Using Strip Lead Frame Patents (Class 438/111)
  • Patent number: 8138026
    Abstract: A leadframe with a structure made of a base metal (105), wherein the structure has a plurality of surfaces. On each of these surfaces are metal layers in a stack adherent to the base metal. The stack comprises a nickel layer (201) in contact with the base metal, a palladium layer (202) in contact with the nickel layer, and an outermost tin layer (203) in contact with the palladium layer. In terms of preferred layer thicknesses, the nickel layer is between about 0.5 and 2.0 ?m thick, the palladium layer between about 5 and 150 nm thick, and the tin layer less than about 5 nm thick, preferably about 3 nm. At this thinness, the tin has no capability of forming whiskers, but offers superb adhesion to polymeric encapsulation materials, improved characteristics for reliable stitch bonding as well as affinity to reflow metals (solders).
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Donald C Abbott
  • Patent number: 8138593
    Abstract: A packaged microchip has a base, at least one spacer coupled to the base, and first and second microchips mounted to the at least one spacer. The at least one spacer is configured to substantially prevent leakage current between the first and second microchips.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: March 20, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Angelo Pagkaliwangan, Garry Griffin
  • Patent number: 8138609
    Abstract: In a semiconductor device, a substrate includes a plurality of line conductors which penetrate the substrate from a top surface to a bottom surface of the substrate. A semiconductor chip is secured in a hole of the substrate. A first insulating layer is formed on the top surfaces of the substrate and the semiconductor chip. A first wiring layer is formed on the first insulating layer and electrically connected via through holes of the first insulating layer to the semiconductor chip and some line conductors exposed to one of the through holes. A second insulating layer is formed on the bottom surfaces of the substrate and the semiconductor chip. A second wiring layer is formed on the second insulating layer and electrically connected via a through hole of the second insulating layer to some line conductors exposed to the through hole.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 20, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Michio Horiuchi, Yasue Tokutake, Yuichi Matsuda, Tomoo Yamasaki, Yuta Sakaguchi
  • Patent number: 8138027
    Abstract: A semiconductor device is made by providing a semiconductor die having an optically active area, providing a leadframe or pre-molded laminated substrate having a plurality of contact pads and a light transmitting material disposed between the contact pads, attaching the semiconductor die to the leadframe so that the optically active area is aligned with the light transmitting material to provide a light transmission path to the optically active area, and disposing an underfill material between the semiconductor die and leadframe. The light transmitting material includes an elevated area to prevent the underfill material from blocking the light transmission path. The elevated area includes a dam surrounding the light transmission path, an adhesive ring, or the light transmission path itself can be the elevated area. An adhesive ring can be disposed on the dam. A filler material can be disposed between the light transmitting material and contact pads.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 20, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Henry D. Bathan, Lionel Chien Hui Tay, Arnel Senosa Trasporto
  • Patent number: 8133763
    Abstract: A method for fabricating a leadframe for a QFN/SON semiconductor device by selecting (301) a strip of a first metal as the leadframe core, then plating (302) a layer of a second metal over both surfaces of the strip, then cutting (304) a pattern from the pre-plated strip and further removing (304) portions of the second metal layer over a surface to expose the underlying core first metal. The exposed core first metal oxidized (305) before using (306) the leadframe for assembling the semiconductor device. The steps of cutting and removing are performed programmable machining techniques such as computer numerical controlled tools (CNC), electrical discharge machining (EDM), laser cutting, and water jet cutting.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Sreenivasan K. Koduri
  • Patent number: 8129228
    Abstract: An integrated circuit package that comprises a lead frame, an integrated circuit located on the lead frame and a shunt resistor coupled to the lead frame and to the integrated circuit. The shunt resistor has a lower temperature coefficient of resistance than the lead frame, and the lead frame has a lower resistivity than the shunt resistor. The shunt resistor has a low-resistance coupling to external leads of the lead frame, or, the shunt resistor has its own integrated external leads.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Ubol Udompanyavit, Sreenivasan K Koduri, Gerald W Steele, Jason M Cole, Steven Kummerl
  • Patent number: 8129225
    Abstract: A method includes providing an integral array of first carriers, arranging first semiconductor chips on the first carriers, and arranging an integral array of second carriers over the semiconductor chips.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: March 6, 2012
    Assignee: Infineon Technologies AG
    Inventors: Stefan Landau, Alexander Koenigsberger, Joachim Mahler, Klaus Schiess
  • Patent number: 8129272
    Abstract: A strengthened semiconductor die substrate and package are disclosed. The substrate may include contact fingers formed with nonlinear edges. Providing a nonlinear contour to the contact finger edges reduces the mechanical stress exerted on the semiconductor die which would otherwise occur with straight edges to the contact fingers. The substrate may additionally or alternatively include plating traces extending at an angle from the contact fingers. Extending at an angle, at least the ends of the plating traces at the edge of the substrate are covered beneath a lid in which the semiconductor package is encased. Thus, when in use with a host device, contact between the ends of the plating traces beneath the lid and contact pins of the host device is avoided.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 6, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Hem Takiar, Cheeman Yu, Ken Jian Ming Wang, Chin-Tien Chiu, Han-Shiao Chen, Chih-Chin Liao
  • Patent number: 8129229
    Abstract: A metal leadframe to be used in manufacturing a “flip-chip” type semiconductor package is treated to form a metal plated layer in an area to be contacted by a solder ball or bump on the chip. The leadframe is then process further to form an oxide or organometallic layer around the metal plated layer. Pretreating the leadframe in this manner prevents the solder from spreading out during reflow and maintains a good standoff distance between the chip and leadframe. During the molding process, the standoff between the chip and leadframe allows the molding compound to flow freely, preventing voids in the finished package.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 6, 2012
    Assignee: UTAC Thai Limited
    Inventors: Saravuth Sirinorakul, Somchai Nondhasitthichai
  • Publication number: 20120052631
    Abstract: A leadless integrated circuit (IC) package comprising an IC chip mounted to a die-attach area and a plurality of electrical contacts electrically connected to the IC chip. The IC chip, the electrical contacts, and the die-attach area are all covered with a molding material, with portions of the electrical contacts and die-attach area protruding from a bottom surface of the molding material.
    Type: Application
    Filed: March 8, 2010
    Publication date: March 1, 2012
    Inventors: John Mcmillan, Serafin P. Pedron, JR., Kirk Powell
  • Patent number: 8124462
    Abstract: A semiconductor including a selectively plated lead frame is disclosed. The lead frame contains a die pad and a plurality of lead fingers, where each lead finger is formed with a bonding pad on the center portion of the lead finger by selective plating. The surface area of the lead finger material is increased so the adhesion to molding material is improved. The edges of the lead finger tips are half etched to further increase the surface area of lead finger material. A method of manufacturing the lead frame is also provided.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: February 28, 2012
    Assignee: Blondwich Limited
    Inventor: Tung Lok Li
  • Patent number: 8114709
    Abstract: A lead frame facilitates the handling, positioning, attachment, and/or continued integrity of multiple dies, without the use of multiple separate parts, such as jumpers. The lead frame includes a number of structures, each of which is attached to at least one lead. At least one receiving surface, arranged to receive a die, is associated with each structure. When dies are disposed on the receiving surfaces, anodes are similarly-oriented. A number of fingers are attached to the lead frame, and one or more electrode contact surfaces are attached to each finger. Each electrode contact surface can be positioned (for example, bent) with respect to one receiving surface, to facilitate electrical connection between the anode of a die and a lead. The lead frame may be used in connection with surface- and through-hole-mountable electronic devices, such as bridge rectifier modules.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: February 14, 2012
    Inventors: Peter Chou, Lucy Tian, Bear Zhang
  • Patent number: 8105881
    Abstract: A method of fabricating a chip package structure includes the steps of providing a lead frame having a die pad, plural leads and at least one structure enhancement element. A chip is then disposed on the die pad and plural bonding wires are formed to electrically connect the chip to the leads. Then, an upper encapsulant and a first lower encapsulant are formed on an upper surface and a lower surface of the lead frame, respectively. The first lower encapsulant has plural concaves to expose the structure enhancement element. Finally, the structure enhancement element is etched with use of the first lower encapsulant as an etching mask until the die pad and one of the leads connected by the structure enhancement element, or two of the adjacent leads connected thereby are electrically insulated.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: January 31, 2012
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Jie-Hung Chiou, Yong-Chao Qiao, Yan-Yi Wu
  • Patent number: 8101463
    Abstract: A method of manufacturing a semiconductor device includes placing a chip on a carrier, and applying an electrically conducting layer to the chip and the carrier. The method additionally includes converting the electrically conducting layer into an electrically insulating layer.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: January 24, 2012
    Assignee: Infineon Technologies AG
    Inventors: Manfred Mengel, Joachim Mahler, Stefan Landau
  • Patent number: 8101462
    Abstract: A method for manufacturing a semiconductor device includes: when bonding a bump of an IC chip to a bonding position of a wiring pattern that is formed on an insulating film base member and has a surface covered by a plating layer, forming a plating layer around the bonding position among the wiring pattern at least in an outer peripheral section of a peeled surface of a portion of the wiring pattern peeled from the film base member.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: January 24, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Shigehisa Tajimi
  • Patent number: 8088649
    Abstract: A radiation-emitting semiconductor body with a carrier substrate and a method for producing the same. In the method, a structured connection is produced between a semiconductor layer sequence (2) and a carrier substrate wafer (1). The semiconductor layer sequence is subdivided into a plurality of semiconductor layer stacks (200) by means of cuts (6) through the semiconductor layer sequence, and the carrier substrate wafer (1) is subdivided into a plurality of carrier substrates (100) by means of cuts (7) through the carrier substrate wafer (1). In the method, the structured connection is formed in such a way that at least one semiconductor layer stack (200) is connected to one and only one associated carrier substrate (100). In addition, at least one cut (7) through the carrier substrate wafer is not extended by any of the cuts (6) through the semiconductor layer sequence such that a straight cut results through the carrier substrate wafer and the semiconductor layer sequence.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: January 3, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Volker Härle, Zeljko Spika
  • Patent number: 8088650
    Abstract: A method of fabricating a chip package is provided. A thin metal plate having a first protrusion part, a second protrusion part and a plurality of third protrusion parts are provided. A chip is disposed on the thin metal plate, and a plurality of bonding wires for electrically connecting the chip to the second protrusion part and the second protrusion part to the third protrusion parts is formed. An upper encapsulant and a lower encapsulant are formed on the upper surface and the lower surface of the thin metal plate respectively. The lower encapsulant has a plurality of recesses for exposing a portion of the thin metal plate at locations where the first protrusion part, the second protrusion part and the third protrusion parts are connected to one another. Finally, the thin metal plate is etched by using the lower encapsulant as an etching mask.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: January 3, 2012
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Yong-Chao Qiao, Jie-Hung Chiou, Yan-Yi Wu
  • Patent number: 8084299
    Abstract: A method of manufacturing an electronic device is provided. The method comprises providing a carrier sheet, etching the lead frame material sheet to form a recess on a first surface of the lead frame material sheet, placing an electronic chip into the recess of the carrier sheet, and thereafter, selectively etching a second surface of the lead frame material sheet, the second surface being opposite to the first surface.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: December 27, 2011
    Assignee: Infineon Technologies AG
    Inventors: Chip King Tan, Boon Huan Gooi
  • Publication number: 20110306166
    Abstract: Film frame assemblies and apparatus for testing and singulating integrated circuit packages, as well as associated methods for forming a film frame assembly, and testing and singulating integrated circuit packages are disclosed. A plurality of leads on a lead frame are cut to form singulated integrated circuit packages. Apparatus and methods are disclosed for mechanically aligning a set of electrical contacts attached to a contactor body with a plurality of leads on a singulated integrated circuit package.
    Type: Application
    Filed: June 14, 2010
    Publication date: December 15, 2011
    Applicant: Analog Devices, Inc.
    Inventor: Gerard Blaney
  • Patent number: 8076181
    Abstract: A packaging technique is described for QFNs, DFN, and other surface mount packages that allows the sides of leads to be plated with a wettable metal prior to the lead frames being singulated from the lead frame sheet. The leads of the lead frames in the sheet are shorted together and to the body of the lead frame sheet by a sacrificial interconnect structure. Chips are mounted to the lead frames and encapsulated, leaving the bottoms of the leads exposed. The lead frame sheet is then sawed along boundaries of the lead frames but not sawed through the interconnect structure. The sawing exposes at least a portion of the sides of the leads. The leads are then electroplated while the leads are biased with a bias voltage via the interconnect structure. After the plating, the lead frame sheet is sawed completely thorough the interconnect structure to singulate the lead frames and prevent the interconnect structure from shorting the leads together.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: December 13, 2011
    Assignee: Linear Technology Corporation
    Inventors: David A. Pruitt, Lothar Maier
  • Patent number: 8076183
    Abstract: A method is disclosed for attaching an interconnection plate to semiconductor die within leadframe package. A base leadframe is provided with die pad for attaching semiconductor die. An interconnection plate is provided for attachment to the base leadframe and semiconductor die. Add a base registration feature onto base leadframe and a plate registration feature onto interconnection plate with the registration features designed to match each other such that, upon approach of the interconnection plate to base leadframe, the two registration features would engage and guide each other causing concomitant self-aligned attachment of the interconnection plate to base leadframe. Next, the interconnection plate is brought into close approach to base leadframe to engage and lock plate registration feature to base registration feature hence completing attachment of the interconnection plate to semiconductor die and forming a leadframe package.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Jun Lu, Le Shi, Liang Zhao
  • Patent number: 8076184
    Abstract: A semiconductor device has a base carrier with first and second opposing surfaces. A plurality of cavities and base leads between the cavities is formed in the first surface of the base carrier. The first set of base leads can have a different height or similar height as the second set of base leads. A concave capture pad can be formed over the second set of base leads. Alternatively, a plurality of openings can be formed in the base carrier and the semiconductor die mounted to the openings. A semiconductor die is mounted between a first set of the base leads and over a second set of the base leads. An encapsulant is deposited over the die and base carrier. A portion of the second surface of the base carrier is removed to separate the base leads. An interconnect structure is formed over the encapsulant and base leads.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 13, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Emmanuel A. Espiritu, Henry D. Bathan, Dioscoro A. Merilo
  • Patent number: 8071428
    Abstract: A semiconductor device and method. One embodiment provides an encapsulation plate defining a first main surface and a second main surface opposite to the first main surface. The encapsulation plate includes multiple semiconductor chips. An electrically conductive layer is applied to the first and second main surface of the encapsulation plate at the same time.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: December 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Jens Pohl, Markus Brunnbauer, Irmgard Escher-Poeppel, Thorsten Meyer
  • Patent number: 8071426
    Abstract: A leadframe for use in fabricating a no lead semiconductor package contains connecting bars between individual electrical contact pads. For embodiments having a die pad, the leadframe further includes connecting bars between the contact pads and the die pad. The lower surfaces of the connecting bars are coplanar with the lower surfaces of the contact pads and/or the die pad, and the upper surfaces of the connecting bars are recessed with respect to the upper surfaces of the contact pads and/or the die pad. The semiconductor package is fabricated by encapsulating the die and the leadframe in a molding compound and then removing the connecting bars. The leadframe is typically formed by half etching a metal sheet to form the connecting bars. The connecting bars are removed from the encapsulated package by a selected cutting, sawing, or etching means, based on a predetermined pattern.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 6, 2011
    Assignee: Utac Thai Limited
    Inventors: Saravuth Sirinorakul, Somchai Nondhasitthichai
  • Patent number: 8072050
    Abstract: In accordance with the present invention, there are provided multiple embodiments of a semiconductor package, each embodiment including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package. More particularly, each embodiment of the semiconductor package of the present invention includes a generally planar die pad and a plurality of leads. Some of these leads include exposed bottom surface portions or lands which are provided in at least one row or ring which at least partially circumvents the die pad, with other leads including portions which protrude from respective side surfaces of a package body of the semiconductor package. A passive device may be electrically connected to and extend between the die pad and one of the leads, and/or may be electrically connected to and extend between and adjacent pair of the leads.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 6, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Nozad O. Karim, Timothy L. Olson
  • Patent number: 8067271
    Abstract: An integrated circuit package system is provided including forming an external interconnect and a tie bar, forming a lead tip and a lead body of the external interconnect, forming a hole in the external interconnect, forming a slot in the tie bar, connecting an integrated circuit die and the external interconnect, and molding the external interconnect and the tie bar with the slot and the hole filled.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: November 29, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Sung Uk Yang
  • Patent number: 8067274
    Abstract: In this manufacturing method of a semiconductor device, a metal plate having a plurality of projection electrodes in each of a plurality of semiconductor device formation areas is prepared. Next, the projection electrodes of each of the semiconductor formation areas are aligned corresponding to external connection electrodes of each semiconductor construction, and each semiconductor construction is separately arranged on the projection electrodes in the semiconductor device formation areas. Next, an insulating layer formation sheet is arranged on the metal plate, and the metal plate and the insulating layer formation sheet are joined by heat pressing. Then, the metal plate is patterned and a plurality of upper layer wirings that connect to the projection electrodes is formed.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: November 29, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventors: Ichiro Mihara, Takeshi Wakabayashi
  • Patent number: 8062929
    Abstract: A semiconductor device has a plurality of similar sized semiconductor die each with a plurality of bond pads formed over a surface of the semiconductor die. An insulating layer is formed around a periphery of each semiconductor die. A plurality of conductive THVs is formed through the insulating layer. A plurality of conductive traces is formed over the surface of the semiconductor die electrically connected between the bond pads and conductive THVs. The semiconductor die are stacked to electrically connect the conductive THVs between adjacent semiconductor die. The stacked semiconductor die are mounted within an integrated cavity of a substrate or leadframe structure. An encapsulant is deposited over the substrate or leadframe structure and the semiconductor die. A thermally conductive lid is formed over a surface of the substrate or leadframe structure. The stacked semiconductor die are attached to the thermally conductive lid.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 22, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Seng Guan Chow
  • Publication number: 20110281397
    Abstract: A semiconductor component having wetable leadframe lead surfaces and a method of manufacture. A leadframe having leadframe leads is embedded in a mold compound. A portion of at least one leadframe lead is exposed and an electrically conductive material is formed on the exposed portion. The mold compound is separated to form singulated semiconductor components.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Inventors: Phillip Celaya, James P. Letterman, JR., Robert L. Marquis
  • Patent number: 8048714
    Abstract: A semiconductor device mountable to a substrate includes a semiconductor die and an electrically conductive attachment region having a first attachment surface and a second attachment surface. The first attachment surface is arranged for electrical communication with the semiconductor die. A housing at least in part encloses the semiconductor die and the interlayer material. The housing has a recess disposed through the second attachment surface of the electrically conductive attachment region. A dielectric, thermally conductive interlayer material is located in the recess and secured to the housing. A metallic plate is located in the recess and secured to the interlayer material.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: November 1, 2011
    Assignee: Vishay General Semiconductor LLC
    Inventors: Ta-Te Chou, Xiong-Jie Zhang, Xian Li, Hai Fu, Yong-Qi Tian
  • Patent number: 8048718
    Abstract: A partly finished product of a semiconductor device includes a resin body encapsulating a semiconductor chip, first and second leads extended outwardly from the resin body, a dam bar connected between said first and second leads, and an excess resin portion protruding from the resin body between the first and second leads and the dam bar. The excess resin portion is cut off at two limited portions, and thereby two groove portions are formed in the excess resin portion. An apparatus for cutting the dam bar includes a punch having a cutting edge for cutting connection portions between the first and second leads and the dam bar and for cutting off the two limited portions of the excess resin portion. Since the cut region of the excess resin portion becomes smaller, a stress imparted to the resin body and/or the semiconductor chip through the excess resin portion can be smaller.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Toshinori Kiyohara, Yoshiharu Kaneda, Yoshikazu Takada
  • Patent number: 8039313
    Abstract: A semiconductor device and method for producing such a device is disclosed. One embodiment provides a semiconductor functional wafer having a first and second main surface. Component production processes are performed for producing a component functional region at the first main surface, wherein the component production processes produce an end state that is stable up to at least a first temperature. A carrier substrate is fitted to the first main surface. Access openings are produced to the first main surface. At least one further component production process is performed for producing patterned component functional regions at the first main surface of the functional wafer in the access openings. The end state produced in this process is stable up to a second temperature, which is less than the first temperature.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 18, 2011
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Kroener, Francisco Javier Santos Rodriguez, Carsten von Koblinski
  • Publication number: 20110244629
    Abstract: A method and apparatus are described for fabricating a low-pin-count chip package (701) including a die pad (706) for receiving an integrated circuit device and a plurality of connection leads (702) having recessed lead ends (704) at the outer peripheral region of each contact lead. After forming the package body (202) over the integrated circuit device, unplated portions (104) of the exposed bottom surface of the selectively plated lead frame are partially etched to form recessed lead ends (302) at the outer peripheral region of each contact lead, and the recessed lead ends are subsequently re-plated (402) to provide wettable recessed lead ends at the outer peripheral region of each contact lead.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Inventors: Zhiwei Gong, Nageswara Rao Bonda, Wei Gao, Jinsheng Wang, Dehong Ye
  • Publication number: 20110237030
    Abstract: A die level integrated interconnect decal manufacturing method and apparatus for implementing the method. In accordance with the technology concerning the soldering of integrated circuits and substrates, and particularly providing for solder decal methods forming and utilization, in the present instance there are employed underfills which consist of a solid film material and which are applied between a semiconductor chip and the substrate in order to enhance the reliability of a flip chip package. In particular, the underfill material increases the resistance to fatigue of controlled collapse chip connect (C4) bumps.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peter A. Gruber, Jae-Woong Nah
  • Patent number: 8026127
    Abstract: A method of manufacture of an integrated circuit package system including: providing a selective slot die paddle having selective slots and edge pieces around the perimeter; providing extended leads protruding into the selective slots; mounting an integrated circuit die on the selective slot die paddle; and coupling bond wires between the integrated circuit die, the edge pieces, the extended leads, or a combination thereof.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: September 27, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Linda Pei Ee Chua
  • Patent number: 8017446
    Abstract: Method for manufacturing a rigid power module with a layer that is electrically insulating and conducts well thermally and has been deposited as a coating, the structure having sprayed-on particles that are fused to each other, of at least one material that is electrically insulating and conducts well thermally, having the following steps: manufacturing a one-piece lead frame; populating the lead frame with semiconductor devices, possible passive components, and bonding corresponding connections, inserting the thus populated lead frame into a compression mould so that accessibility of part areas of the lead frame is ensured, pressing a thermosetting compression moulding compound into the mould while enclosing the populated lead frame, coating the underside of the thus populated lead frame by thermal spraying in at least the electrically conducting areas and overlapping also the predominant areas of the spaces, filled with mold compound.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: September 13, 2011
    Assignee: Danfoss Silicon Power GmbH
    Inventors: Ronald Eisele, Mathias Kock, Teoman Senyildiz
  • Patent number: 8011090
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar M. Subramanian
  • Patent number: 8008132
    Abstract: A method of fabricating a leadframe-based semiconductor package, and a semiconductor package formed thereby, are disclosed. The semiconductor package includes a leadframe and one or more semiconductor die affixed to a die paddle of the leadframe. The leadframe is formed with a plurality of electrical terminals that get surface mounted to a host PCB. The leadframe further includes one or more extended leads, at least one of which includes an electrically conductive island which gets surface mounted to the host PCB with the electrical terminals. The islands effectively increase the number terminals within the package without adding footprint to the package.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: August 30, 2011
    Assignee: SanDisk Technologies Inc.
    Inventors: Suresh Upadhyayula, Bonnie Ming-Yan Chan, Shih-Ping Fan-chiang, Hem Takiar
  • Patent number: 8004069
    Abstract: A method of manufacturing a semiconductor package, where the package includes a surface for attachment of the package to a device by a joint formed of a connective material in a joint area of the surface. The method is characterised in that it comprises the step of patterning one or more channels on the surface which channels extend away from the joint area towards an edge of the surface. Also the method has the step of applying a compound to one or more channels which compound interacts with the connective material, such that when the semiconductor package is attached to the device the interaction defines one or more paths in the connective material. These correspond to the one or more channels on the surface and allow the passage of waste material away from the joint area to the outer edge of the surface.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 23, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Robert Bauer, Anton Kolbeck
  • Patent number: 8003534
    Abstract: An apparatus and method for holding a semiconductor device in a wafer. A bar is connected to the wafer. A first sidewall comprises a first end and a second, and is connected to the bar at its first end. A first tab comprises a first end and a second end, and is connected to the second end of the first sidewall at its first end and connected to the first side of the semiconductor device at its second end. The thickness of the first tab is less than the thickness of the bar and the thickness of the first sidewall.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: August 23, 2011
    Assignee: Applied Nanostructures, Inc.
    Inventor: Ami Chand
  • Patent number: 7998790
    Abstract: A method of manufacture of an integrated circuit die packaging system includes: providing a lead frame having a die attach paddle, an isolated pad, and a connector; attaching an integrated circuit die to the die attach paddle and the connector; forming an encapsulation over the integrated circuit die, the connector, the die attach paddle, and the isolated pad; and singulating the connector and the die attach paddle whereby the isolated pads are electrically isolated.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: August 16, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Lionel Chien Hui Tay, Jose Alvin Caparas
  • Patent number: 7994629
    Abstract: A method of manufacture of a leadless integrated circuit packaging system includes: providing a substrate; patterning a die attach pad on the substrate; forming a tiered plated pad array around the die attach pad; mounting an integrated circuit die on the die attach pad; coupling an electrical interconnect between the integrated circuit die and the tiered plated pad array; forming a molded package body on the integrated circuit die, the electrical interconnects, and the tiered plated pad array; and exposing a contact pad layer by removing the substrate.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: August 9, 2011
    Assignee: Stats Chippac Ltd.
    Inventor: Zigmund Ramirez Camacho
  • Patent number: 7989931
    Abstract: An integrated circuit package system is provided including: forming a die paddle; forming an under paddle leadframe including lower leadfingers thereon; attaching the under paddle leadframe to the die paddle with the lower leadfingers extending under the die paddle; attaching a die to the die paddle; and planarizing the bottom surface of the under paddle leadframe to separate the lower leadfingers under the die paddle.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 2, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Guruprasad Badakere Govindaiah, Arnel Trasporto
  • Publication number: 20110165729
    Abstract: Quad Flat No-Lead packaged devices are manufactured using two singulation operations with two different saw blades of varying widths with the first singulation operation using a wider saw blade than the second singulation operation. Between singulation operations, the exposed portions of the leads are plated with a solderable metal. By performing the second singulation operation within the first cut made by the first singulation, at least half of the exposed metal of the leads remains plated. Thus, better solder joints may be formed, which allows for simpler visual inspection.
    Type: Application
    Filed: July 5, 2010
    Publication date: July 7, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Peng LIU, Xu Gao, Qingchun He, Zhaobin Qi, Dehong Ye
  • Patent number: 7968377
    Abstract: An integrated circuit package system is provided. A protruding pad is formed on a leadframe. A die is attached to the leadframe. The die is electrically connected to the leadframe. At least portions of the leadframe, the protruding pad, and the die are encapsulated in an encapsulant.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: June 28, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Ming Ying, Il Kwon Shim, Roger Emigh
  • Patent number: 7968376
    Abstract: Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a packaged microelectronic device can include a support member and at least one die in a stacked configuration attached to the support member. The support member may include a leadframe disposed longitudinally between first and second ends and latitudinally between first and second sides. The leadframe includes a lead extending between the first end and the first side.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Teck Kheng Lee, Voon Siong Chin, Ai Chie Wang
  • Patent number: 7955901
    Abstract: A method for producing a power semiconductor module having surface mountable flat external contact areas is disclosed. At least one power semiconductor chip is fixed by its rear side on a drain external contact. An insulation layer covers the top side over the side edges of the semiconductor chip as far as the inner housing plane was a leaving free the source and gate contact areas on the top side of the semiconductor chip and also was partly leaving free the top sides of the corresponding external contacts.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 7, 2011
    Assignee: Infineon Technologies AG
    Inventors: Henrik Ewe, Stefan Landau, Klaus Schiess, Robert Bergmann, Alvin Wee Beng Tatt, Soon Lock Goh, Joachim Mahler, Boris Plikat, Reimund Engl
  • Patent number: 7943431
    Abstract: A package to encase a semiconductor package is manufactured by the following steps. First, an electrically conductive frame is provided. This frame has a plurality of leadframes arranged in a matrix with each leadframe having a plurality of spaced leads extending outwardly from a central aperture. The electrically conductive frame further includes a plurality of connecting bars joining outer end portions of adjacent ones of the leadframes. Second, a groove is formed in the connecting bars to form a reduced thickness portion between the outer end portions of adjacent ones of the leadframes. Third, a semiconductor device is electrically coupled to inner portions of said leads. Fourth, the frame and the semiconductor devices are encapsulated in a molding compound. Finally, the molding compound and the frame are cut along the grooves to form singulated semiconductor packages having outer lead portions with a height greater than the height of the reduced thickness portion.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 17, 2011
    Assignee: Unisem (Mauritius) Holdings Limited
    Inventors: Romarico S. San Antonio, Anang Subagio
  • Patent number: 7935570
    Abstract: A semiconductor device has a first insulation layer formed over a sacrificial substrate. A first conductive layer is formed over the first insulating layer. Conductive pillars are formed over the first conductive layer. A pre-fabricated IPD is disposed between the conductive pillars. An encapsulant is formed around the IPD and conductive pillars. A second insulation layer is formed over the encapsulant. The conductive pillars are electrically connected to the first and second conductive layers. The first and second conductive layers each include an inductor. Semiconductor devices are mounted over the first and second insulating layer and electrically connected to the first and second conductive layers, respectively. An interconnect structure is formed over the first and second insulating layers, respectively, and electrically connected to the first and second conductive layers. The sacrificial substrate is removed.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 3, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jianmin Fang, Kang Chen, Haijing Cao
  • Patent number: 7927921
    Abstract: A uniform layer of non-conductive material, e.g., epoxy, is screen printed onto the backside of an integrated circuit wafer to a required thickness, and then heated until it is hard cured (C-stage). The integrated circuit wafer having the hard cured coating is then sawn apart to separate the individual integrated circuit dice. A non-conductive adhesive is dispensed onto mating faces of die attach paddles of leadframes. The dice are placed into the non-conductive adhesive and then the die and die attach paddle assembly are heated to hard cure the adhesive between the mating faces of the die and die attach paddle. This provides long term electrical isolation of the integrated circuit die from the die attach paddle, and effectively eliminates silver migration from the die attach paddle which causes conductive paths to form that increase unwanted leakage currents in the die and ultimately cause failure during operation thereof.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: April 19, 2011
    Assignee: Microchip Technology Incorporated
    Inventors: Ekgachai Kenganantanon, Surapol Sawatjeen