Involving Diffusion Or Migration Of Antigen Or Antibody Patents (Class 436/514)
  • Patent number: 8921122
    Abstract: The present invention provides systems and methods for assessing migration behavior of biological particles, such as neutrophils, under the effect of a gradient. The systems can include one or more migration chambers, one or more gradient sources configured to generate particular gradients, e.g., of chemokines or the like across the width of the migration chamber, and a detection arrangement that is configured to determine spatial profiles across the migration chamber that indicate the extent of migration.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: December 30, 2014
    Assignee: The General Hospital Corporation
    Inventor: Daniel Irimia
  • Patent number: 8921123
    Abstract: Microfluidic devices and methods for using the same are provided. Aspects of the invention include microfluidic devices that include a separation medium and a pan-capture binding medium. The microfluidic devices are configured to subject a sample to two or more directionally distinct electric fields. Also provided are methods of using the devices as well as systems and kits that include the devices. The devices, systems and methods find use in a variety of different applications, including diagnostic and validation assays.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 30, 2014
    Assignee: The Regents of the University of California
    Inventors: Amy E. Herr, Dohyun Kim
  • Patent number: 8900881
    Abstract: The present invention relates to a quantitative assay device and a method for the determination of an analyte, based on a test strip, which contains a porous test membrane allowing for capillary flow of the analyte and complexes of the analyte, a porous upstream membrane in fluid connection with the test membrane and a porous downstream membrane in fluid connection with the test membrane, wherein the test membrane contains two bands having deposited on there high and low concentrations of different calibrator agents and a test band capable of reacting with conjugated analyte complexes giving rise to a measurable signal.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 2, 2014
    Inventor: Jin Po Lee
  • Patent number: 8889427
    Abstract: The invention provides for rapid response analysis through lateral flow chromatographic assays of specific antigens present in human or animal fluids, or in agricultural, microbial or biological products, with an audio and visual result of the analysis and when needed, an electronic surge to provide heat for rapid results. A lateral flow device for conducting the analysis includes a plurality of components, and a method for making the device forms components of the device on an elongate, ribbon-like substrate of dielectric material, then folds the substrate into shorter lengths which are then secured together to establish a multiple-layered, self-sustaining structure.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: November 18, 2014
    Assignee: Pop Test, LLC
    Inventors: Randice Lisa Altschul, Neil David Theise, Myron Rapkin, Rebecca O'Brien
  • Patent number: 8889102
    Abstract: The present invention provides for methods and materials for diagnosing and treating neuromyelitis optica (NMO).
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: November 18, 2014
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Vanda A. Lennon, Sean J. Pittock
  • Patent number: 8883517
    Abstract: The present invention relates to a method of detecting a target antibody, particularly a target autoantibody, in a sample, using a small molecule fluorophore-labelled target antigen, or a functional fragment, functional variant or functional derivative thereof that specifically binds to the target antibody. Detection is typically carried out using immunodiffusion or immunoelectrophoresis. The invention also relates to methods of diagnosing disease, particularly autoimmune disease, using small molecule fluorophore labelled target antigens and autoantigens. Small molecule fluorophore labelled target antigens, including autoantigens, are also disclosed, as are uses such.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: November 11, 2014
    Assignee: Gemini Research Limited
    Inventor: Neil James Cook
  • Patent number: 8877515
    Abstract: It is an object of the present invention to provide a measurement kit for developing a first developing solution and a second developing solution from different directions to suppress background noise, and an immunochromatography kit. The present invention provides a measurement kit, which comprises a first developing member for supplying a first developing solution and a second developing member for supplying a second developing solution, wherein the developing direction of the first developing solution is allowed to intersect with the developing direction of the second developing solution, so that development is carried out by developing the first and second developing solutions in different developing directions, and a water absorbent portion is established on the downstream of each of the developing directions.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 4, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Hiroyuki Chiku, Junichi Katada, Hideyuki Karaki, Hiroki Terada
  • Patent number: 8871527
    Abstract: The present invention provides diagnostic in vitro methods as well as kits and devices to be used in the methods of the present invention for diagnosis or prognosis of a pathologic condition characterized by the presence/absence of an endogenous hormone and/or hormone analog(s) thereof involved in diabetes or metabolic syndrome. The methods comprise a quantitative separation of at least those analytes of interest whose common presence interferes with measuring the presence/absence or concentration of one of the analytes of interest by a subsequent analytical method.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: October 28, 2014
    Assignee: Becton, Dickinson and Company
    Inventors: Mikkel Nissum, Christoph Eckerskorn, Andreas Pfuetzner, Thomas Forst
  • Patent number: 8859296
    Abstract: A separation module operates to fractionate or separate an analyte into fractions according to pI, i.e., pI bands, utilizing capillary isoelectric focusing (“CIEF”) within a first microchannel. The fractions are stacked to form plugs, the number of which is determined by a number of parallel second microchannels integrally connected to the first microchannel, into which the fractions are directed according to the buffer characteristics found in each of the individual microchannels. Within the microchannels the plugs are separated into proteins according to a different chemical property, i.e., “m/z,” utilizing capillary electrophoresis (“CE”).
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 14, 2014
    Assignees: Leidos, Inc., Georgetown University
    Inventors: Thomas Wayne Schneider, James N. Baraniuk
  • Patent number: 8841082
    Abstract: The invention relates to a method for determining one or more cellularly bound analytes in a liquid sample, said method being carried out using a device comprising: at least one feeding zone (5) for applying the liquid sample; a porous membrane (2) that is suitable for letting cellular components penetrate therethrough and includes at least one indicator zone on the membrane, said indicator zone being able to interact with the cellularly bound analyte and containing at least one binding element against the cellularly bound analyte; and at least one absorption area (3) on the membrane, which absorbs the liquid after the liquid has passed the indicator zones. The at least one indicator zone lies between the feeding zone (5) and the absorption area (3).
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: September 23, 2014
    Assignee: Medion Diagnostics AG
    Inventors: Peter Schwind, Iwan Aebischer
  • Patent number: 8835182
    Abstract: The present invention provides an immunochromatographic device, which contains the following (a) and (b): (a) a first device part holding a first insoluble carrier used for developing a complex formed with an analyte and a labeling substance comprising a metal labeled with a first binding substance that can bind to the analyte and capturing the analyte and the labeling substance at a reaction portion containing a second binding substance that can bind to the analyte, and (b) a second device part holding a second insoluble carrier used for developing a liquid and a third insoluble carrier used for absorbing a liquid, in such a way that the first insoluble carrier does not come into contact with the second insoluble carrier and the third insoluble carrier.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 16, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Junichi Katada, Hideyuki Karaki, Takayoshi Oyamada
  • Patent number: 8828739
    Abstract: Rapid lateral flow immunoassays have an extensive history of use in both the clinical and home settings. These devices are used to test for a variety of analytes, such as drugs of abuse, hormones, proteins, urine or plasma components and the like. The present invention provides an improved procedural control that indicates to the test user that at least a portion of the applied sample has passed through the test result zone of the test strip, and optionally that the test is complete and the test results may be read.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 9, 2014
    Assignee: Alere Switzerland GmbH
    Inventors: Huiyan Guo, Min Wang, Tao Shang, Hui-Kang Chen, Fei Gao
  • Patent number: 8822230
    Abstract: In a chromatography quantitative measuring apparatus according to the present invention, a beam applied from a light source to a chromatography test strip is formed into an elliptical shape by an optical means such as a cylindrical lens, a variation in absorbance that accompanies elution of a marker regent is detected while the elliptical beam is applied between a marker reagent hold part and a detection part, and a measurement is automatically started in a prescribed period of time since the detection of variation. According to the chromatography quantitative measuring apparatus so configured, non-uniform coloration is reduced by shaping the beam elliptically with the optical means, whereby the accuracy of quantitative analysis is enhanced, and the apparatus can be operated easily.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 2, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventors: Koji Miyoshi, Masahiro Aga, Kaoru Shigematsu
  • Patent number: 8822231
    Abstract: A method for the analysis of at least two analytes in a liquid sample, in which a substrate is provided wherein at least two different types of capturing molecules are immobilized on the substrate and wherein each type of capturing molecule has specific affinity for an analyte. The sample is contacted with capturing molecules, wherein for at least one analyte to be analyzed contact is induced between the capturing molecules and a labelled detection molecule with specific affinity for the analyte, and for at least one another analyte to be contact is induced between the capturing molecules and a labelled version of the analyte. A detectable signal is measured from the labelled detection molecule and the labelled analyte on the substrate, wherein the concentration of the labelled analyte is adapted to the concentration of the analyte in the sample.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: September 2, 2014
    Assignee: Johnson & Johnson AB
    Inventors: Jonas Melin, Christina Jönsson
  • Patent number: 8815609
    Abstract: A lateral flow device includes a sample compressor and a test strip comprising a diverting zone. The diverting zone, which may include a barrier and/or a gap or ditch, stops or impedes flow. Flow is reinitiated and diverted into an alternate plane by compression of a sample compressor. Flow returns to the original, lateral plane, at the end of the diverting zone.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 26, 2014
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Uma Mahesh Babu, Robert P. Sambursky, Peter Condon, Robert W. VanDine
  • Patent number: 8802426
    Abstract: A device for assay can evenly develop solution, and performs highly accurate and sensitive measurement. A first device part (10) maintains a second insoluble carrier (12) and a third insoluble carrier (13) in such a manner that they overlap with each other at a detection portion (14) of a first insoluble carrier (11). These three carriers (11), (12) and (13) are housed not in contact with each other. A pressing unit (18) having a pressing surface (18a) that is parallel to the detection portion (14) is provided on an inner surface of the second device part (20) facing the detection portion (14). The pressing surface (18a) is displaced by being pressed toward the detection portion (14), and presses, from the upper side of the first insoluble carrier (11), the second insoluble carrier (12) and the third insoluble carrier (13) onto the first insoluble carrier (11). The first device part (10) and the second device part (20) are joined together.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 12, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Mikinaga Mori, Junichi Katada, Takayoshi Oyamada, Hideyuki Karaki, Masayasu Konishi, Hiroki Terada
  • Patent number: 8778699
    Abstract: A method for determining the amount of NT-proBNP in blood samples from animals. The method includes detecting degradation products of NT-proBNP by various methods, including using antibodies, kits and device.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 15, 2014
    Assignee: Idexx Laboratories, Inc.
    Inventors: Mahalakshmi Yerramilli, Michael Atkinson, Murthy V. S. N. Yerramilli
  • Patent number: 8778698
    Abstract: In a chromatography quantitative measuring apparatus, a beam applied from a light source to a chromatography test strip is formed into an elliptical shape by an optical means such as a cylindrical lens, a variation in absorbance that accompanies elution of a marker regent is detected while the elliptical beam is applied between a marker reagent hold part and a detection part, and a measurement is automatically started in a prescribed period of time since the detection of variation. According to the chromatography quantitative measuring apparatus so configured, non-uniform coloration is reduced by shaping the beam elliptically with the optical means, whereby the accuracy of quantitative analysis is enhanced, and the apparatus can be operated easily.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: July 15, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventors: Koji Miyoshi, Masahiro Aga, Kaoru Shigematsu
  • Patent number: 8765457
    Abstract: A device for assay can evenly develop solution, and performs highly accurate and sensitive measurement. A first device part (10) maintains a second insoluble carrier (12) and a third insoluble carrier (13) in such a manner that they overlap with each other at a detection portion (14) of a first insoluble carrier (11). These three carriers (11), (12) and (13) are housed not in contact with each other. A pressing unit (18) having a pressing surface (18a) that is parallel to the detection portion (14) is provided on an inner surface of the second device part (20) facing the detection portion (14). The pressing surface (18a) is displaced by being pressed toward the detection portion (14), and presses, from the upper side of the first insoluble carrier (11), the second insoluble carrier (12) and the third insoluble carrier (13) onto the first insoluble carrier (11). The first device part (10) and the second device part (20) are joined together.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 1, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Mikinaga Mori, Junichi Katada, Takayoshi Oyamada, Hideyuki Karaki, Masayasu Konishi, Hiroki Terada
  • Patent number: 8765487
    Abstract: A method is taught for the accurate determination of the premature rupture of membranes (PROM), defined as spontaneous rupture of membranes before the onset of uterine contractions. More specifically, a lateral flow assay strip tests for at least two antigens to greatly limit or eliminate the possibility of false negatives. A built in timer in the cassette holding the lateral flow assay further increases the accuracy of the test. A collection buffer vial with self-contained shipping and dropper caps and built in stand is also taught.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: July 1, 2014
    Assignee: Clinical Innovations
    Inventors: William Dean Wallace, Glen Ford
  • Patent number: 8722424
    Abstract: In a chromatography quantitative measuring apparatus, a beam applied from a light source to a chromatography test strip is formed into an elliptical shape by an optical means such as a cylindrical lens, a variation in absorbance that accompanies elution of a marker regent is detected while the elliptical beam is applied between a marker reagent hold part and a detection part, and a measurement is automatically started in a prescribed period of time since the detection of variation. According to the chromatography quantitative measuring apparatus so configured, non-uniform coloration is reduced by shaping the beam elliptically with the optical means, whereby the accuracy of quantitative analysis is enhanced, and the apparatus can be operated easily.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 13, 2014
    Assignee: Panasonic Corporation
    Inventors: Koji Miyoshi, Masahiro Aga, Kaoru Shigematsu
  • Patent number: 8722423
    Abstract: A device and method for the separation of a component in a liquid sample prior to the detection of an analyte in said sample, wherein a sample is added to a receiving zone on a substrate, said substrate further optionally comprising a reaction zone, a transport or incubation zone connecting the receiving and reaction zone, respectively, forming a flow path on a substrate, wherein said substrate is a non-porous substrate, and at least part of said flow path consists of areas of projections substantially vertical to said surface, and having a height (H), diameter (D) and reciprocal spacing (t1, t2) such, that lateral capillary flow of said liquid sample in said zone is achieved, and where means for separation are provided adjacent to the zone for receiving the sample. Said means for separation are chosen among filter means, optionally enhanced by affinity binding and/or aggregation; magnetic means, also optionally enhanced by affinity binding and/or aggregation; and acoustic means.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: May 13, 2014
    Assignee: Johnson & Johnson AB
    Inventors: David Bergman, Ib Mendel-Hartvig, Simon Uhrberg
  • Patent number: 8722425
    Abstract: In a chromatography quantitative measuring apparatus according to the present invention, a beam applied from a light source to a chromatography test strip is formed into an elliptical shape by an optical means such as a cylindrical lens, a variation in absorbance that accompanies elution of a marker regent is detected while the elliptical beam is applied between a marker reagent hold part and a detection part, and a measurement is automatically started in a prescribed period of time since the detection of variation. According to the chromatography quantitative measuring apparatus so configured, non-uniform coloration is reduced by shaping the beam elliptically with the optical means, whereby the accuracy of quantitative analysis is enhanced, and the apparatus can be operated easily.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 13, 2014
    Assignee: Panasonic Corporation
    Inventors: Koji Miyoshi, Masahiro Aga, Kaoru Shigematsu
  • Patent number: 8722426
    Abstract: The present invention relates generally to an assay for detecting and differentiating multiple analytes, if present, in a single fluid sample, including devices and methods therefore.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 13, 2014
    Assignee: Quidel Corporation
    Inventors: Paul Lambotte, Michael Cerrito, Cecille Ramirez
  • Patent number: 8716032
    Abstract: The present invention is to provide an immunochromatography method which is capable of performing a detection with high-sensitivity or reduced false-positives by suppressing the occurrence of false-positive when a signal is amplified. An immunochromatography method includes in a state of where a complex of a test substance and a labeling substance containing a metal coupled with a first binding substance for the test substance is formed, developing the complex on an insoluble carrier in presence of a protease hydrolyzate of protein; capturing the test substance and the labeling substance at a detection site of the insoluble carrier containing a material which has a binding property to the first binding substance for the test substance or a second binding substance for the test substance; and detecting the test substance by amplifying the labeling substance captured.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 6, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Junichi Katada, Hiroyuki Chiku
  • Patent number: 8709826
    Abstract: The invention relates to a device for determining an analyte in a liquid sample. The inventive device consists of: a capillary action means, involving lateral migration, defining a reference capillary action direction and comprising a liquid sample deposit area and an analytedetection area which is disposed downstream of the deposit area; a first analytespecific binding reagent which is conjugated to a visible and/or measurable marker and which is free to migrate when wet by means of capillary action in the abovementioned capillary actions means along the reference direction; and a second analytespecific binding reagent which is immobilized in the detection area. The invention is characterized in that the detection area comprises the analyte or an analogue of the analyte, which is immobilized and disposed at a distance from the second specific binding reagent.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: April 29, 2014
    Assignee: Vedalab
    Inventor: Raphael Donati
  • Patent number: 8709791
    Abstract: A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: April 29, 2014
    Assignees: STC.UNM, Sandia National Laboratories
    Inventors: Richard S Larson, Brian Hjelle, Pam R Hall, David C Brown, Marco Bisoffi, Susan M Brozik, Darren W Branch, Thayne L Edwards, David Wheeler
  • Patent number: 8709827
    Abstract: The invention provides polypeptide microparticles and methods for the preparation thereof using a nucleating agent.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 29, 2014
    Assignee: SurModics, Inc.
    Inventors: Joram Slager, John V. Wall
  • Patent number: 8709792
    Abstract: A method and device for detecting analytes in a test sample. Embodiments include methods for quantitatively detecting analytes within a range of concentrations. In an embodiment the method includes a lateral flow test strip with multiple test areas for capturing a labeled receptor to provide a detectable signal.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 29, 2014
    Assignee: Charm Sciences, Inc.
    Inventors: Steven J. Saul, Mark E. Tess, Robert J. Markovsky
  • Patent number: 8703504
    Abstract: A lateral flow, membrane-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes phosphorescence to detect the signals generated by excited phosphorescent labels. The labels may have a long emission lifetime so that background interference from many sources, such as scattered light and autofluorescence, is practically eliminated during detection. In addition, the phosphorescent labels may be encapsulated within particles to shield the labels from quenchers, such as oxygen or water, which might disrupt the phosphorescent signal.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: April 22, 2014
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: Xuedong Song
  • Patent number: 8703061
    Abstract: The present invention relates to an immunoaffinity device for capturing one or more analytes present at high or low concentrations in simple or complex matrices. The device is designed as an integrated modular unit and connected to capillary electrophoresis or liquid chromatography for the isolation, enrichment, separation and identification of polymeric macromolecules, primarily protein biomarkers. The integrated modular unit includes an analyte-concentrator-microreaction device connected to a modified cartridge-cassette.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 22, 2014
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8685486
    Abstract: Methods of and systems for applying blocking material to assay substrates are disclosed. A method includes supplying an assay substrate having at least one surface. A first portion of the surface of the substrate has at least one analysis feature thereon, and a second portion of the surface of the substrate lacks analysis features. The method also includes generating a spray of a blocking material in proximity to the surface of the substrate and continuing the spray generation in proximity to the surface of the substrate at least until the second portion of the surface of the substrate is substantially covered by the blocking material.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 1, 2014
    Assignee: Aushon Biosystems, Inc.
    Inventors: Kevin Oliver, Toni Holway, Travis Sullivan
  • Patent number: 8647890
    Abstract: More particularly, the present invention relates to a method for the detection of a target, e.g. pathogen in a human body fluid wherein a body fluid sample is collected with a swab member.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: February 11, 2014
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Franz Aberl, Marcus Scheibenzuber, Robert P. Sambursky, Robert W. VanDine, Jose S. Sambursky
  • Patent number: 8647888
    Abstract: An immunoassay test strip includes a sample pad for receiving a liquid patient sample; a conjugate pad fluidly coupled to the sample pad, wherein the conjugate pad contains a substantially uniform application of conjugate reagent; a contact pad fluidly coupled to the conjugate pad; a porous or bibulous member, e.g., made from nitrocellulose, fluidly coupled to the contact pad which is capable or transporting a liquid sample along the test strip, wherein the porous or bibulous member serves as the solid support upon which immunoreactions occur, and an absorbent pad fluidly coupled to the porous or bibulous member, which serves to draw sample fluid introduced onto the sample pad through the respective conjugate pad, contact pad and porous or bibulous member.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 11, 2014
    Assignee: Hologic, Inc.
    Inventor: Lina Baydoun
  • Patent number: 8623663
    Abstract: A new reaction apparatus including a capillary having an inner surface to which a probe molecule that specifically binds to an analyte is immobilized, allowing a short throughput time for completing the binding reaction, and achieving a highly efficient reaction using a small amount of a sample and a process of the reaction are provided. The reaction apparatus includes a capillary having an inner surface to which a probe molecule that specifically binds to an analyte is immobilized; a columnar magnetic body that is disposed in a fluid containing the analyte in the state that the fluid is placed in the capillary; end-fixing means for fixing one end of the columnar magnetic body in the capillary by a DC magnetic field; and end-moving means for moving the other end of the columnar magnetic body by an AC magnetic field so as to transfer the fluid.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 7, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Adarsh Sandhu
  • Patent number: 8614101
    Abstract: Devices and methods incorporate lysis agents into a point-of-care testing device. The sample is loaded, and then the sample travels until it encounters a lysis agent. The lysis agent is preferably pre-loaded onto the collection device. In a preferred embodiment, the initially lysis agent is localized between the sample application zone and the conjugate zone. The lysis agent is preferably soluble or miscible in the sample transport liquid, and the lysis agent is solubilized and activated upon contact with the sample transport liquid. The sample transport liquid then contains both lysis agent in solution or suspension and sample components in suspension. Any lysis-susceptible components in a sample, then being exposed in suspension to the lysis agent, are themselves lysed in situ. The running buffer then carries the analyte, including any lysis-freed components, to the detection zone.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 24, 2013
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Robert W. VanDine, Uma Mahesh Babu, Robert P. Sambursky
  • Patent number: 8614102
    Abstract: Disclosed is a test device and a method for qualitatively and/or quantitatively measuring the concentration of an analyte in a biological fluid sample. The test device includes a housing defining a sample port, a test well containing a stirrer and a conjugate, and a test strip disposed within the housing. The test well is also defined by being located between the sample port and the test strip. Fluid flows from the test well onto the test strip, which has a trapping zone which binds the analyte and allows for its detection. A control zone may also be included. The test device is generally adapted to use a sandwich assay. Also disclosed is a system comprising the test device and a signal sensing device; and a method for using the test device.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: December 24, 2013
    Assignee: Instant Medical Diagnostics, LLC
    Inventors: Alan R. Day, Allan M. Weinstein, Bryan C. Christiansen
  • Patent number: 8609434
    Abstract: Provided is a bio-disc reading apparatus for reading information including product authentication of a bio-disc and assay site of a bio-disc, and an assay method using same.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae Chern Yoo
  • Patent number: 8609037
    Abstract: A disposable cartridge adapted to be used with a sensor-dispensing instrument comprises a housing, test sensors, a mechanical mechanism and moveable seals. The housing forms at least one opening therethrough. The test sensors are stacked in the housing. The test sensors are adapted to assist in testing at least one analyte. The mechanical mechanism is adapted to urge the test sensors in a first direction. One of the test sensors is positioned for ejection from the cartridge. The moveable seals is adapted to be in a closed position that seals the at least one opening so as to provide a substantially moisture-proof and a substantially air-tight cartridge, and one of the moveable seals is adapted to be in an open position that allows one of the test sensors to be moved therethrough.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 17, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Mohammad A. Kheiri, D. Glenn Purcell
  • Patent number: 8609433
    Abstract: A sample compressor applies pressure to a sample collector and a sample application zone of a test strip to transfer a sample from the sample collector and a binding partner of an analyte to the sample application zone in a lateral flow device. At least one of the binding partners of the analyte is not located on the test strip prior to use of the lateral flow device. The test strip may be a universal test strip with no molecule that specifically binds the analyte is located on the test strip. The sample compressor may be a universal sample compressor also with no molecule that specifically binds the analyte on the sample compressor. The lateral flow device may also include one or more enhancement elements, where the enhancement elements bind to the analyte sandwich to increase a detection signal in the test zone.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: December 17, 2013
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Robert P. Sambursky, Uma Mahesh Babu, Robert W. VanDine, Ganga V. Kanaujia, Thomas Orsini
  • Patent number: 8603835
    Abstract: Test cells have a first sorbent strip with a sample receiving location and defining a first migration path, a distinct second sorbent strip which receives buffer solution and at least partially defines a second migration path distinct from and elongated relative to the first migration path, conjugate supported by the second strip, a test site located at a junction of the first and second strips and having an immobilized ligand-binding mechanism, and a divider which directs a first amount of the buffer to the first strip to move the sample to the test site and a second amount to the second strip to move the conjugate to the test site. The first and second migration paths have first and second lengths chosen so that ligand in the sample reaches the test site and binds to the immobilized ligand-binding mechanism prior to the conjugate reaching the test site.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 10, 2013
    Assignee: Chembio Diagnostic Systems, Inc.
    Inventor: Javanbakhsh Esfandiari
  • Patent number: 8592171
    Abstract: Embodiments described herein include methods and assays for detecting an analyte in a sample using a plurality of control zone capture agents. Some embodiments include detection of multiple analytes in a sample utilizing a plurality of analyte binders and a control zone containing multiple control zone capture agents. In some embodiments, the multiple control zone capture agents capture a plurality of binders within one control zone. Test results are determined by comparison of the control zone signal to a test zone signal.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: November 26, 2013
    Assignee: Charm Sciences, Inc.
    Inventors: Steven J. Saul, Robert J. Markovsky, David W. Douglas
  • Patent number: 8586384
    Abstract: A method of collecting a specimen of the present invention is used in detecting upper digestive system disease. The method of collecting a specimen includes: a step of positioning sampling equipment in the duodenum of the subject into which duodenal juice is secreted, the sampling equipment being used to collect and store the duodenal juice; a step of collecting duodenal juice naturally secreted in the duodenum using the sampling equipment; and a step of stopping collection of the duodenal juice when collection quantity of the duodenal juice reaches a predetermined quantity which is 3.0 ml or less.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 19, 2013
    Assignee: Olympus Corporation
    Inventors: Nao Moriya, Rie Kataoka, Hiromi Sanuki
  • Patent number: 8569073
    Abstract: A test element, for example in the form of an immunological test strip functioning according to the sandwich principle, for the fluorophoric detection of one or more analytes in a sample comprising an analyte detection zone and a combined control and calibration zone. The combined control and calibration zone include a fluorophore and binding partners for the specific binding of reagents labelled with a fluorophore. Furthermore, the invention concerns a method for calibrating an analyte-specific measurement signal, a method for determining the concentration of an analyte in a sample and the use of the test element for calibrating a signal generated in the analyte detection zone of a test element.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: October 29, 2013
    Assignee: Roche Diagnostics Operations Inc.
    Inventor: Thomas Fischer
  • Patent number: 8563330
    Abstract: The invention provides a device and method for the rapid identification of patients suspected of having thalassemia. The invention provides a test strip for the aqueous detection of thalassemia related proteins in whole blood. The test strip includes antibodies specific to the gamma 4, (?4) protein and provides easy visual discrimination between a positive result and a negative result. The invention can be used in remote or clinical settings.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 22, 2013
    Assignee: National Science and Technology Development Agency
    Inventors: Watchara Kasinrerk, Chatchai Tayapiwatana, Thanusak Tatu, Suthat Fucharoen, Sawitree Chiampanichayakul
  • Patent number: 8563328
    Abstract: A method for biosensing that includes passing, via convective flow, a sample believed to contain one or more target biomarkers through a microfluidic channel and over the surface of an optical waveguide that has been prepared to bind the one or more target biomarkers, and sensing for an emission output from the optical waveguide at a wavelength that is characteristic of the binding of the target biomarker. A biosensor device that includes a module defining at least one microfluidic channel, an optical waveguide exposed along at least a portion of its length to fluid flow within the microfluidic channel, where a surface of the optical waveguide being prepared to bind a target biomarker, and an excitation source to couple an excitation wavelength of light into the optical waveguide. The device also includes a sensor for detecting emission light from the optical waveguide at an emission wavelength characteristic of binding of the target biomarker.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: October 22, 2013
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Kyung Aih Kang, Chong H. Ahn
  • Patent number: 8557605
    Abstract: The invention relates to a device for performing immunological, histochemical and cytochemical, molecular biological, enzymological, clinical-chemical and other analyzes, wherein the device comprises an object holder having one or more elongate adhesive surfaces and a reagent holder having one or several channels. The object holder is detachably connectable to the reagent holder in such a manner that the elongate adhesive surfaces each face one of the channels and, when reaction partners bound to a solid phase are disposed on the elongate adhesive surfaces and reactants dissolved in liquid are present in the channels, the reaction partners and the reactants are in contact. Means are provided for preventing the liquid from passing from one channel into an adjacent channel.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: October 15, 2013
    Assignee: Euroimmun Medizinische Labordiagnostika AG
    Inventors: Winfried Stöcker, Martin Rateike, Bianca Maltzahn, Rasmus Behring
  • Patent number: 8557604
    Abstract: A lateral flow, membrane-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes phosphorescence to detect the signals generated by excited phosphorescent labels. The labels may have a long emission lifetime so that background interference from many sources, such as scattered light and autofluorescence, is practically eliminated during detection. In addition, the phosphorescent labels may be encapsulated within particles to shield the labels from quenchers, such as oxygen or water, which might disrupt the phosphorescent signal.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 15, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: Xuedong Song
  • Patent number: 8513028
    Abstract: The present invention relates to novel uses of the MLN 51 gene or protein. The MLN 51 gene and protein is closely related to the development of rheumatoid arthritis and serve as biomarker and therapeutic target for rheumatoid arthritis, particularly chronic synovitis.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: August 20, 2013
    Assignee: Creagene Inc.
    Inventors: Jin Ah Jang, Dae Seog Lim, Hyun Soo Lee, Yong Soo Bae
  • Patent number: 8506903
    Abstract: According to one embodiment of the present invention, an optical-based test sensor for use in the determination of an analyte in a liquid sample is disclosed. The test sensor includes a base, a polymer carrier, and a test membrane. The base has a capillary channel formed in a surface of the base that is adapted to move a liquid sample from an inlet to a reaction area formed in the base. The polymer carrier has a lower surface adhered to the surface of the base and is disposed over at least a portion of the capillary channel. The test membrane, which contains a reagent, is adhered to the lower surface of the polymer carrier and extends from the polymer carrier into the reaction area.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: August 13, 2013
    Assignee: Bayer HealthCare LLC
    Inventor: Rex J. Kuriger