Metallic Housing Or Support Patents (Class 438/121)
  • Patent number: 8981551
    Abstract: A semiconductor device may include at least one pad adjacent a top surface of the device, and a metal crack stop structure below the at least one pad. The metal crack structure may have an inner envelope and an outer envelope, and may be configured to be vertically aligned with the at least one pad so that an edge of the at least one pad is between the inner and outer envelopes.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 17, 2015
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Philippe Delpech, Eric Sabouret, Sebastien Gallois-Garreignot
  • Publication number: 20150069132
    Abstract: A method for producing a smart card module arrangement includes: arranging a smart card module on a first carrier layer, wherein the first carrier layer is free of a prefabricated smart card module receptacle cutout for receiving the smart card module. The smart card module includes: a substrate; a chip on the substrate; a first mechanical reinforcement structure between the chip and the substrate. The first mechanical reinforcement structure covers at least one part of a surface of the chip. The method further includes applying a second carrier layer to the smart card module, wherein the second carrier layer is free of a prefabricated smart card module receptacle cutout for receiving the smart card module; and at least one of laminating or pressing the first carrier layer with the second carrier layer, such that the smart card module is enclosed by the first carrier layer and the second carrier layer.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 12, 2015
    Inventors: Frank PUESCHNER, Thomas Spoettl, Jens POHL, Peter STAMPKA
  • Publication number: 20150061149
    Abstract: Packages, packaging methods, and packaged semiconductor devices are disclosed. In some embodiments, a package for a semiconductor device includes a redistribution layer (RDL) and a plurality of through package vias (TPV's) coupled to the RDL. Each of the plurality of TPV's comprises a first region proximate the RDL and a second region opposite the first region. The first region comprises a first width, and the second region comprises a second width. The second width is greater than the first width.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih Ting Lin, Szu Wei Lu, Jui-Pin Hung, Jing-Cheng Lin
  • Publication number: 20150060898
    Abstract: A method for bonding an LED assembly 71 or other electronic package 31 to a substrate PCB containing a heat-sink 52, which utilizes layers of reactive multilayer foil 51 disposed between contacts 32, 34 of the electronic package 31 and the associated contact pads 55 on the supporting substrate PCB. By initiating an exothermic reaction in the reactive multilayer foil 51, together with an application of pressure, sufficient heat is generated between the contacts 32, 34 and the associated contact pads 55 to melt adjacent bonding material 54 to obtain good electrically and thermally conductive bonds between the contacts 32, 34 and contact pads 55 without thermally damaging the electronic package 31, heat-sensitive components 35 associated with the electronic package 31, or other the supporting substrate PCB.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventors: David Van Heerden, Timothy Ryan Rude, Ramzi Vincent
  • Publication number: 20150061924
    Abstract: A semiconductor module has: an integrated circuit, which includes at least one oscillator for generating a radar signal; a rewiring layer for the external connection of the integrated circuit; and at least two antenna structures integrated into the semiconductor module for transmitting and/or receiving radar signals, at least one of the at least two antenna structures being connected to the integrated circuit, and at least one first one of the antenna structures being embedded in a housing material of the semiconductor module outside a height region of the rewiring layer.
    Type: Application
    Filed: January 18, 2013
    Publication date: March 5, 2015
    Applicant: ROBERT BOSCH GMBH
    Inventors: Thomas Binzer, Delf Mittelstrass
  • Patent number: 8963299
    Abstract: A semiconductor package is provided, including: a substrate having at least a conductive pad; a semiconductor element disposed on the substrate; a conductive adhesive formed on top and side surfaces of the semiconductor element and extending to the conductive pad; and an electronic element disposed on the conductive adhesive. The conductive adhesive and the conductive pad form a shielding structure so as to prevent electromagnetic interference from occurring between the semiconductor element and the electronic element.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Cheng Lin, Tsung-Hsien Hsu, Heng-Cheng Chu, Chao-Ya Yang, Chih-Ming Cheng
  • Publication number: 20150048492
    Abstract: A semiconductor package includes a baseplate having a die attach region and a peripheral region, a transistor die having a first terminal attached to the die attach region, and a second terminal and a third terminal facing away from the baseplate, and a frame including an electrically insulative member having a first side attached to the peripheral region of the baseplate, a second side facing away from the baseplate, a first metallization at the first side of the insulative member and a second metallization at the second side of the insulative member. The insulative member extends outward beyond a lateral sidewall of the baseplate. The first metallization is attached to the part of the first side which extends outward beyond the lateral sidewall of the baseplate. The first and second metallizations are electrically connected at a region of the insulative member spaced apart from the lateral sidewall of the baseplate.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 19, 2015
    Inventors: Alexander Komposch, Soon Ing Chew, Brian Condie
  • Publication number: 20150048506
    Abstract: A memory device and a manufacturing method of the same are provided. The memory device includes a substrate, a 3D memory array, a periphery circuit, and a conductive connection structure. The 3D memory array and the periphery circuit are stacked on the substrate. The periphery circuit includes a patterned metal layer and a contact structure electrically connected to the patterned metal layer. The conductive connection structure is electrically connected to the patterned metal layer. The 3D memory array is electrically connected to the periphery circuit via the conductive connection structure.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Yi-Hsuan Hsiao, Yen-Hao Shih, Shih-Hung Chen, Hang-Ting Lue
  • Patent number: 8956915
    Abstract: Provided is a semiconductor device including a flexible circuit board which includes a first external electrode provided on a first face and second and third external electrodes provided on a second face; a plurality of memory devices and passive components; a supporter which is provided with a groove on one face; and a computing processor device. The memory devices and the passive components are connected to the first external electrode, the one face of the supporter is bonded on the first face of the flexible circuit board so that the groove houses the memory devices and the passive components. The flexible circuit board is bent along a perimeter of the supporter to be wrapped around a side face and another face of the supporter. On the flexible circuit board, the second external electrode is provided on the second face which is opposite to the first external electrode, and the third external electrode is provided on the second face which is bent to the another face of the supporter.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: February 17, 2015
    Assignees: NEC Corporation, NEC AccessTechnica Ltd.
    Inventors: Takao Yamazaki, Shinji Watanabe, Shizuaki Masuda, Katsuhiko Suzuki
  • Patent number: 8956918
    Abstract: A method for manufacturing a chip arrangement in accordance with various embodiments may include: placing a chip on a carrier within an opening of a metal structure disposed over the carrier; fixing the chip to the metal structure; removing the carrier to thereby expose at least one contact of the chip; and forming an electrically conductive connection between the at least one contact of the chip and the metal structure.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 17, 2015
    Assignee: Infineon Technologies AG
    Inventor: Petteri Palm
  • Patent number: 8957531
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
  • Patent number: 8956914
    Abstract: An integrated circuit package system comprising: forming a substrate having a solder mask with a support structure formed from the solder mask; mounting a first integrated circuit device over the support structure; connecting the substrate and the first integrated circuit device; and encapsulating the first integrated circuit device and the support structure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Ja Eun Yun, Jong Wook Ju
  • Patent number: 8957518
    Abstract: The invention provides a molded interposer package and a method for fabricating the same. The molded interposer package includes a plurality of metal studs. A molding material encapsulates the metal studs leaving the bottom surfaces of the metal studs exposed. A first chip is disposed on the molding material, connecting to the top surfaces of the metal studs. A plurality of solder balls connects and contacts to the bottom surfaces of the metal studs.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 17, 2015
    Assignee: Mediatek Inc.
    Inventors: Thomas Matthew Gregorich, Andrew C. Chang, Tzu-Hung Lin
  • Publication number: 20150041984
    Abstract: An electronic component includes a high-voltage depletion-mode transistor, a low-voltage enhancement-mode transistor arranged adjacent and spaced apart from the high-voltage depletion-mode transistor, and an electrically conductive member electrically coupling a first current electrode of the high-voltage depletion-mode transistor to a first current electrode of the low-voltage enhancement-mode transistor. The electrically conductive member has a sheet-like form.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Inventors: Ralf Otremba, Klaus Schiess, Oliver Häberlen
  • Patent number: 8952545
    Abstract: One aspect is a device including a carrier comprising a first conducting layer, a first insulating layer over the first conducting layer, and at least one first through-connection from a first face of the first insulating layer to a second face of the first insulating layer. A semiconductor chip is attached to the carrier and a second insulating layer is over the carrier and the semiconductor chip. A metal layer is over the second insulating layer. A second through-connection is through the second insulating layer electrically coupling the semiconductor chip to the metal layer. A third through-connection is through the second insulating layer electrically coupling the carrier to the metal layer.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: February 10, 2015
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Henrik Ewe, Klaus Schiess, Manfred Mengel
  • Patent number: 8945991
    Abstract: There are disclosed herein various implementations of improved wafer level semiconductor packages. One exemplary implementation comprises forming a post-fabrication redistribution layer (post-Fab RDL) between first and second dielectric layers affixed over a surface of a wafer, and forming a window for receiving an electrical contact body in the second dielectric layer, the window exposing the post-Fab RDL. At least one of the first and second dielectric layers is a pre-formed dielectric layer, which may be affixed over the surface of the wafer using a lamination process. In one implementation, the window is formed using a direct laser ablation process.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: February 3, 2015
    Assignee: Broadcom Corporation
    Inventors: Kevin (Kunzhong) Hu, Chonghua Zhong, Edward Law
  • Patent number: 8945992
    Abstract: A metal tab die attach paddle (DAP) disposed between the lead frame and a power device die in a power device package reduces the stress exerted on the semiconductor power device die caused by the different coefficients of thermal expansion (CTE) of the semiconductor power device die and the lead frame. In addition the power device package substantially prevents impurities from penetrating into the power device package by increasing the surface creepage distance of a sealant resulting from the metal tab DAP and an optional swaging of the lead frame.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: February 3, 2015
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Joon-seo Son, O-seob Jeon, Taek-keun Lee, Byoung-ok Lee
  • Patent number: 8945959
    Abstract: A method for manufacturing an LED (light emitting diode) is disclosed wherein a metal substrate is provided. A chip fastening area with a depression and two wire fixing areas on the first metal substrate are defined on the metal substrate. The chip fastening area and the wire fixing areas are separated by a plurality of first grooves. An LED chip is provided in the depression of the chip fastening area and electrically connected to the wire fixing areas by wires. An encapsulant is formed to cover and connect the chip fastening area and the wire fixing areas. Portions of the metal substrate except the chip fastening area and the wire fixing areas are removed.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: February 3, 2015
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Pin-Chuan Chen, Chao-Hsiung Chang, Hsin-Chiang Lin
  • Patent number: 8946886
    Abstract: An electronic component package includes a substrate having a first surface, an electronic component mounted to the substrate, traces on the first surface, a terminal on the first surface, and a solder mask on the first surface. The solder mask includes a solder mask opening exposing the terminal. An electrically conductive coating and/or conductive coating feature is formed on the solder mask and extends into the solder mask opening to contact and be electrically connected to the terminal. The conductive coating may be grounded to shield the electronic component from electromagnetic interference (EMI). Further, the conductive coating provides a ground plane for the traces facilitating impedance matching of signals on the traces. In addition, the conductive coating has a high thermal conductivity thus enhancing heat dissipation from the electronic component.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: February 3, 2015
    Inventors: Ruben Fuentes, August Joseph Miller, Jr.
  • Publication number: 20150028470
    Abstract: A silicon interconnect structure includes a peripheral outer via in a silicon substrate, a solid core inner via in the silicon substrate, the solid core inner via coaxial with the peripheral outer via to form a coaxial via structure, a metal interconnect stack formed over a first surface of the peripheral outer via and the solid core inner via, at least portions of the metal interconnect stack forming an electrical connection with the peripheral outer via and the solid core inner via, first contact pads on a surface of the metal interconnect stack, and second contact pads on an exposed surface of the peripheral outer via and the solid core inner via.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Avago Technologies General IP (Singapore) Pte.Ltd.
    Inventors: Adam E. Gallegos, Thomas E. Cynkar
  • Publication number: 20150028486
    Abstract: Embodiments of the present disclosure are directed towards interconnect structures for embedded bridge in integrated circuit (IC) package assemblies. In one embodiment, a method includes depositing an electrically insulative layer on a bridge interconnect structure, the bridge interconnect structure including a die contact that is configured to route electrical signals between a first die and a second die, depositing a sacrificial layer on the electrically insulative layer, forming an opening through the sacrificial layer and the electrically insulative layer to expose the die contact and forming a die interconnect of the first die or the second die by depositing an electrically conductive material into the opening. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Inventors: Yueli Liu, Chong Zhang, Qinglei Zhang
  • Patent number: 8940585
    Abstract: The present disclosure provides semiconductor packaging techniques that form a substrate using metal and insulating materials. The substrate includes a first surface that is bonded to a semiconductor device and a second surface that is bonded to a printed circuit board. The substrate is formed using several techniques that minimize the amount of mask levels used to form the substrate. For example, a metal substrate is patterned to form a three dimensional pattern on the surface. A dielectric material is deposited on the three dimensional pattern. Using several patterning and polishing embodiments described herein, the metal/dielectric substrate is patterned and polished to form a substantially flush surface that is bonded to the semiconductor device. In one embodiment, the top surface of the metal/dielectric substrate is patterned to expose the underlying metal substrate and the bottom surface of the metal substrate is polished to be substantially flush with the dielectric material.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 27, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Shiann-Ming Liou, Huahung Kao
  • Publication number: 20150021759
    Abstract: Embodiments of mechanisms for forming a package structure are provided. A method for forming a package structure includes providing a semiconductor die and forming a first bump structure and a second bump structure over the semiconductor die. The second bump structure is thinner and wider than the first bump structure. The method also includes providing a substrate having a first contact pad and a second contact pad formed on the substrate. The method further includes forming a first solder paste structure and a second solder paste structure over the first contact pad and the second contact pad, respectively. The second solder paste structure is thicker than the first solder paste structure. In addition, the method includes reflowing the first bump structure and the second bump structure with the first solder paste structure and the second solder paste structure, respectively, to bond the semiconductor die to the substrate.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 22, 2015
    Inventor: Hsien-Wei CHEN
  • Patent number: 8937383
    Abstract: The semiconductor package as well as a method for making it and using it is disclosed. The semiconductor package comprises a semiconductor chip having at least one heat-generating semiconductor device and a volumetrically expandable chamber disposed to sealingly surround the semiconductor chip, the volumetrically expandable chamber filled entirely with a non-electrically conductive liquid in contact with the semiconductor device and circulated within the volumetrically expandable chamber at least in part by the generated heat of the at least one semiconductor device to cool the at least one semiconductor device.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 20, 2015
    Assignee: The Boeing Company
    Inventors: Andrew G. Laquer, Ernest E. Bunch
  • Publication number: 20150014836
    Abstract: An improved electronic module assembly and method of fabrication is disclosed. A patterned array of adhesive is deposited on a laminate, to which a chip is attached. Each region of adhesive is referred to as a lid tie. A lid is placed on the laminate, and is in contact with the lid ties. The lid ties serve to add stability to the laminate and reduce flexing during thermal processing and mechanical stress.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventors: Edmund Blackshear, Elaine Cyr, Benjamin Vito Fasano, Paul Francis Fortier, Marcus E. Interrante, Roger Lam, Shidong Li, Thomas Edward Lombardi, Hilton T. Toy, Thomas Weiss
  • Publication number: 20150008576
    Abstract: Semiconductor devices are described that have bump assemblies configured to furnish shock absorber functionality. In an implementation, a wafer-levelchip-scale package devices include an integrated circuit chip having an array of bump assemblies disposed over the integrated circuit chip. The array of bump assemblies comprises a plurality of first bump assemblies that include solder bumps composed at least substantially of a solder composition (i.e., solder bumps that do not include a core). The array further comprises a plurality of second bump assemblies that includes a solder bump having a core configured to furnish shock absorber functionality to the integrated circuit chip.
    Type: Application
    Filed: March 4, 2014
    Publication date: January 8, 2015
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Viren Khandekar, Karthik Thambidurai, Vivek S. Sridharan
  • Patent number: 8928134
    Abstract: The described embodiments of mechanisms of forming a die package and package on package (PoP) structure involve forming a solder paste layer over metal balls of external connectors of a die package. The solder paste layer protects the metal balls from oxidation. In addition, the solder paste layer enables solder to solder bonding with another die package. Further, the solder paste layer moves an intermetallic compound (IMC) layer formed between the solder paste layer and the metal balls below a surface of a molding compound of the die package. Having the IMC layer below the surface strengthens the bonding structure between the two die packages.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Wei Huang, Wei-Yu Chen, Meng-Tse Chen, Wei-Hung Lin, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8929090
    Abstract: An object of the present invention is to propose a functional element built-in substrate which enables an electrode terminal of a functional element to be well connected to the back surface on the side opposite to the electrode terminal of the functional element, and which can be miniaturized.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: January 6, 2015
    Assignee: NEC Corporation
    Inventors: Yoshiki Nakashima, Shintaro Yamamichi, Katsumi Kikuchi, Kentaro Mori, Hideya Murai
  • Patent number: 8928145
    Abstract: A structure and system for forming the structure. The structure includes a semiconductor chip and an interposing shield having a top side and a bottom side. The semiconductor chip includes N chip electric pads, wherein N is a positive integer of at least 2. The N chip electric pads are electrically connected to a plurality of devices on the semiconductor chip. The electric shield includes 2N electric conductors and N shield electric pads. Each shield electrical pad is in electrical contact and direct physical contact with a corresponding pair of electric conductors of the 2N electric conductors. The interposing shield includes a shield material. The shield material includes a first semiconductor material. The semiconductor chip is bonded to the top side of the interposing shield. Each chip electric pads is in electrical contact and direct physical contact with a corresponding shield electrical pad of the N shield electric pads.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Paul Stephen Andry, Cyril Cabral, Jr., Kenneth P. Rodbell, Robert L. Wisnieff
  • Patent number: 8928136
    Abstract: A lead frame includes: a chip-mounting region provided on a front surface; a lead region including a plurality of concave and convex sections arranged in an in-plane direction of the chip-mounting region; and a terminal arranged in the concave section. A thickness of the lead region from the front surface is smaller than a thickness of the terminal from the front surface.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: January 6, 2015
    Assignee: Sony Corporation
    Inventors: Shinji Watanabe, Akihisa Eimori
  • Patent number: 8927341
    Abstract: An object of the invention is to provide a method for producing a conductive member having low electrical resistance, and the conductive member is obtained using a low-cost stable conductive material composition that does not contain an adhesive. A method for producing a semiconductor device in which silver or silver oxide provided on a surface of a base and silver or silver oxide provided on a surface of a semiconductor element are bonded, includes the steps of arranging a semiconductor element on a base such that silver or silver oxide provided on a surface of the semiconductor element is in contact with silver or silver oxide provided on a surface of the base, and bonding the semiconductor element and the base by applying heat having a temperature of 200 to 900° C. to the semiconductor device and the base.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 6, 2015
    Assignee: Nichia Corporation
    Inventors: Masafumi Kuramoto, Satoru Ogawa, Miki Niwa
  • Patent number: 8927391
    Abstract: A method of packaging includes placing a package component over a release film, wherein solder balls on a surface of the package component are in physical contact with the release film. Next, A molding compound filled between the release film and the package component is cured, wherein during the step of curing, the solder balls remain in physical contact with the release film.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Wei-Hung Lin, Sheng-Yu Wu, Chun-Cheng Lin, Kuei-Wei Huang, Yu-Peng Tsai, Chih-Wei Lin, Wen-Hsiung Lu, Hsiu-Jen Lin, Bor-Ping Jang, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8921163
    Abstract: Provided are a semiconductor package and a method of fabricating the same. The semiconductor package includes a semiconductor chip having a bonding pad, a metal line electrically connected to the semiconductor chip and having a terminal contacting an external terminal, an insulation layer covering the metal line and having an opening that defines the terminal, and a molding layer molding the semiconductor chip, wherein the molding layer includes a recess pattern exposing the bonding pad and extending from the bonding pad to the terminal, and the metal line is embedded in the recess pattern to contact the bonding pad.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sangwook Park, Jonggi Lee, Wonchul Lim
  • Publication number: 20140374926
    Abstract: A semiconductor device includes a semiconductor chip having an electrode, a connector having a chip contact surface, an interconnecting portion, and an external electrode terminal contact surface, the chip contact surface being electrically connected to the electrode, and a first connection material disposed between the chip contact surface and the electrode, the first connecting material having a surface area that is greater than a surface area of the chip contact surface.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi MIYAKAWA
  • Patent number: 8916964
    Abstract: A semiconductor device and a method of producing the same, wherein a joining member and a joined member are bonded by means of brazing in a way such that no voids are left inside the joining layer. The semiconductor device comprises a joined member and a joining member which is joined to the joined member by means of brazing. The joined member is provided with a through hole which is open on the joining surface with the joining member, and a path communicating with the through hole is provided on at least one of the joining surface of the joining member with the joined member or the joining surface of the member with the joining member.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: December 23, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuji Taketsuna, Eisaku Kakiuchi, Katsuhiko Tatebe, Masahiro Morino, Tomohiro Takenaga
  • Patent number: 8912663
    Abstract: The disclosure provides an embedded package structure comprising a metal substrate, a chip module, an insulation material layer, and at least one patterned metal layer. The metal substrate has a first surface and a second surface. The chip module is disposed on the first surface of the metal substrate, and comprises at least two stacked chips being electrically connected to each. The insulation material layer covers the first surface of the metal substrate and the stacked chips and has an electrical interconnection formed therein. The patterned metal layer is positioned on the insulation material layer, and is electrically connected the chip module through the electrical interconnection. The method for manufacturing the embedded package structure also provides.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 16, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Chia-Yen Lee, Hsin-Chang Tsai, Peng-Hsin Lee
  • Publication number: 20140360851
    Abstract: An integrated circuit includes an interconnection part with several metallization levels. An electrically activatable switching device within the interconnection part has an assembly that includes a beam held by a structure. The beam and structure are located within the same metallization level. Locations of fixing of the structure on the beam are arranged so as to define for the beam a pivot point situated between these fixing locations. The structure is substantially symmetric with respect to the beam and to a plane perpendicular to the beam in the absence of a potential difference. The beam is able to pivot in a first direction in the presence of a first potential difference applied between a first part of the structure and to pivot in a second direction in the presence of a second potential difference applied between a second part of the structure.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 11, 2014
    Applicant: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Christian Rivero, Pascal Fornara, Antonio di-Giacomo, Brice Arrazat
  • Patent number: 8907465
    Abstract: Methods and devices for packaging integrated circuits. A packaged device may include an integrated circuit, a first packaging component including a patterned surface, and a second packaging component. The patterned surface of the first packaging component may be adhesively coupled to a surface of the second packaging component or a surface of the integrated circuit. The integrated circuit may be at least partially enclosed between the first and second packaging components. A packaging method may include patterning a surface of a packaging component of an integrated circuit package. The surface of the packaging component may be for adhesively coupling to a second component to at least partially enclose an integrated circuit in the integrated circuit package.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Kim-Yong Goh, Yiyi Ma, Wei Zhen Goh
  • Publication number: 20140353810
    Abstract: A semiconductor device includes a semiconductor substrate provided with a predetermined element and having wirings formed on its main surface connected to back wirings by a plurality of through silicon vias (TSVs), and a conductive cover which covers the main surface of the semiconductor substrate. The semiconductor substrate and the conductive cover are bonded to each other with a conductive bonding member. The TSV bonded to the conductive cover with the conductive bonding member is connected to an external electrode pad to which a ground potential is supplied.
    Type: Application
    Filed: September 11, 2013
    Publication date: December 4, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masafumi Sugimoto, Eiichi Hosomi, Atsushi Murakawa, Kazumi Takahashi, Kazuhito Higuchi, Susumu Obata
  • Patent number: 8901755
    Abstract: A semiconductor device has a substrate with a cavity. A conductive layer is formed within the cavity and over the substrate outside the cavity. A plurality of indentations can be formed in a surface of the substrate opposite the cavity for stress relief. A first semiconductor die is mounted within the cavity. A plurality of conductive vias can be formed through the first semiconductor die. An insulating layer is disposed between the first semiconductor die and substrate with the first conductive layer embedded within the first insulating layer. An encapsulant is deposited over the first semiconductor die and substrate. An interconnect structure is formed over the encapsulant. The interconnect structure is electrically connected to the first semiconductor die and first conductive layer. The substrate is removed to expose the first conductive layer. A second semiconductor die is mounted to the conductive layer over the first semiconductor die.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 2, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: HeeJo Chi, Namju Cho, HanGil Shin
  • Patent number: 8896116
    Abstract: A microelectronic package includes a substrate (110), a die (120) embedded within the substrate, the die having a front side (121) and a back side (122) and a through-silicon-via (123) therein, build-up layers (130) built up over the front side of the die, and a power plane (140) in physical contact with the back side of the die. In another embodiment, the microelectronic package comprises a substrate (210), a first die (220) and a second die (260) embedded in the substrate and having a front side (221, 261) and a back side (222, 262) and a through-silicon-via (223, 263) therein, build-up layers (230) over the front sides of the first and second dies, and an electrically conductive structure (240) in physical contact with the back sides of the first and second dies.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: November 25, 2014
    Assignee: Intel Corporation
    Inventors: Ravi K. Nalla, Mathew J. Manusharow, Drew W. Delaney
  • Publication number: 20140339690
    Abstract: An integrated-circuit module includes an integrated-circuit device having a first surface and a plurality of bond pads disposed on the first surface. The module further includes metallic bond wires or metallic ribbons, which are attached between respective ones of a first subset of the bond pads and a package substrate or leadframe, such that a second subset of the bond pads are not attached to either a package substrate or leadframe. A metallic stud bump is affixed to each of one or more of the second subset of the bond pads. The integrated-circuit module further comprises a molding compound that contacts at least the first surface of the integrated-circuit device and substantially surrounds the bond wires or ribbon wires and the metallic stud bumps.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Inventors: Swee Guan Chan, Kong Yang Leong, Mei Yong Wang, Heinrich Koerner
  • Publication number: 20140339597
    Abstract: A device according to embodiments of the invention includes a semiconductor structure including a light emitting layer sandwiched between an n-type region and a p-type region and first and second metal contacts, wherein the first metal contact is in direct contact with the n-type region and the second metal contact is in direct contact with the p-type region. First and second metal layers are disposed on the first and second metal contacts, respectively. The first and second metal layers are sufficiently thick to mechanically support the semiconductor structure. A sidewall of one of the first and second metal layers comprises a three-dimensional feature.
    Type: Application
    Filed: December 4, 2012
    Publication date: November 20, 2014
    Inventors: Stefano Schiaffino, Alexander H. Nickel, Jipu Lei
  • Patent number: 8889458
    Abstract: A method of converting power using a power semiconductor module includes conducting power to power semiconductor devices; converting the conducted power with the power semiconductor devices; conducting heat generated by the power conversion from the power semiconductor devices first through a conductive circuit layer, then through an insulating substrate, to a baseplate; and removing the heat from the baseplate. The conductive circuit layer and the baseplate are formed of a material with a coefficient of thermal expansion less than about 8.0×10=6/° C. and a density less than about 4 g/cm3.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 18, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Jacek F. Gieras
  • Patent number: 8883560
    Abstract: A method includes providing a semiconductor chip having a first main surface and a second main surface opposite to the first main surface. An electrically insulating material is deposited on the first main surface of the semiconductor chip using a plasma deposition method. A first electrically conductive material is deposited on the second main surface of the semiconductor chip using a plasma deposition method.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: November 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joerg Timme, Ivan Nikitin
  • Patent number: 8877566
    Abstract: A heat spreader or lid for a microelectronic package, in which the heat spreader has an underside surface that includes at least one curvilinear contour, in which the curvilinear contour is selected from at least one positive or protruding curvilinear feature, at least one negative or recessed curvilinear feature, and a combination thereof. A microelectronic package that includes the heat spreader/lid, in which there is improved heat dissipation or reduced mechanical stress in an interface between the heat spreader/lid and a circuit chip.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michael A. Gaynes, Maurice McGlashan-Powell, Soojae Park, Edward J. Yarmchuk
  • Patent number: 8878356
    Abstract: A package structure is provided, including: a substrate having a ground pad and an MEMS element; a lid disposed on the substrate for covering the MEMS element; a wire segment electrically connected to the ground pad; an encapsulant encapsulating the lid and the wire segment; and a circuit layer formed on the encapsulant and electrically connected to the wire segment and the lid so as to commonly ground the substrate and the lid, thereby releasing accumulated electric charges on the lid so as to improve the reliability of the MEMS system and reduce the number of I/O connections.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: November 4, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Hong-Da Chang, Cheng-Hsiang Liu, Kuang-Wei Huang, Chun-Hung Lin, Hsin-Yi Liao
  • Patent number: 8865523
    Abstract: A method of making a semiconductor packaged device comprises mounting onto a lead frame a bottom of a molded semiconductor chip having a first plastic package body covering a top face of a semiconductor chip, encapsulating the lead frame and the semiconductor chip with a second plastic package body with top surfaces of conductive contact bodies electrically connected to electrodes on the top surface of the semiconductor chip exposed and plating conductive pads on a top surface of the assembly structure to provide external electrical connections to the electrodes through the conductive contact bodies.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 21, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yueh-Se Ho, Yan Xun Xue, Jun Lu, Lei Shi, Liang Zhao, Ping Huang
  • Patent number: 8865526
    Abstract: A semiconductor device mountable to a substrate is provided. The device includes a semiconductor package having at least one semiconductor die, an electrically conductive attachment region, and a packaging material in which is embedded the semiconductor die and a first portion of the electrically conductive attachment region contacting the die. A metallic shell encloses the embedded semiconductor die and the first portion of the electrically conductive attachment region.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: October 21, 2014
    Assignee: Vishay General Semiconductor LLC
    Inventors: Ta-Te Chou, Yong-Qi Tian, Xian Li
  • Patent number: 8865586
    Abstract: A method includes forming a polymer layer over a metal pad, forming an opening in the polymer layer to expose a portion of the metal pad, and forming an under-bump-metallurgy (UBM). The UBM includes a portion extending into the opening to electrically couple to the metal pad.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Wen Wu, Zheng-Yi Lim, Ming-Che Ho, Chung-Shi Liu