publication date: May 14, 2015
    Applicant: Hoffmann-La Roche Inc
    Inventors: JOHANNES AUER, Martin Bader, Jens Fischer, Hubert Kettenberger, Maximiliane Hilger, Stefan Lorenz, Joerg Moelleken
  • Publication number: 20150132314
    Abstract: This invention provides fully human monoclonal antibodies that recognize IL-17F and/or the heterodimeric IL-17A/IL-17F complex, but do not recognize IL-17A. The invention further provides methods of using such monoclonal antibodies as a therapeutic, diagnostic, and prophylactic.
    Type: Application
    Filed: October 6, 2014
    Publication date: May 14, 2015
    Inventors: Krzysztof MASTERNAK, Francois ROSSEAU
  • Patent number: 9028812
    Abstract: The invention is directed to modified T cells, methods of making and using isolated, modified T cells, and methods of using these isolated, modified T cells to address diseases and disorders. In one embodiment, this invention broadly relates to TCR-deficient T cells, isolated populations thereof, and compositions comprising the same. In another embodiment of the invention, these TCR-deficient T cells are designed to express a functional non-TCR receptor. The invention also pertains to methods of making said TCR-deficient T cells, and methods of reducing or ameliorating, or preventing or treating, diseases and disorders using said TCR-deficient T cells, populations thereof, or compositions comprising the same.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 12, 2015
    Assignee: The Trustees of Dartmouth College
    Inventor: Charles L. Sentman
  • Publication number: 20150125449
    Abstract: Provided herein are monovalent antibody constructs. In specific embodiments is a monovalent antibody construct comprising: an antigen-binding polypeptide construct which monovalently binds an antigen; and a dimeric Fc polypeptide construct comprising a CH3 domain, said construct comprising two monomeric Fc polypeptides, wherein one said monomeric Fc polypeptide is fused to at least one polypeptide from the antigen-binding polypeptide construct. These therapeutically novel molecules encompass monovalent constructs that display an increase in binding density and Bmax (maximum binding at a target to antibody ratio of 1:1) to a target cell displaying said antigen as compared to a corresponding monospecific bivalent antibody construct with two antigen binding regions. Provided herein are methods for creation of monovalent antibody constructs that shows superior effector efficacy as compared to the corresponding bivalent antibody construct at equimolar concentrations.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 7, 2015
    Inventors: Gordon Yiu Kon Ng, Surjit Bhimarao Dixit, Thomas Spreter Von Kreudenstein
  • Publication number: 20150125385
    Abstract: The invention relates to variants of an antibody or antigen-binding fragment that binds specifically to an endosialin tumor endothelial marker 1 (TEM1), and prophylactic, diagnostic, and therapeutic methods using the same.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 7, 2015
    Inventors: George Coukos, Chunsheng Li
  • Publication number: 20150125460
    Abstract: This invention provides antibodies that recognize the B Cell Maturation Antigen (BCMA) and that bind naïve B cells, plasma cells, and/or memory B cells. The invention further provides methods for depleting naïve B cells, plasma cells, and memory B cells, and for treating B cell-related disorders, including lymphomas and autoimmune diseases.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Applicant: BIOGEN IDEC MA INC.
    Inventors: Susan L. Kalled, Yen-Ming Hsu
  • Publication number: 20150125444
    Abstract: Provided are polypeptides comprising a variant IgG Fc domain, wherein the polypeptides exhibit reduced or ablated effector functions (e.g., ADCC and/or CDC) and increased stability and plasma half-life compared to a parent polypeptide. Also provided are compositions, methods of treatment, and methods to diminish Fc-induced effector function in a parent polypeptide.
    Type: Application
    Filed: April 17, 2013
    Publication date: May 7, 2015
    Inventors: Ping Tsui, Martin Borrok II, William Dall'Acqua
  • Publication number: 20150125397
    Abstract: Engineered multivalent and multispecific binding proteins that bind immune cell receptors and/or autoantigens are provided, along with methods of making and uses in the prevention, diagnosis, prognosis and/or treatment of disease.
    Type: Application
    Filed: October 6, 2014
    Publication date: May 7, 2015
    Inventors: Chee-Ho Choi, Tariq Ghayur, Ann Marshak-Rothstein, Krishna Moody
  • Patent number: 9023996
    Abstract: The present invention relates to anti-FLT3 antibodies with a modified Fc region comprising the amino acid substitutions 239D and 332E to enhance antibody-dependent cell cytotoxicity (ADCC) of these antibodies. The invention further relates to pharmaceutical compositions containing these antibodies, nucleic acids encoding these antibodies as well as methods of using such antibodies.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: May 5, 2015
    Assignee: Synimmune GmbH
    Inventors: Ludger Grosse-Hovest, Hans-Joerg Buehring, Martin Hofmann, Steffen Aulwurm, Grundram Jung
  • Publication number: 20150118228
    Abstract: A chimeric ErbB ligand binding molecule is disclosed along with its pharmaceutically acceptable salt forms. The molecule is a protein that as part of its sequence includes the sequence of SEQ ID NOS: 1, 2, or 3. The molecule can be fused to an IgGFc and especially IgGFc containing cysteine to serine changes in the hinge region. For example, the fusion can be to IgG 1Fc DNA sequences that encode the binding molecules are also contemplated as well as vectors containing such DNA sequences and hosts that contain such vectors. Pharmaceutical compositions are contemplated that contain the binding molecule along with a pharmaceutically acceptable excipient.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 30, 2015
    Inventor: Jason E. Hill
  • Publication number: 20150118153
    Abstract: The present invention provides affinity matured humanized monoclonal antibodies, bi-specific antibodies, antibody conjugates, and fusion proteins that bind to the chemokine receptor CCR4. This antibody is derived from mAb 1567 and recognizes the same epitope. Binding of the antibodies disclosed herein to CCR4 inhibits ligand-mediated activities and is used to treat symptoms of cancer. Moreover, the antibody is used in combination with vaccines to suppress the activity of regulatory T cells.
    Type: Application
    Filed: May 6, 2013
    Publication date: April 30, 2015
    Inventors: Wayne A. Marasco, Jianhua Sui, Quan Zhu, De-Kuan Chang
  • Publication number: 20150118693
    Abstract: The invention provides a method of high-throughput sorting of high expression protein-producing cell, which utilizes linking a protein and a transmembrane domain with a self-processing cleavage site and regulating the secretion of the protein or expression of protein on the cell membrane by adding self-processing cleavage enzyme inhibitor. Then, the high expression cell line can be high-throughput sorted by a detection technique. The invention also provides a recombinant nucleotide sequence and a vector used in the method and a cell sorted by the method.
    Type: Application
    Filed: April 28, 2014
    Publication date: April 30, 2015
    Applicant: Taipei Medical University
    Inventors: KUO-HSIANG CHUANG, TIAN-LU CHENG, I-SHIUAN CHIANG, YUAN-CHIN HSIEH
  • Publication number: 20150118711
    Abstract: Humanized antibodies specific to human interleukin 20 (IL-20) and uses thereof in treating diseases associated with the IL-20 signaling pathway, e.g., osteoporosis, inflammatory disease (e.g., rheumatoid arthritis), cancer, stroke, and renal failure.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: MING-SHI CHANG, NAOYA TSURUSHITA, SHANKAR KUMAR
  • Publication number: 20150110788
    Abstract: The present invention provides a bispecific antibody having a binding domain that binds to FGF2, a pharmaceutical composition comprising same, and methods of treatment comprising administering such a pharmaceutical composition to a patient.
    Type: Application
    Filed: March 6, 2013
    Publication date: April 23, 2015
    Applicant: GALAXY BIOTECH, LLC
    Inventors: Kyung Jin Kim, Hangil Park
  • Publication number: 20150104452
    Abstract: The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.
    Type: Application
    Filed: June 10, 2014
    Publication date: April 16, 2015
    Inventors: Tariq Ghayur, Edward B. Reilly, Andrew Phillips, Randy L. Bell, Yingchun Li, Hua Ying, Susan E. Morgan-Lappe, Gillian A. Kingsbury, Jieyi Wang, Suzanne M. Norvell, Junjian Liu
  • Publication number: 20150104468
    Abstract: The present disclosure provides methods of site-specific labeling of antibodies, using proteins having 4?-phosphopantetheinyl transferase activity that catalyze post-translational modification of peptide sequences (“peptide tags”) incorporated into one or more specific sites of an antibody of interest. Enzymatic labeling enables quantitative and irreversible covalent modification of a specific serine residue within the peptide tags incorporated into the antibody, and thus creates desirable antibody conjugates.
    Type: Application
    Filed: May 31, 2013
    Publication date: April 16, 2015
    Applicant: IRM LLC
    Inventors: Bernhard Hubert Geierstanger, Jan Grunewald, Badry Bursulaya
  • Publication number: 20150104865
    Abstract: The present invention provides an engineered multidomain protein including at least two nonidentical engineered domains, each of which contains a protein-protein interaction interface containing amino acid sequence segments derived from two or more existing homologous parent domains, thereby conferring on the engineered domains assembly specificities distinct from assembly specificities of the parent domains. In particular, the engineered domains form heterodimers with one another preferentially over forming homodimers. Methods of designing and using the engineered proteins are also included.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 16, 2015
    Inventors: Jonathan H. Davis, James S. Huston
  • Patent number: 9005921
    Abstract: The invention provides humanized mouse anti-human IL-31 antibodies and antibody fragments that are capable of binding IL-31 and thereby neutralizing, inhibiting, limiting, or reducing the proinflammatory or pro-pruritic effects of IL-31.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 14, 2015
    Assignees: ZymoGenetics, Inc., Merck Serono S/A
    Inventors: Kent Bondensgaard, Roland Beckmann
  • Patent number: 9005963
    Abstract: The present invention relates to amino acid sequences that are directed against (as defined herein) human cellular receptors for viruses and/or bacteria such as e.g. NANOBODIES specifically recognizing hCD4, hCXCR4, hCCR5, hTLR4, human alphaV integrin, human beta3 integrin, human beta1 integrin, human alpha2 integrin, hCD81, hSR-BI, hClaudin-1, hClaudin-6 and hClaudin-9, as well as to compounds or constructs, and in particular proteins and polypeptides, that comprise or essentially consist of one or more such amino acid sequences. The amino acid sequences may be used to prevent human cell entry of HIV, HCV, adenoviruses, hantavirus, herpesvirus, echo-virus 1 and others.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: April 14, 2015
    Assignee: Ablynx N.V.
    Inventors: Christophe Blanchetot, Martine Smit, Regorius Leurs, Sven Jähnichen, Dominique Schols, Michael John Scott Saunders, Johannes Joseph Wilhelmus De Haard, Peter Vanlandschoot, Peter Verheesen
  • Publication number: 20150099297
    Abstract: A chimeric protein is made from the combination of (i) a pathogen recognition module derived from a scavenger receptor and (ii) an anchor domain from a different scavenger receptor. The chimeric protein binds to specific pathogens and is useful in various treatments.
    Type: Application
    Filed: March 12, 2013
    Publication date: April 9, 2015
    Inventors: Karl Tryggvason, Timo Pikkarainen, Juha Ojala, Jonas Axelsson
  • Publication number: 20150098944
    Abstract: Disclosed is a recombinant fusion protein containing an amino-acid sequence which comprises: (a) the Fc section or part of an Fc section of an immunoglobulin as component (A) or a functional variant of component (A); (b) the extracellular part of a TNF ligand or a partial sequence of the extracellular part of a TNF ligand as component (B) or a functional variant of component (B); and optionally (c) a transition area between component (A) and component (B), containing a linker.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 9, 2015
    Inventors: Olivier Gaide, Pascal Schneider, Jurg Tschopp
  • Publication number: 20150099278
    Abstract: The present invention relates to antagonizing the activity of IL-17A, IL-17F and IL-23 using bispecific antibodies that comprise a binding entity that is cross-reactive for IL-17A and IL-17F and a binding entity that binds IL-23p19. The present invention relates to novel bispecific antibody formats and methods of using the same.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 9, 2015
    Inventors: Brenda L. Stevens, Alison Witte, Mark W. Rixon, Josephine M. Cardarelli, Thomas D. Kempe, Scott R. Presnell, Mohan Srinivasan, Susan C. Wong, Guodong Chen, Hui Wei, Stanley R. Krystek, Lumelle A. Schneeweis, Paul O. Sheppard, Indrani Chakraborty
  • Publication number: 20150099861
    Abstract: The present invention relates to humanized monoclonal antibodies comprising the CDRs of murine antibody BMA031, which bind to the apTCR.CD3 complex and possess improved biological properties.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 9, 2015
    Applicant: GENZYME CORPORATION
    Inventors: Daniel Snell, Andreas Menrad, Gina Lacorcia, Srinivas Shankara, Huawei Qiu, Clark Pan, Benjamin Kebble
  • Publication number: 20150093386
    Abstract: Multi-functional antibody polypeptide comprises: (a) a first functional domain, specifically recognizing a cryptic epitope formed by 287th to 302nd amino acid sequence of the EGFR, shown as SEQ ID NO:1, and (b) a second functional domain, specifically recognizing the surface antigen of a human T cell.
    Type: Application
    Filed: March 4, 2013
    Publication date: April 2, 2015
    Inventors: Zonghai Li, Hua Jiang, Bizhi Shi, Huamao Wang, Juan Kong, Huiping Gao
  • Publication number: 20150093387
    Abstract: The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.
    Type: Application
    Filed: August 22, 2014
    Publication date: April 2, 2015
    Inventors: Chengbin Wu, Dominic J. Ambrosi, Chung-ming Hsieh, Tariq Ghayur
  • Publication number: 20150093384
    Abstract: The present invention relates to methods and systems for administering antibody therapeutic agents. The methods include administering one or more (e.g., two or three) binding agents, wherein each of the binding agents has a binding region that is specific to a portion of a disease agent and one or more copies of a tag. The binding agents can be specific to one or more portions of the same or different disease agents. The tag is the same for each of the binding agents. The methods include administering an anti-tag antibody, wherein the anti-tag antibody has an anti-tag region that is specific to the tag, and can have an immunoglobulin (e.g., IgA, IgD, IgE, IgG, and IgM.). Disease agents include bacterial proteins, viral proteins, cancer cells, and proteins or toxins produced therefrom. In particular, the present invention includes methods and systems for binding agents that are specific to neurotoxins that cause botulism.
    Type: Application
    Filed: September 12, 2014
    Publication date: April 2, 2015
    Inventors: Charles B. Shoemaker, Jorge A. Sepulveda Toepfer, Jean Mukherjee
  • Publication number: 20150093783
    Abstract: Provided herein are humanized forms of murine RP215 monoclonal antibodies and methods of using the same. These humanized RP215 monoclonal antibodies were characterized in terms of their respective affinity and specificity to the corresponding tumor-associated antigen, CA215, and shown to be comparable to those of murine RP215.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 2, 2015
    Inventor: Gregory LEE
  • Publication number: 20150093382
    Abstract: The present invention aims to provide a lactoferrin fusion protein, which is configured to retain the biological activities of natural lactoferrin, to have a significantly prolonged in vivo lifetime, and to be more clinically useful than natural and gene recombinant lactoferrin, as well as a method for preparation thereof, etc. The present invention provides a fusion protein formed with a protein or peptide comprising an FcRn-binding region and lactoferrin or a biologically active fragment or peptide of lactoferrin, which is represented by: (LF-s-Y)n or (Y-s-LF)n [wherein LF represents lactoferrin or a biologically active fragment or peptide of lactoferrin, Y represents the protein or peptide comprising an FcRn-binding region, s represents any amino acid sequence of 0 to 10 residues, and n represents an integer of 1 to 10], or a variant thereof.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 2, 2015
    Inventors: Atsushi Sato, Shinji Kagaya
  • Patent number: 8993731
    Abstract: A humanized agonistic antibody which binds human PD-1 comprising a heavy chain wherein the variable domain of the heavy chain comprises the sequence given in SEQ ID NO:1 for CDR-H1, the sequence given in SEQ ID NO: 2 for CDR-H2 and the sequence given in SEQ ID NO: 3 for CDR-H3 and the heavy chain framework region is derived from human sub-group sequence VH4 3-1 4-30.4+JH4 (SEQ ID NO: 33). The disclosure also extends to therapeutic uses of the antibody molecules, compositions and methods for producing said antibody molecules.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 31, 2015
    Assignee: UCB Biopharma SPRL
    Inventor: Kerry Louise Tyson
  • Publication number: 20150086539
    Abstract: The subject relates to a cross-neutralizing antibody comprising at least one polyspecific binding site that binds to alpha-toxin (Hla) and at least one of the bi-component toxins of Staphylococcus aureus, its medical and diagnostic use, method of producing the antibody, including an isolated nucleotide sequence, plasmids and host cells as used in the production of the antibody; and further an isolated conformational epitope recognized by a specific cross-neutralizing antibody.
    Type: Application
    Filed: April 17, 2013
    Publication date: March 26, 2015
    Inventors: Eszter Nagy, Adriana Badarau, Harald Rouha, Lukas Stulik, Gábor Nagy, Irina Mirkina, Zoltán Magyarics, Zehra Visram, Michaela Jaegerhofer, Manuel Zerbs, Ivana Dolezilkova, Astrid Teubenbacher, Michael Benjamin Battles, Bianka Dominique Prinz
  • Publication number: 20150086478
    Abstract: The invention relates to humanized recombinant antibodies targeting the EGFR family receptors EGFR, HER2 and HER3, compositions comprising at least one humanized anti-EGFR antibody, at least one humanized anti-HER2 antibody and at least one humanized anti-HER3 antibody, and use of the antibody compositions for treatment of cancer. The invention also relates to the use of antibodies targeting multiple EGFR-family receptors to treat cancer (e.g., pancreatic cancer) and cancer that has acquired resistance to previous therapies.
    Type: Application
    Filed: May 2, 2013
    Publication date: March 26, 2015
    Inventors: Johan Lantto, Kim Vilbour Andersen, Peter Sejr Andersen, Magnus Strandh, Klaus Koefoed, Lars Søgaard Nielsen, Mikkel Wandahl Pedersen, Helle Jacobsen, Michael Kragh, Ida Kjær, Thomas Tuxen Poulsen
  • Publication number: 20150086552
    Abstract: The present invention relates to antagonizing the activity of IL-17A, IL-17F and IL-23 using bispecific antibodies that comprise a binding entity that is cross-reactive for IL-17A and IL-17F and a binding entity that binds IL-23p19. The present invention relates to novel bispecific antibody formats and methods of using the same.
    Type: Application
    Filed: May 21, 2013
    Publication date: March 26, 2015
    Inventors: Brenda L. Stevens, Alison Witte, Mark W. Rixon, Josephine M. Cardarelli, Thomas D. Kempe, Scott R. Presnell, Mohan Srinivasan, Susan C. Wong, Guodong Chen, Hui Wei, Stanley R. Krystek, Lumelle A. Schneeweis, Paul O. Sheppard, Indrani Chakraborty, Milan Gao, Steven Sheriff, Noah Ditto, Nels B. Hamacher
  • Publication number: 20150086546
    Abstract: The present invention relates to a humanized antibody or functional fragment thereof which binds to a mammalian (e.g., human) CC-chemokine receptor 2 (CCR2) or a portion of the receptor and blocks binding of a ligand to the receptor. The invention further relates to a method of inhibiting the interaction of a cell bearing mammalian CCR2 with a ligand thereof, and to use of the antibodies and fragments in therapeutic, prophylactic and diagnostic methods.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Inventors: Gregory J. Larosa, Christopher J. Horvath, Walter Newman, Stephan T. Jones, Siobhan H. O'Brien, Theresa L. O'Keefe
  • Publication number: 20150082466
    Abstract: The present invention relates to humanisation of antibodies in vivo. The invention provides non-human vertebrates, cells, populations and methods useful for humanising chimaeric antibodies in vivo. Using the present invention it is possible straightforwardly and rapidly to obtain antigen-specific antibodies that are fully human (ie, comprising human variable and constant regions) and have undergone recombination, junctional diversification, affinity maturation and isotype switching in vivo in a non-human vertebrate system. Furthermore, such antibodies are humanised (eg, totally human)—and selected—totally in vivo, and as such the present invention harnesses in vivo filtering for expressibility, affinity and biophysical characteristics in the context of the desired human variable and constant region pairings. This is avoids problems of down-grading antibody characteristics when humanising the constant region of chimaeric antibodies in vitro.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 19, 2015
    Inventor: Jasper Clube
  • Publication number: 20150082471
    Abstract: A sustained culture of isolated avian gonocytes is provided, as well as a method of making and using the same. A chimeric avian containing an isolated gonocyte and a transgenic avian produced using the chimeric avian are also provided. The cell and method may be employed to make, among other things, transgenic avian that produce a heterologous protein, e.g., a therapeutic protein.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventors: Marie-Cecile van de Lavoir, Robert Etches
  • Patent number: 8980257
    Abstract: It has been found out that among antibodies showing reactivity with wild type TGF-?, antibodies less reactive with G79A-substituted TGF-? have an excellent growth-suppressing effect on cancer cells having a mutated Ras gene. Further, it has been found out that most of these antibodies have an activity of inhibiting EGFR tyrosine phosphorylation and/or an induction-suppressing activity on vascular endothelial cells.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 17, 2015
    Assignee: Medical & Biological Laboratories Co., Ltd.
    Inventors: Makoto Kaneda, Yoshihiro Fujii, Yoshihiro Hayata, Yoshiro Kishi, Ichiro Yahara
  • Patent number: 8980582
    Abstract: The present invention relates to antibodies, or antigen-binding fragments thereof, that bind to human BMP-6, compositions comprising such antibodies, or antigen-binding fragments thereof, and methods of using the same for treatment of anemia of chronic disease.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: March 17, 2015
    Assignee: Eli Lilly and Company
    Inventors: Neungseon Steven Seo, Stephanie Marie Eaton Truhlar
  • Publication number: 20150071923
    Abstract: Provided herein are modified anti-EGFR antibodies and nucleic acid molecules encoding modified anti-EGFR antibodies. Also provided are methods of treatment and uses using modified anti-EGFR antibodies.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 12, 2015
    Inventors: Ge Wei, Gregory I. Frost, H. Michael Shepard, Christopher D. Thanos
  • Patent number: 8975071
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention includes relates to administering a genetically modified T cell to express a CAR wherein the CAR comprises an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 10, 2015
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Carl H. June, Bruce L. Levine, David L. Porter, Michael D. Kalos, Michael C. Milone
  • Patent number: 8975391
    Abstract: The invention concerns novel regulatory elements as well as related vectors and cells. Furthermore, it relates to methods of improving expression of polypeptides from nucleic acids such as cloned genes and to the production of various polypeptides in host cells using said novel regulatory elements. Additionally, the invention relates to uses of said novel regulatory elements as insulators, in gene therapy or for improving host cell lines.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 10, 2015
    Assignee: Boehringer Ingelheim Pharma GmbH & Co. KG
    Inventor: Barbara Enenkel
  • Publication number: 20150064184
    Abstract: Provided herein are methods and compositions for treating a subject suffering from a deficiency in arylsulfatase A in the CNS. The methods include systemic administration of a bifunctional fusion antibody comprising an antibody to a human insulin receptor and an arylsulfatase A.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: William M. PARDRIDGE, Ruben J. BOADO
  • Publication number: 20150064179
    Abstract: Provided is a humanized or chimeric antibody or fragment thereof capable of binding to interleukin-10 (1L-10), wherein said antibody or fragment thereof is capable of being administered to a subject in the absence of an intolerable increase in the level of pro-inflammatory cytokines. Further provided are methods of treatment involving the use of the antibody or fragment thereof.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: FRANK OSTERROTH, CHRISTOPH UHEREK, CHRISTOPH BRUECHER, PETER RÖTTGEN, BENJAMIN DAELKEN, ANDRÉ ENGLING, CHANTAL ZUBER, NIKLAS CZELOTH, ANDREA WARTENBERG-DEMAND, MARCUS GUTSCHER, JUDITH WESSELS-KRANZ
  • Patent number: 8969539
    Abstract: This present invention provides an expression vector system that uses alternative RNA processing to express in a single cell a polypeptide in both membrane-bound and soluble forms. By incorporating a mimetic structure of the 3? terminal region of human mu gene and introducing other exogenous genetic elements, an artificial gene can be constructed that is capable of simultaneously expressing membrane-bound and secreted forms of polypeptides in myeloma cells and other cells of the B lymphocyte lineage, as well as in non-B cells. If an immunoglobulin heavy chain is co-expressed with a light chain using this vector, whole antibodies can be produced that are both displayed on the surface of a single cell and secreted into the cell culture supernatant. Membrane-bound antibodies facilitate isolation and expansion of those cells displaying antibodies with desired antigen binding characteristics, while secreted antibodies facilitate identification of antibodies having desired biological function(s).
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: March 3, 2015
    Assignee: JN Biosciences LLC
    Inventors: Naoya Tsurushita, J. Yun Tso
  • Patent number: 8969024
    Abstract: Compositions and methods comprising proteins that bind specifically to adalimumab are disclosed herein. Adalimumab is a monoclonal antibody specific for the cytokine TNF-? and was developed to treat TNF-? mediated inflammatory diseases. In one aspect of the instant invention, the binding proteins are antibodies directed toward adalimumab. These antibodies, including binding fragments thereof, can be used in a clinical setting as well as for research and development. For example, these anti-adalimumab antibodies can be employed to neutralize adalimumab.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 3, 2015
    Assignee: AbbVie Biotechnology Ltd
    Inventors: Zehra Kaymakcalan, Limin Xiong
  • Patent number: 8969040
    Abstract: The present invention provides an anti-BMP9 (Bone morphogenetic protein-9) monoclonal antibody or an antibody fragment thereof binding to human BMP9, a hybridoma producing the antibody or the antibody fragment, a DNA encoding the antibody or the antibody fragment, a vector comprising the DNA, a transformant obtained by introduction of the vector, a method for preparing the antibody or the antibody fragment using the hybridoma or the transformant, and a therapeutic agent comprising the antibody or the antibody fragment as an active ingredient. Further, the present invention provides a pharmaceutical composition comprising the antibody or the antibody fragment as an active ingredient for the treatment of anemia such as renal anemia, cancer anemia or the like, and a method for treating anemia such as renal anemia, cancer anemia or the like using the same.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 3, 2015
    Assignee: Kyowa Hakko Kirin Co., Ltd
    Inventors: Kiyoshi Shimizu, Yuji Yamazaki, Tsuguo Kubota, Kaname Kimura
  • Publication number: 20150056189
    Abstract: Provided is a pharmaceutical composition for the treatment and/or prophylaxis of abnormal bone metabolism targeting a protein encoded by a gene strongly expressed in osteoclasts. Specifically provided is a pharmaceutical composition containing an antibody which specifically recognizes human Siglec-15 and has an activity of inhibiting osteoclast formation, and the like.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 26, 2015
    Applicant: Daiichi Sankyo Company, Limited
    Inventors: Yoshiharu Hiruma, Takako Kimura, Hironari Shimizu
  • Publication number: 20150056202
    Abstract: The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention and/or treatment of acute and chronic inflammatory and other diseases.
    Type: Application
    Filed: March 25, 2014
    Publication date: February 26, 2015
    Inventors: Chengbin Wu, Tariq Ghayur, Richard W. Dixon, Jochen G. Salfeld
  • Publication number: 20150056183
    Abstract: A method of preparing a canine antibody suitable for use in the therapeutic treatment of a canine is provided. In particular, there is provided immunoglobulins which can be selected for the characteristic of whether they mediate downstream complement mediated immune activation when bound to a target antigen. Canine derived antibodies comprising specific heavy chain isotypes are provided. The invention extends to the use of the immunoglobulins of the invention in methods of treating conditions such as pain, inflammatory conditions and cancerous conditions in a canine.
    Type: Application
    Filed: May 8, 2012
    Publication date: February 26, 2015
    Inventor: David Gearing
  • Publication number: 20150056197
    Abstract: The present invention relates to therapeutic compounds, such as vaccines against human papillomavirus (HPV) and in particular to DNA vaccines against HPV16 or HPV18. The invention further relates to protein construct encoding homodimeric peptides, which peptides may be released from a DNA vaccine or used separately. Further described are pharmaceutical formulations, host cells and methods for producing the vaccines, as well as methods for the treatment of various HPV induced diseases, such as cancers and infectious diseases by application.
    Type: Application
    Filed: December 20, 2012
    Publication date: February 26, 2015
    Inventors: Ole Henrik Brekke, Agnete Brunsvik Fredriksen, Ali Areffard, Mona Mari Lindeberg