Human Patents (Class 435/366)
  • Patent number: 9127099
    Abstract: Provided are a polymer having low cytotoxicity and capable of imparting surface hydrophilicity and biocompatibility to medical device surfaces by simple processing, a method for producing the polymer, and a surface treatment agent for medical devices. The polymer of the present invention has a particular ratio of structural units represented by the formulae (1a) and (1b), and a particular weight average molecular weight, and is useful as a surface treatment agent for various medical devices.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: September 8, 2015
    Assignee: NOF CORPORATION
    Inventors: Norio Iwakiri, Yosuke Matsuoka, Nobuyuki Yoshioka, Yuki Yamashita, Nobuyuki Sakamoto
  • Patent number: 9115342
    Abstract: An object of the present invention is to develop a method for purify cardiomyocytes at a high degree of purification and at a high yield from a cell mixture comprising cardiomyocytes derived from fetuses and stem cells using various features which have not been previously expected to be used for purification of cardiomyocytes or which are newly found, wherein said method is carried out without undergoing any genetic modification or without adding any special proteins or biologically active agents.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 25, 2015
    Assignees: DAIICHI SANKYO COMPANY, KEIO UNIVERSITY
    Inventors: Fumiyuki Hattori, Keiichi Fukuda
  • Patent number: 9107897
    Abstract: Disclosed herein are compositions and methods for treating, ameliorating or preventing a retinal disease or condition; improving a photopic (day light) vision; for improving correcting visual acuity, improving macular function, improving a visual field, or improving scotopic (night) vision by administration of retinal progenitor cells. The subject matter described herein also provides cell populations comprising retinal progenitor cells and methods of isolation thereof.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 18, 2015
    Assignee: The Regents of the University of California
    Inventors: Henry Klassen, Jing Yang
  • Patent number: 9109205
    Abstract: The object of the present invention is to improve the post-transplantation engraftment rate of cardiomyocytes that have been purified to such an extent that they are free from non-cardiomyocytes and any components derived from other species. To solve this problem, the present inventors studied the possibility of constructing cell masses from the purified cardiomyocytes. As a result, they revealed that the stated problem could be solved by providing a method of preparing cell masses of cardiomyocytes derived from pluripotent stem cells, characterized in that cell masses of aggregated cells containing cardiomyocytes that had been differentiated and induced from pluripotent stem cells were dispersed to single cells to thereby obtain purified cardiomyocytes, which were then cultured in a culture medium under serum-free conditions so that they were reaggregated.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: August 18, 2015
    Assignees: DAIICHI SANKYO COMPANY, LIMITED, KEIO UNIVERSITY
    Inventors: Fumiyuki Hattori, Keiichi Fukuda
  • Patent number: 9102919
    Abstract: The invention provides compositions and methods of use in reprogramming somatic cells. Compositions and methods of the invention are of use, e.g., for generating or modulating (e.g., enhancing) generation of induced pluripotent stem cells by reprogramming somatic cells. The reprogrammed somatic cells are useful for a number of purposes, including treating or preventing a medical condition in an individual. The invention further provides methods for identifying an agent that reprograms somatic cells to a pluripotent state and/or enhances the speed and/or efficiency of reprogramming. Certain of the compositions and methods relate to modulating the Wnt pathway.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 11, 2015
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Brett Chevalier, Alexander Marson, Richard A. Young, Ruth Foreman, Rudolf Jaenisch
  • Patent number: 9101538
    Abstract: An injectable amino-acid composition acts naturally to fuel collagen synthesis, which retards aging and helps to clear cellular decay while accelerating the cell division that promotes healthy, younger looking skin. The amino-acid composition includes carnosine. The composition is injected into the dermis of patients. The composition can be used in conjunction with botulinum toxin and fillers to enhance their effectiveness and extend their usefulness.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: August 11, 2015
    Inventor: Donna M. Tozzi
  • Patent number: 9089417
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: July 28, 2015
    Inventor: Steven T. Boyce
  • Patent number: 9085764
    Abstract: The present invention is directed generally to eukaryotic host cells comprising artificial endosymbionts and methods of introducing artificial endosymbionts into eukaryotic host cells. The invention provides artificial endosymbionts that introduce a phenotype to host cells that is maintained in daughter cells. The invention additionally provides eukaryotic host cells containing magnetotactic bacteria.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: July 21, 2015
    Assignee: Bell Biosystems, Inc.
    Inventors: Caleb Bell, III, Alexey Bazarov
  • Patent number: 9078429
    Abstract: A non-linear cooling cryopreservation method for improving cryopreservation protocols for cells that involves producing a simulation of cellular responses to a range of cooling parameters; determining optimal cooling parameters required to minimize cryoinjury to the cells using simulation of cellular responses and experimental results; and incorporating optimal parameters into the protocol. The simulation is based on mathematical models of cellular parameters. A non-linear cooling cryopreservation protocol for cryopreserving stem cells is also disclosed that does not require cryoprotectants.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 14, 2015
    Assignee: The Governors of the University of Alberta
    Inventors: Locksley Earl McGann, Janet Anne Wade Elliott, Lisa Ula Ross-Rodriguez
  • Patent number: 9080145
    Abstract: The present invention relates to the field of pluripotent stem cell culture and methods facilitate pluripotent stem cell culture at industrial levels.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 14, 2015
    Assignee: LifeScan Corporation
    Inventor: Shelley Nelson
  • Patent number: 9081008
    Abstract: This invention provides methods of determining the number and percent of tissue specific stem cells (TSSCs) in a sample of cells, a population of cells or a sample of tissue. The methods rely on detecting the pattern-specific asymmetric localization of asymmetric self-renewal associated (ASRA) proteins or cell cycle specific proteins (CSSP) in cell undergoing asymmetrical self-renewal, which is a characteristic of TSSCs. The methods can be applied to any situations in which the percent of TSSC is desired such as laboratory research on adult stem cells, in drug development tests, prognostic indicator and therapeutic index, as a diagnostic and prognostic indicator and in monitoring TSSC expansion, e.g., in cell manufacturing processes.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 14, 2015
    Assignee: James Sherley
    Inventor: James L. Sherley
  • Patent number: 9074181
    Abstract: This disclosure provides an improved system for culturing human embryonic stem cells. The cells are cultured in suspension so as to maximize the production capacity of the culture environment. The new culture system of this invention allows for bulk proliferation of hES cells in a more cost-effective manner, which facilitates commercial production of important products for use in human therapy.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: July 7, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Yan Li, Isabelle Nadeau-Demers
  • Patent number: 9074221
    Abstract: IDH1 gene-defective cell lines (e.g., IDH1R132H heterozygous) have been made from a robust cell line, HCT116. The IDH1 gene-defective cell lines can be used to determine the effect of IDH1R132H on cell biology, tumorigenesis, and cellular metabolic profiles. These cell lines can be used to test potential therapeutic targets and to screen potential therapeutic agents. Kits and xenografts are also contemplated.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: July 7, 2015
    Assignee: Duke University
    Inventors: Hai Yan, Darell Bigner, Christopher Gentry Duncan
  • Publication number: 20150147813
    Abstract: Disclosed herein are methods and materials for producing a more developmentally potent cell from a less developmentally potent cell. Specifically exemplified herein are methods that comprise introducing an expressible dedifferentiating polynucleotide sequence into a less developmentally potent cell, wherein the transfected less developmentally potent cell becomes a more developmentally potent cell capable of differentiating to a less developmentally potent cell of its lineage of origin or a different lineage.
    Type: Application
    Filed: December 8, 2014
    Publication date: May 28, 2015
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Kiminobu Sugaya, Angel Alvarez
  • Publication number: 20150148297
    Abstract: Disclosed is the a method of skin repair and firming, said method comprising the step of bringing into contact a pentapeptide conjugate of oleanolic acid with skin cells so that the effect of increased cellular communication at the molecular level to bring about gene and protein expression in the cells of the skin that enable repair and firming is realized. The invention demonstrates the effect of the pentapeptide conjugate of oleanolic acid in increasing Transforming Growth Factor-? and Fibroblast Growth Factor gene expressions in the skin.
    Type: Application
    Filed: February 5, 2015
    Publication date: May 28, 2015
    Inventors: Muhammed Majeed, Kalyanam Nagabhushanam
  • Publication number: 20150150152
    Abstract: This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to a novel ecdysone receptor/chimeric retinoid X receptor-based inducible gene expression system and methods of modulating gene expression in a host cell for applications such as gene therapy, large-scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Marianna Zinovievna KAPITSKAYA, Subba Reddy Palli
  • Publication number: 20150148405
    Abstract: Precursor microRNA molecules that have been modified to prevent a protein involved in regulating developmental timing, oncogenesis, and/or neuronal growth from blocking processing of the precursor microRNA sequence to the mature microRNA are provided. Methods and kits for using the precursor microRNA molecules also are provided.
    Type: Application
    Filed: February 21, 2013
    Publication date: May 28, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Mollie Katherine Meffert, Claudia R. Ruiz-Garzon, Yu-Wen A. Huang, Elizabeth C. H. Eyler
  • Patent number: 9040297
    Abstract: A method of expanding and maintaining human embryonic stem cells (ESCs) in an undifferentiated state by culturing the ESCs in a suspension culture under culturing conditions devoid of substrate adherence is provided. Also provided are a method of deriving ESC lines in the suspension culture and methods of generating lineage-specific cells from ESCs which were expanded in the suspension culture of the present invention.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: May 26, 2015
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Michal Amit, Joseph Itskovitz-Eldor
  • Patent number: 9040304
    Abstract: A multi-channel system and methods for sorting particles according to one or more characteristics of the particles. The system includes multiple flow cytometry units, each unit can have a nozzle for producing a fluid stream containing a desired population of particles in a mixture of particles. Each of the units may be operable to sort said desired population of particles by interrogating the fluid stream with a beam of electromagnetic radiation and classifying particles based on one or more characteristics of the particles. The system also includes a common fluid delivery system for delivering sheath fluid to each flow cytometer unit for producing respective fluid streams.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 26, 2015
    Assignee: Inguran, LLC
    Inventors: Gary Durack, Jeffrey D. Wallace, Gary P. Vandre, Lon A. Westfall, Jeremy T. Hatcher, Niraj V. Nayak
  • Patent number: 9040298
    Abstract: Thrombospondin 1 (TSP-1), TSP-2, interleukin 17B receptor (IL-17BR) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) associated with stem cell activity and use thereof.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 26, 2015
    Assignee: Medipost Co., Ltd.
    Inventors: Yoon-Sun Yang, Won Il Oh, Hong Bae Jeon, Mee Hyun Jung, Sang Young Jeong
  • Publication number: 20150140653
    Abstract: Described are embodiments for expanding cells in a bioreactor. In one embodiment, methods are provided that distribute cells throughout the bioreactor and attach cells to specific portions of a bioreactor to improve the expansion of the cells in the bioreactor. Embodiments may be implemented on a cell expansion system configured to load, distribute, attach and expand cells.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Applicant: Terumo BCT, INC.
    Inventors: Mark E. JONES, Nathan D. FRANK
  • Publication number: 20150140655
    Abstract: Various embodiments of methods and apparatuses for separating sperm, including apparatus having an inlet and an outlet reservoir, and either: i) a radial array of microchannels disposed between the inlet and outlet reservoirs to provide fluid communication therebetween and to direct motile sperm inwardly from the inlet reservoir to the outlet reservoir; or ii) at least one microchannel path disposed between the inlet and outlet reservoirs to provide fluid communication therebetween, the at least one microchannel path having a path inlet adjacent the inlet reservoir, a path outlet adjacent the outlet reservoir, and a junction located between the path inlet and the path outlet for directing a portion of sperm that enter the path inlet towards the outlet reservoir based on wall-swimming behaviour of sperm. Methods include filling an apparatus with buffer fluid, introducing semen into an inlet reservoir, and retrieving sperm separated from the semen from the outlet reservoir.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Inventors: Reza Nosrati, Lise Marie Eamer, Marion Vollmer, David Allan Sinton, Armand Zini
  • Publication number: 20150140652
    Abstract: Provided are a culture vessel with which an embryonic body can be formed efficiently from human embryonic stem cells, and a method for culturing human embryonic stem cells using the vessel. There is provided a vessel for culturing human embryonic stem cells, the culture vessel having two or more wells (1), wherein each of the wells (1) has a tubular body (2) and a funnel-shaped bottom (3) provided at one end of the body (2), the bottom (3) being a concave curved surface at the center (4) of the bottom (3) and the bottom (3) having an opening angle (?) in range of 60 to 100°. There is provided a method for culturing human embryonic stem cells by using said vessel for culturing human embryonic stem cells.
    Type: Application
    Filed: June 7, 2013
    Publication date: May 21, 2015
    Applicants: RIKEN, SUMITOMO BAKELITE CO., LTD.
    Inventors: Yoshiki SASAI, Keiko Muguruma, Ryouhei Tsukada, Hayao Tanaka
  • Publication number: 20150140594
    Abstract: The present invention relates to proliferating human taste cells, wherein the cells are the cells deposited under the DSMZ deposit accession number DSM ACC3169 or taste cells derived thereof. The present invention further relates to the proliferating human taste cells of the invention for use in research. Further, the present invention relates to in vitro methods for analysing the signalling response of taste cells to a molecule involved in taste signalling, in vitro methods of identifying agents capable of eliciting a taste response in taste cells as well as in vitro methods of identifying modulators of taste signalling.
    Type: Application
    Filed: April 25, 2013
    Publication date: May 21, 2015
    Inventors: Andreas Hochheimer, Michael Krohn
  • Publication number: 20150140654
    Abstract: Described are embodiments for expanding cells in a bioreactor. In one embodiment, methods are provided that distribute cells throughout the bioreactor and attach cells to specific portions of a bioreactor to improve the expansion of the cells in the bioreactor. Embodiments may be implemented on a cell expansion system configured to load, distribute, attach and expand cells.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Applicant: TERUMO BCT, INC.
    Inventors: Brian J. NANKERVIS, Mark E. JONES
  • Publication number: 20150140651
    Abstract: A surgical technique for harvesting an autogenous symphysis bone graft including making a single vertical incision to the symphysis area of a patient and harvesting bone from the symphysis area of the patient's mandible. The single vertical incision is made parallel to muscle fibers of the patient's chin.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Inventors: Aladdin J. Al-Ardah, Fawaz ALQAHTANI, Jaime L. Lozada
  • Publication number: 20150141492
    Abstract: Double-stranded RNA (dsRNA) induces sequence-specific post-transcriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 19-23 nt short RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3? ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the produced siRNP complex.
    Type: Application
    Filed: September 3, 2014
    Publication date: May 21, 2015
    Inventors: Thomas Tuschl, Sayda Mahgoub Elbashir, Winfried Lendeckel
  • Publication number: 20150141347
    Abstract: The invention provides an isolated or purified T cell receptor (TCR) having antigenic specificity for NY-ESO-1. Also provided are related polypeptides, proteins, nucleic acids, recombinant expression vectors, isolated host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions. The invention further provides a method of detecting the presence of cancer in a mammal and a method of treating or preventing cancer in a mammal using the inventive TCRs or related materials.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 21, 2015
    Inventors: Maria R. Parkhurst, Richard A. Morgan, Steven A. Rosenberg, Shannon Faith Rosati
  • Publication number: 20150140591
    Abstract: The invention concerns the field of cell culture technology. It concerns RNA having a specific sequence, expression vectors encoding said RNA, production host cell lines comprising said RNA, and methods of producing recombinant biopharmaceutical products using engineered host cell with altered levels of said RNAs, such as small non-coding RNAs, preferably microRNAs (miRNAs). The invention also relates to engineered host cells with altered levels in one or more of said RNAs. Those cell lines have improved secretion and/or growth characteristics in comparison to control cell lines.
    Type: Application
    Filed: June 4, 2013
    Publication date: May 21, 2015
    Inventors: Lore Florin, Hitto Kaufman, Angelika Hausser, Monilola Olayioye, Michaela Strotbek
  • Patent number: 9034598
    Abstract: Provided are compositions comprising newly identified protein fragments of aminoacyl-tRNA synthetases, polynucleotides that encode them and complements thereof, related agents, and methods of use thereof in diagnostic, drug discovery, research, and therapeutic applications.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: May 19, 2015
    Assignees: aTyr Pharma, Inc., Pangu BioPharma Limited
    Inventors: Leslie Ann Greene, Kyle P. Chiang, Fei Hong, Alain Philippe Vasserot, Jeffry D. Watkins, Cheryl L. Quinn, Wing-Sze Lo, John D. Mendlein
  • Publication number: 20150132268
    Abstract: The present invention provides muscle-derived progenitor cells that show long-term survival following transplantation into body tissues and which can augment soft tissue following introduction (e.g. via injection, transplantation, or implantation) into a site of soft tissue. Also provided are methods of isolating muscle-derived progenitor cells, and methods of genetically modifying the cells for gene transfer therapy. The invention further provides methods of using compositions comprising muscle-derived progenitor cells for the augmentation and bulking of mammalian, including human, soft tissues in the treatment of various functional conditions, including malformation, injury, weakness, disease, or dysfunction. In particular, the present invention provides treatments and amelioration for urinary incontinence and other urinary tract pathologies.
    Type: Application
    Filed: December 19, 2014
    Publication date: May 14, 2015
    Inventors: Michael B. Chancellor, Ronald Jankowski, Ryan Pruchnic, Johnny Huard
  • Publication number: 20150132853
    Abstract: Methods for de-differentiating or altering the life-span of desired “recipient” cells, e.g., human somatic cells, by the introduction of cytoplasm from a more primitive, less differentiated cell type, e.g., oocyte or blastomere are provided. These methods can be used to produce embryonic stem cells and to increase the efficiency of gene therapy by allowing for desired cells to be subjected to multiple genetic modifications without becoming senescent. Such cytoplasm may be fractionated and/or subjected to subtractive hybridization and the active materials (sufficient for de-differentiation) identified and produced by recombinant methods.
    Type: Application
    Filed: June 11, 2014
    Publication date: May 14, 2015
    Applicant: Advanced Cell Technology, Inc.
    Inventor: Karen B. Chapman
  • Publication number: 20150133531
    Abstract: The present invention provides a method of expressing at least one heterologous nucleic acid sequence in a cell, the method comprising introducing at least one heterologous nucleic acid sequence into a cell by infecting said cell with a recombinant negative-strand RNA virus vector comprising said at least one heterologous nucleic acid sequence, wherein the recombinant negative-strand RNA virus vector includes a viral genome coding for a mutated P protein, which leads to a loss of the viral genome replication ability without a loss of the viral transcription ability, and wherein said at least one heterologous nucleic acid sequence encodes a cellular reprogramming or programming factor or a therapeutic protein. In addition, the present invention provides a cell or a population of cells prepared in vitro by said method as well as a pharmaceutical composition comprising said cell or population of cells.
    Type: Application
    Filed: May 24, 2013
    Publication date: May 14, 2015
    Applicant: AmVac AG
    Inventor: Marian Wiegand
  • Publication number: 20150132845
    Abstract: Devices, systems, and methods for continuous cell culture and other reactions are generally described. In some embodiments, chambers (e.g., cell growth chambers) including at least a portion of a wall formed of a flexible member are provided. A retaining structure can be incorporated outside and proximate to the chamber such that when liquid is added to the chamber, the flexible member is consistently and predictably deformed, and a consistent volume of liquid is added. The flexible member can be formed of, in some embodiments, a gas-permeable medium. In some embodiments, reaction chambers can be arranged in a fluidic loop, and a bypass channel can be used to introduce and/or extract fluid from the loop without affecting loop operation.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 14, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Rajeev Jagga Ram, Kevin Shao-Kwan Lee
  • Publication number: 20150132321
    Abstract: The present invention relates to methods of inhibiting capillary endothelial (CE) cell migration, the formation of CE networks and angiogenesis, and uses thereof for the purpose of treating angiogenesis-related diseases and disorders, particularly when the diseases or disorders are directly related aberrant angiogenesis. Inhibition is achieved by inhibiting TRPV4 activity, such as the levels of TRPV4 expression, calcium influx through TRPV4, and/or the intracellular signaling from TRPV4 via ?1 integrin activation.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 14, 2015
    Applicant: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Donald E. Ingber, Charles K. Thodeti
  • Publication number: 20150132847
    Abstract: The present invention relates to the production of cell cultures and tissues from undifferentiated pluripotent stem cells using three-dimensional biomimetic materials. The resultant cell cultures or tissues can be used in any of a number of protocols including testing chemicals, compounds, and drugs. Further, the methods and compositions of the present invention further provide viable cell sources and novel cell delivery platforms that allow for replacement of diseased tissue and engraftment of new cardiomyocytes from a readily available in vitro source. The present invention includes novel methods required for the successful production of cell cultures and tissues, systems and components used for the same, and methods of using the resultant cell and tissue compositions.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventors: Elizabeth A. Lipke, Petra Kerscher, Alexander J. Hodge
  • Patent number: 9028796
    Abstract: The present invention provides materials and methods to induce cell death by methuosis, a non-apoptotic cell death mechanism. Small molecules herein are useful for treating cell proliferation disorders or anomalies, particularly, but not exclusively, cancer. Methods related to the research and pharmaceutical use of the small molecules are also provided herein.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 12, 2015
    Assignee: The University of Toledo
    Inventors: William A. Maltese, Paul W. Erhardt, Michael W. Robinson, Jean H. Overmeyer
  • Patent number: 9029142
    Abstract: Gene encoding human glucokinase mutant is provided. The gene has the nucleotide sequence chosen from the nucleotide sequence listed as SEQ ID NO:2 and the nucleotide sequence wherein the ORF region encodes the same amino acid sequence as the one encoded by ORF region (position 487 to 1884) of SEQ ID NO:2 and the rest of the region is same as the non-ORF region of SEQ ID NO:2. Human glucokinase mutant encoded by the gene, the recombinant vectors carrying the gene, the hosts comprising the vectors, pharmaceutical compositions thereof, uses thereof, and methods for treating and preventing diseases by using the same are provided. The human glucokinase mutant encoded by the gene has higher activity than that of the wild type human glucokinase, and thus provides a new way of controlling blood glucose and/or preventing and/or treating disturbance of carbohydrate metabolism, especially preventing and treating diabetes.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: May 12, 2015
    Inventor: Haidong Huang
  • Patent number: 9029145
    Abstract: The present invention provides an isolated population of chondrocyte precursor cells wherein 1% or less of the cells express Oct4, Nanog and/or TRA-1-60, 7% or less of the cells express no collagen II, collagen X, CD105 or Stro-1 and 85% or more of the cells express CBFA1, methods for preparing such cells and uses of chondrocyte cells derived from said precursor cells.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 12, 2015
    Assignee: The University Court of the University of Edinburgh
    Inventors: Brendon Stewart Noble, David Matthew Pier
  • Publication number: 20150126450
    Abstract: Novel peptoid oligomers are disclosed that have a formula represented by the following formula Ia or Ib: The peptoid oligomers are prepared as modulators of androgen receptor (AR), and may be prepared as pharmaceutical compositions and used for the prevention or treatment of a variety of conditions in mammals, including humans, associated with unwanted or aberrant AR activity. The present peptoid oligomers are particularly valuable for the treatment of subjects with cancer.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 7, 2015
    Inventors: Kent Kirshenbaum, Paul Michael Levine, Michael John Garabedian
  • Publication number: 20150125953
    Abstract: Disclosed herein are methods and compositions for generating cultures and isolated cell populations containing preplacodal ectoderms cells, otic placode cells, and inner ear sensory hair cells derived from pluripotent cells by modulating TGF?, BMP, and FGF signaling pathways under defined culture conditions. Also described are methods for obtaining non-otic placodal tissues from pluripotent stem cells. Methods for identifying agents that induce or enhance differentiation and generation of hair cells are also disclosed. Methods for identifying cytoprotective agents for hair cells are also described.
    Type: Application
    Filed: May 6, 2013
    Publication date: May 7, 2015
    Inventors: Eri Hashino, Gerry Oxford, Karl R. Koehler
  • Publication number: 20150125432
    Abstract: The invention provides the human persistent fetal vasculature neural progenitor cells for transplantation or other uses such as drug discovery. For example, a cell-based method of therapy is carried out by providing a purified population of human persistent fetal vasculature neural progenitor cells and transplanting the cells into an ocular tissue of a recipient subject.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 7, 2015
    Inventors: Kameran Lashkari, Jie Ma
  • Publication number: 20150126709
    Abstract: The present invention refers to a fusion protein comprising a TNF-superfamily (TNFSF) cytokine or a receptor binding domain thereof fused to a collectin trimerization domain, to a nucleic acid molecule encoding the fusion protein, and to a cell comprising the nucleic acid molecule. The fusion protein is present as a trimeric complex or as an oligomer thereof. The fusion protein, the nucleic acid, and the cell is suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: July 2, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann, Marcus Branschädel
  • Publication number: 20150125954
    Abstract: The invention relates to a substrate unit (100), in particular for the cryopreservation of a biological sample (1) containing biological cells (2, 2.1, 2.
    Type: Application
    Filed: July 1, 2013
    Publication date: May 7, 2015
    Inventors: Heiko Zimmermann, Axel Beier, Julia Neubauer, Guenter R. Fuhr
  • Publication number: 20150125952
    Abstract: The present invention generally relates to the field of cell growth and tissue engineering, in particular, tissue engineered compositions comprising a nanotextured substrate which is structurally configured for growth of cells in an anatomically correct adult phenotype in vitro. In particular, described herein are nanotextured substrates which are structurally configured for the anisotropic organization, maturation, and growth of in vitro-differentiated muscle cells, such as cardiomyocytes, and methods for the production and use thereof in varying sizes, nanotextures and substrate rigidities. In vitro-differentiated cardiomyocytes grown on the nanotextured substrates described herein are better-differentiated and more closely mimic adult cardiac tissue than the same cells grown on a non-textured substrate of the same composition.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 7, 2015
    Inventors: Deok-Ho Kim, Michael Laflamme, Charles Murry, Kshitiz Gupta, Hyok Yoo, Alex Jiao
  • Publication number: 20150126515
    Abstract: Provided herein are compounds, compositions thereof and uses therewith for treating spinal muscular atrophy.
    Type: Application
    Filed: January 25, 2013
    Publication date: May 7, 2015
    Applicant: PTC Therapeutics, Inc.
    Inventors: Guangming Chen, Amal Dakka, Gary Mitchell Karp, Chunshi Li, Jana Narasimhan, Nikolai Naryshkin, Marla L. Weetall, Ellen Welch, Xin Zhao
  • Publication number: 20150126410
    Abstract: The invention relates in a first embodiment to a method for increasing the yield of replication-incompetent adenoviruses having at least a partial deletion in the E1-region, wherein said adenoviruses are generated in a production cell, the method comprising the steps of: (a) expressing in said production cell an adenoviral pIX polypeptide from a nucleic acid sequence encoding said adenoviral pIX polypeptide under the control of (i) at least a minimal endogenous pIX promoter and a heterologous promoter; or (ii) a heterologous promoter; and (b) expressing in said production cell the elements necessary for the production and assembly of said adenoviruses from corresponding coding sequences, thereby increasing the yield of said adenoviruses generated in said production cell in comparison to the yield of replication-incompetent adenoviruses having at least a partial deletion in the E1-region generated in said production cell in the absence of said nucleic acid sequence encoding said adenoviral pIX polypeptide.
    Type: Application
    Filed: July 4, 2013
    Publication date: May 7, 2015
    Inventors: Christian Thirion, Zsolt Ruzsics
  • Publication number: 20150125464
    Abstract: The present invention relates to methods of treating immune disorders, particularly autoimmune or inflammatory disorders, and methods of producing antibodies and other compounds for use in therapeutic strategies for treating such disorders. Generally, the present methods involve the use of antibodies or other compounds that prevent the stimulation of NKG2A receptors on NK cells, leading to the lysis of dendritic cells that contribute to the pathology of the disorders.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: ALESSANDRO MORETTA, EMANUELA MARCENARO, FRANCOIS ROMAGNE, PASCALE ANDRE
  • Publication number: 20150125951
    Abstract: The present invention relates to a mutant human alpha-synuclein with increased toxicity compared to wild-type alpha-synuclein, or a homologue thereof, wherein the mutant alpha-synuclein or homologue thereof comprises at least one amino acid substitution selected from the group consisting of a substitution at the alanine at position 56 (A56), at the alanine at position 76 (A76), at the methionine at position 127 (M127) and/or at the valine at position 118 (V118), as defined in the claims. Further, the invention relates to a polynucleotide encoding the mutant alpha-synuclein or homologue thereof, or an expression vector comprising said polynucleotide, a cell comprising the polynucleotide or expression vector, as defined in the claims. Also, a non-human animal comprising the cell of the invention is provided, as defined in the claims. Finally, the invention provides methods for identifying a substance that prevents or reduces toxicity of alpha-synuclein, as defined in the claims.
    Type: Application
    Filed: July 8, 2014
    Publication date: May 7, 2015
    Inventors: Markus ZWECKSTETTER, Pinar KARPINAR, Christian GRIESINGER
  • Patent number: 9023871
    Abstract: The present invention provides materials and methods to induce cell death by methuosis, a non-apoptotic cell death mechanism, to induce vacuolization without cell death, or to induce cell death without vacuolization. Small molecules herein are useful for treating cell proliferation disorders or anomalies, particularly, but not exclusively, cancer. Methods related to the research and pharmaceutical use of the small molecules are also provided herein.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: May 5, 2015
    Assignee: The University of Toledo
    Inventors: William A. Maltese, Paul W. Erhardt, Christopher Trabbic, Jean H. Overmeyer