Possessing Thermal Dissipation Structure (i.e., Heat Sink) Patents (Class 438/122)
  • Patent number: 9589864
    Abstract: The present disclosure relates to a substrate with an embedded sintered heat spreader and a process for making the same. According to an exemplary process, at least one cavity is created through the substrate. Sinterable paste including metal particulates and binder material is then dispensed into the at least one cavity. Next, the sinterable paste is sintered to create a sintered heat spreader, which is characterized by high thermal conductivity. The sintered heat spreader adheres to the inside walls of the at least one cavity, enhancing the overall thermal conductivity of the substrate.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: March 7, 2017
    Assignee: Qorvo US, Inc.
    Inventor: Tarak A. Railkar
  • Patent number: 9516748
    Abstract: Various embodiments relate to a circuit board, including a base and a heat-conducting layer. The base has a first region and a second region on one side thereof facing the heat-conducting layer, the first region is recessed with respect to the second region, a first insulating layer is accommodated in the first region, a second insulating layer is formed on the second region, and the first insulating layer and the second insulating layer have different thermal conductivities. In addition, various embodiments further relate to an electronic module and an illuminating device including such circuit board. Various embodiments also relate to a method for manufacturing such circuit board.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: December 6, 2016
    Assignee: OSRAM GMBH
    Inventors: Jianghui Yang, Chuanpeng Zhong, Hao Li, Xiaomian Chen
  • Patent number: 9461238
    Abstract: Provided are a piezoelectric thin film having good piezoelectricity in which a rhombohedral structure and a tetragonal structure are mixed, and a piezoelectric element using the piezoelectric thin film. The piezoelectric thin film includes a perovskite type metal oxide, in which the perovskite type metal oxide is a mixed crystal system of at least a rhombohedral structure and a tetragonal structure, and a ratio between an a-axis lattice parameter and a c-axis lattice parameter of the tetragonal structure satisfies 1.15?c/a?1.30. The piezoelectric element includes on a substrate: the above-mentioned piezoelectric thin film; and a pair of electrodes provided in contact with the piezoelectric thin film.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: October 4, 2016
    Assignees: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY
    Inventors: Makoto Kubota, Kenichi Takeda, Jumpei Hayashi, Mikio Shimada, Yuichi Shimakawa, Masaki Azuma, Yoshitaka Nakamura, Masanori Kawai
  • Patent number: 9425171
    Abstract: One embodiment of the present invention sets forth a technique for packaging an integrated circuit die. The technique includes bonding a first surface of the integrated circuit die to a first substrate via a first plurality of solder bump structures and bonding a second substrate to a second surface of the integrated circuit die. The technique further includes bonding the first substrate to a third substrate via a second plurality of solder bump structures and, after bonding the first substrate to the third substrate, removing the second substrate from the second surface of the integrated circuit die. The technique further includes disposing a heat sink on the second surface of the integrated circuit die.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: August 23, 2016
    Assignee: NVIDIA Corporation
    Inventors: Joseph Minacapelli, Teckgyu (Terry) Kang
  • Patent number: 9418912
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include forming a thermal interface material comprising a thermally conductive serpentine foil located between a first and a second interface material. The serpentine foil may be in a parallel position or a rotated position, in embodiments.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: August 16, 2016
    Assignee: Intel Corporation
    Inventors: Patrick Nardi, Kelly P. Lofgreen
  • Patent number: 9412503
    Abstract: In an electronic component, when L0 is a dimension of an electronic component body in a first direction, L1 is a distance between a first outer electrode and a second outer electrode on a first surface in the first direction, and L2 is a dimension of each of the first and second outer electrodes on the first surface in the first direction, 0%<L1/L0<10% and 30%<L2/L0 <50% are satisfied.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: August 9, 2016
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yutaka Ota, Masato Kimura, Kota Zenzai
  • Patent number: 9379064
    Abstract: A semiconductor device is made by forming a heat spreader over a carrier. A semiconductor die is mounted over the heat spreader with a first surface oriented toward the heat spreader. A first insulating layer is formed over the semiconductor die and heat spreader. A via is formed in the first insulating layer. A first conductive layer is formed over the first insulating layer and connected to the heat spreader through the via and to contact pads on the semiconductor die. The heat spreader extends from the first surface of the semiconductor die to the via. A second insulating layer is formed over the first conductive layer. A second conductive layer is electrically connected to the first conductive layer. The carrier is removed. The heat spreader dissipates heat from the semiconductor die and provides shielding from inter-device interference. The heat spreader is grounded through the first conductive layer.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 28, 2016
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: JiHoon Oh, SinJae Lee, JinGwan Kim
  • Patent number: 9368177
    Abstract: Provided are a magnetic resistance structure, a method of manufacturing the magnetic resistance structure, and an electronic device including the magnetic resistance structure. The method of manufacturing the magnetic resistance structure includes forming a hexagonal boron nitride layer, forming a graphene layer on the boron nitride layer, forming a first magnetic material layer between the boron nitride layer and the graphene layer according to an intercalation process; and forming a second magnetic material layer on the graphene layer.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: June 14, 2016
    Assignees: Samsung Electronics Co., Ltd., Sungkyunkwan University Foundation for Corporate Colaboration
    Inventors: Hwansoo Suh, Insu Jeon, Min-woo Kim, Young-jae Song, Min Wang, Qinke Wu, Sung-joo Lee, Sung-kyu Jang, Seong-jun Jung
  • Patent number: 9320149
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a release layer having a lower release layer surface, an upper release layer surface parallel to the lower release layer surface, and at least one release layer side, the release layer coupled with the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the release layer side and lower release layer surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 19, 2016
    Assignee: Intel Corporation
    Inventors: Liwen Jin, Dilan Seneviratne
  • Patent number: 9252068
    Abstract: A semiconductor package with reduced warpage problem is provided, including: a circuit board, having opposing first and second surfaces; a semiconductor chip, formed over a center portion of the first surface of the circuit board; a spacer, formed over a center portion of the semiconductor chip, having a second cross sectional dimension less than that of the first cross sectional dimension; a non-planar shaped heat spreading layer, formed over the spacer; an encapsulant layer, formed, over the circuit board, filling spaces between the non-planar shaped heat spreading layer and the circuit board; and a plurality of solder balls, formed over the second surface of the circuit board.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: February 2, 2016
    Assignee: MEDIATEK INC.
    Inventors: Tai-Yu Chen, Chung-Fa Lee, Wen-Sung Hsu, Shih-Chin Lin
  • Patent number: 9241423
    Abstract: A heat dissipation device that includes a base plate having a plurality of substantially circular channels which are substantially concentrically arranged; and a fluid distribution structure adjacent the base plate, wherein the fluid distribution structure has a plurality of inlet conduits extending substantially radially from a central area with each of the plurality of inlet conduits having at least one fluid delivery port extending through the fluid distribution structure to at least one base plate circular channel, and wherein the fluid distribution structure has a plurality of outlet zones defined between adjacent inlet conduits with each of the plurality of outlet zones having at least one fluid removal port extending through the fluid distribution structure to at least one base plate circular channel.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: January 19, 2016
    Assignee: Intel Corporation
    Inventor: Chia-Pin Chiu
  • Patent number: 9240364
    Abstract: A heat dissipation adhesive film, a semiconductor device including the same, and a method of fabricating the semiconductor device, the heat dissipation adhesive film being placeable between a protective layer encasing a semiconductor element therein and a heat dissipation metal layer on the protective layer to bond the protective layer to the heat dissipation metal layer, wherein an adhesive strength between the heat dissipation adhesive film and the protective layer and an adhesive strength between the heat dissipation adhesive film and the heat dissipation metal layer are each about 3 kgf/25 mm2 or greater.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: January 19, 2016
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Baek Soung Park, Jae Won Choi, In Hwan Kim, Gyu Seok Song, Su Mi Lim
  • Patent number: 9236549
    Abstract: The present invention provides a heat conducting slug having a multi-step structure, which is installed to an LED package to dissipate heat generated from a light emitting chip to the outside. The heat conducting slug includes a first slug, a second slug formed on the first slug, and a third slug formed on the second slug, wherein the light emitting chip is mounted to the third slug, and the second and third slugs respectively shaped to have edges are arranged to cross each other. In this configuration, heat generated from a light emitting chip follows a heat dissipation path, in which the heat is gathered at edges of one slug and dissipated therefrom and then gathered toward edges of another slug, arranged to cross the one slug. Accordingly, the entire heat dissipation path is not concentrated at a specific region but generally distributed widely, thereby improving a heat dissipation effect of the heat conducting slug.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: January 12, 2016
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Jong Kook Lee, Byoung Ki Pyo, Hyuck Jung Choi, Kyung Nam Kim, Won Cho
  • Patent number: 9214615
    Abstract: In accordance with certain embodiments, semiconductor dies are at least partially coated with a conductive adhesive prior to singulation and subsequently bonded to a substrate having electrical traces thereon.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: December 15, 2015
    Assignee: Cooledge Lighting Inc.
    Inventor: Michael A. Tischler
  • Patent number: 9209330
    Abstract: A method of manufacturing a semiconductor device including a first member including a chip mounting region and a peripheral region, a semiconductor chip mounted in the chip mounting region, and a second member fixed to the first member to cover the semiconductor chip, includes adhering, to the second member, the peripheral region of the first member in a state that the semiconductor chip is mounted in the chip mounting region, using an adhesive, and generating a stress between the first member and the second member, after the adhesive starts to cure, to locally form a gap in at least one of a portion between the first member and the adhesive, and a portion between the second member and the adhesive.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 8, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Koji Tsuduki, Yasushi Kurihara
  • Patent number: 9178261
    Abstract: In one embodiment, a vertical microcoaxial interconnect includes a dielectric substrate having a top side and a bottom side, an inner conductor extending through the substrate from its top side to its bottom side, an outer conductor that extends through the substrate from its top side to its bottom side, the outer conductor surrounding the inner conductor, a signal line extending to the inner conductor without contacting the outer conductor, and a ground line extending to the outer conductor without contacting the inner conductor or the signal line.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: November 3, 2015
    Assignee: University of South Florida
    Inventors: Justin Boone, Subramanian Krishnan, Shekhar Bhansali
  • Patent number: 9165716
    Abstract: A high capacitance single layer ceramic capacitor having a ceramic dielectric body containing one or more internal electrodes electrically connected to a metallization layer applied to the side and a top or bottom surface and a metallization pad electrically isolated from the metallization side and the top or bottom surface by a castellation or a via or separated by a dielectric insulating band positioned between the electrodes around the perimeter of the ceramic body and separating the top and bottom surfaces.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: October 20, 2015
    Assignee: Knowles Capital Formation, Inc.
    Inventors: Ali Moalemi, Euan Patrick Armstrong
  • Patent number: 9159817
    Abstract: Fabrication methods, device structures, and design structures for a heterojunction bipolar transistor. A collector is formed in a semiconductor substrate, an intrinsic base is formed on the semiconductor substrate, and an extrinsic base is formed on the intrinsic base. An airgap is located vertically between the extrinsic base and the collector. A contact surface is located adjacent to the airgap. The contact surface is coupled with the collector. A spacer is located laterally between the airgap and the subcollector contact surface.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: October 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater, Anthony K. Stamper
  • Patent number: 9147631
    Abstract: A semiconductor device includes an electrically conducting carrier having a mounting surface. The semiconductor device further includes a metal block having a first surface facing the electrically conducting carrier and a second surface facing away from the electrically conducting carrier. A semiconductor power chip is disposed over the second surface of the metal block.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 29, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Juergen Schredl, Xaver Schloegel, Klaus Schiess
  • Patent number: 9099432
    Abstract: An electronic device for power applications and configured for being mounted on a printed circuit board is disclosed. The electronic device includes a semiconductor chip integrating a power component, and a package. The package comprises an insulating body embedding the semiconductor chip, and exposed electrodes for electrically connecting conductive terminals of the semiconductor chip to external circuitry in the printed circuit board. The electronic device is further configured to be fastened to a heatsink with a back surface of the insulating body in contact with a main surface of the heatsink for removing heat produced by the electronic device during the operation thereof. The insulating body lacks of a fixing portion in which a hole for receiving an insertable fastener element for the fastening of the electronic device to the heatsink is located.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: August 4, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventor: Agatino Minotti
  • Patent number: 9090004
    Abstract: A method for enhancing internal layer-layer thermal interface performance and a chip stack of semiconductor chips using the method. The method includes adding a thermosetting polymer to the thermal interface material, dispersing a plurality of nanofibers into the thermal interface material, and un-crosslinking the thermosetting polymer in the thermal interface material. The method further includes extruding the thermal interface material through a die to orient the conductive axis of the nanofibers and polymer chains in the desired direction, and re-crosslinking the thermosetting polymer in the thermal interface material. The chip stack includes a first chip with circuitry on a first side, a second chip coupled to the first chip by a grid of connectors, and a thermal interface material pad between the chips. The thermal interface includes nanofibers and a polymer that allows for optimal alignment of the nanofibers and polymer chains.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Amanda E. Mikhail, Arden L. Moore
  • Patent number: 9070656
    Abstract: Heat spreaders for dissipating heat from semiconductor devices comprise a contact surface located within a recess on an underside of the heat spreader, the contact surface being configured to physically and thermally attach to a semiconductor device, and a trench extending into the heat spreader adjacent to the contact surface sized and configured to receive underfill material extending from the semiconductor device into the trench. Related semiconductor device assemblies may include these heat spreaders and methods may include physically and thermally attaching these heat spreaders to semiconductor devices such that underfill material extends from a semiconductor device into the trench.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: June 30, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Andy E. Hooper, Xiao Li, Shijian Luo
  • Patent number: 9059157
    Abstract: An integrated circuit packaging system and method of manufacture thereof includes: a substrate having a top insulation layer and a top conductive layer; an inter-react layer on the substrate; an integrated circuit die on the substrate; a package body on the inter-react layer and the integrated circuit die; and a top solder bump on the top conductive layer, the top solder bump in a 3D via formed through the package body, the inter-react layer, and the top insulation layer for exposing the top conductive layer in the 3D via.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Yaojian Lin, Il Kwon Shim, JunMo Koo, Jose Alvin Caparas
  • Patent number: 9054118
    Abstract: An embodiment of a method for making semiconductor device packages includes a heat sink matrix and a substrate. A plurality of semiconductor devices is attached to the substrate. Then, a package body is formed between the heat sink matrix and the substrate, wherein the package body encapsulates the semiconductor devices. Then, a plurality of first cutting slots is formed, wherein the first cutting slots extend through the heat sink matrix and partially extend into the package body. Then, a plurality of second cutting slots is formed, wherein the second cutting slots extend through the substrate and through the package body to the first cutting slot, thereby singulating the heat sink matrix and substrate into a plurality of individual semiconductor device packages.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: June 9, 2015
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Kuang-Hsiung Chen, Sheng-Ming Wang, Yu-Ying Lee, Hsiang-Ming Feng, Bing-Yun Cheng
  • Publication number: 20150140740
    Abstract: A method of fabrication, a device structure and a submount comprising high thermal conductivity (HTC) diamond on a HTC metal substrate, for thermal dissipation, are disclosed. The surface roughness of the diamond layer is controlled by depositing diamond on a sacrificial substrate, such as a polished silicon wafer, having a specific surface roughness. Following deposition of the diamond layer, an adhesion layer, e.g. comprising a refractory metal, such as tantalum, and at least one layer of HTC metal is provided. The HTC metal substrate is preferably copper or silver, and may be provided by electroforming metal onto a thin sputtered base layer, and optionally bonding another metal layer. The electrically non-conductive diamond layer has a smooth exposed surface, preferably ?10 nm RMS, suitable for patterning of contact metallization and/or bonding to a semiconductor device. Methods are also disclosed for patterning the diamond on metal substrate to facilitate dicing.
    Type: Application
    Filed: December 15, 2014
    Publication date: May 21, 2015
    Applicant: Advanced Diamond Technologies, Inc.
    Inventors: Nicolaie A. Moldovan, John A. Carlisle, Hongjun Zeng
  • Publication number: 20150137344
    Abstract: A semiconductor device has a circuit board including an insulation layer, a wiring layer formed on one surface of the insulation layer, and a buffer layer formed on the other surface of the insulation layer, a semiconductor element bonded to the wiring layer, a radiator member bonded to the buffer layer of the circuit board, and a resin member to seal the semiconductor element and an entire surface of the circuit board including an outer peripheral surface of the buffer layer in the circuit board. A method for manufacturing the semiconductor device includes bonding the buffer layer of the circuit board to the radiator member, bonding the semiconductor element to the wiring layer of the circuit board, and sealing the semiconductor element and an entire surface of the circuit board including an outer peripheral surface of the buffer layer in the circuit board with resin after the two bonding steps.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shogo MORI, Yuri OTOBE, Shinsuke NISHI
  • Patent number: 9034695
    Abstract: A method includes attaching a wafer on a carrier through an adhesive, and forming trenches in the carrier to convert the carrier into a heat sink. The heat sink, the carrier, and the adhesive are sawed into a plurality of packages.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chieh Hsieh, Shang-Yun Hou, Shin-Puu Jeng
  • Publication number: 20150130047
    Abstract: A method of forming a semiconductor package includes forming a thermal conductivity layer and attaching the thermal conductivity layer to a chip. The chip has a first surface and a second surface. The thermal conductivity layer is attached to the first surface of the chip. The thermal conductivity layer provides a path through which heat generated from the chip is dissipated to the ambient. A substrate is attached to the second surface of the chip. A molding compound is formed above the substrate to encapsulate the chip and the thermal conductivity layer.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hao TSENG, Ying-Hao KUO, Kuo-Chung YEE
  • Publication number: 20150130046
    Abstract: The present invention relates to a method of making a semiconductor package with package-on-package stacking capability. In accordance with a preferred embodiment, the method is characterized by the step of attaching a chip-on-interposer subassembly on a metallic carrier with the chip inserted into a cavity of the metallic carrier, and the step of selectively removing portions of the metallic carrier to define a heat spreader for the chip. The heat spreader can provide thermal dissipation, electromagnetic shielding and moisture barrier, whereas the interposer provides a CTE-matched interface and fan-out routing for the chip.
    Type: Application
    Filed: October 14, 2014
    Publication date: May 14, 2015
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Publication number: 20150130036
    Abstract: In one implementation, a semiconductor package includes a patterned conductive carrier including partially etched segments. The semiconductor package also includes a control FET having a control drain attached to a first partially etched segment of the patterned conductive carrier. In addition, the semiconductor package includes a sync FET having a sync source and a sync gate attached to respective second and third partially etched segments of the patterned conductive carrier. The semiconductor package further includes a heat spreading conductive plate situated over a control source of the control FET and over a sync drain of the sync FET so as to couple the control source and the sync drain to a switch node segment of the patterned conductive carrier.
    Type: Application
    Filed: October 24, 2014
    Publication date: May 14, 2015
    Inventors: Eung San Cho, Dan Clavette
  • Publication number: 20150132894
    Abstract: Heat spreading substrate with embedded interconnects. In an embodiment in accordance with the present invention, an apparatus includes a metal parallelepiped comprising a plurality of wires inside the metal parallelepiped. The plurality of wires have a different grain structure than the metal parallelepiped. The plurality of wires are electrically isolated from the metal parallelepiped. The plurality of wires may be electrically isolated from one another.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Applicant: Invensas Corporation
    Inventors: Ilyas Mohammed, Masud Beroz
  • Publication number: 20150130045
    Abstract: A method of forming a semiconductor package includes providing a substrate, wherein the substrate has at least one chip attached on an upper surface of the substrate. An insulating barrier layer is deposited above the substrate, wherein the at least one chip is at least partially embedded within the insulating barrier layer. A thermally conductive layer is formed over the insulating barrier layer to at least partially encapsulate the at least one chip.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Chun-Hao TSENG, Ying-Hao KUO, Kuo-Chung YEE
  • Patent number: 9029949
    Abstract: Disclosed are semiconductor-on-insulator (SOI) structures comprising an SOI device (e.g., an SOI metal oxide semiconductor field effect transistor (MOSFET)) with local heat dissipater(s). Each heat dissipater comprises an opening, which is adjacent an active region of the SOI device, which extends through the insulator layer on which the SOI device sits to the semiconductor substrate below, and which is at least partially filled with a fill material. This fill material is a thermal conductor so as to dissipate heat generated by the SOI device and is also an electrical isolator so as to minimize current leakage. In the case of MOSFET, the local heat dissipater(s) can be aligned below the source/drain extension(s) or the source/drain(s). Alternatively, the local heat dissipater(s) can be aligned below the channel or parallel and adjacent to opposing sides of the channel. Also disclosed herein are methods of forming these SOI structures.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Qizhi Liu, Zhenzhen Ye, Yan Zhang
  • Patent number: 9029202
    Abstract: A semiconductor device package (100) includes a heat spreader (503) formed by depositing a first thin film layer (301) of a first metal on a top surface (150) of a die (110) and to exposed portions of a top surface of an encapsulant (208), depositing a second thin film layer (402) of a second metal on a top surface of the first thin film layer, and depositing a third layer (503) of a third metal on a top surface of the second thin film layer.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weng Foong Yap, Jinbang Tang
  • Patent number: 9029200
    Abstract: A method for manufacturing semiconductor devices is disclosed. In one embodiment a semiconductor substrate having a first surface, a second surface opposite to the first surface and a plurality of semiconductor components is provided. The semiconductor substrate has a device thickness. At least one metallization layer is formed on the second surface of the semiconductor substrate. The metallization layer has a thickness which is greater than the device thickness.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: May 12, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Rudolf Zelsacher, Paul Ganitzer
  • Patent number: 9029201
    Abstract: Embodiments of the present invention provide for the dissipation of heat from semiconductor-on-insulator (SOI) structures. In one embodiment, a method for fabricating an integrated circuit is disclosed. In a first step, active circuitry is formed in an active layer of a SOI wafer. In a second step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In a third step, insulator material is removed from the back side of the SOI wafer to form an excavated insulator region. In a fourth step, a thermal dissipation layer is deposited on said excavated insulator region. The thermal dissipation layer is thermally conductive and electrically insulating.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 12, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Paul A. Nygaard, Stuart B. Molin, Michael A. Stuber
  • Publication number: 20150125998
    Abstract: A method of preparing a semiconductor substrate with metal bumps on both sides of the substrate includes depositing a first-side UBM layer on a first surface of the substrate, and forming a plurality of first-side metal bumps on the first surface of the substrate after the first-side UBM layer is deposited. The method includes forming a second-side UBM layer on a second side of the substrate, and the first surface and the second surface are opposite of each other. The method includes forming a plurality of second-side metal bumps on the second surface of the substrate after the second-side UBM layer is deposited. The method includes removing exposed first-side UBM layer and exposed second-side UBM layer after the plurality of first-side metal bumps and the plurality of second-side metal bumps are formed. The method includes reflowing the plurality of first-side metal bumps and the plurality of second side metal bumps.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 7, 2015
    Inventors: You-Hua CHOU, Yi-Jen LAI, Chun-Jen CHEN, Perre KAO
  • Patent number: 9023688
    Abstract: A method for processing a semiconductor device, the method including; providing a first semiconductor layer including first transistors; forming interconnection layers overlying the transistors, where the interconnection layers include copper or aluminum; forming a shielding heat conducting layer overlaying the interconnection layers; forming an isolation layer overlaying the shielding heat conducting layer; forming a second semiconductor layer overlying the isolation layer, and processing the second semiconductor layer at a temperature greater than about 400° C., where the interconnection layers are kept at a temperature below about 400° C.
    Type: Grant
    Filed: June 7, 2014
    Date of Patent: May 5, 2015
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Albert Karl Henning
  • Patent number: 9024421
    Abstract: A semiconductor power module includes at least two sub modules. The sub modules include at least one respective transistor having a collector, an emitter, and a gate. The module includes a connection arrangement having a collector terminal unit for connecting the collectors of the at least two sub modules collectively to external circuit components, at least two emitter terminal units for connecting the respective emitters of the at least two sub modules individually to external circuit components, and at least two gate terminal units for connecting the respective gates of the at least two sub modules individually to external circuit components.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: May 5, 2015
    Assignee: ABB Research Ltd
    Inventors: Didier Cottet, Gunnar Asplund, Stefan Linder
  • Publication number: 20150115431
    Abstract: Embodiments of the present invention provide a semiconductor structure and method to dissipate heat generated by semiconductor devices by utilizing backside thermoelectric devices. In certain embodiments, the semiconductor structure comprises an electronic device formed on a first side of the semiconductor structure. The semiconductor structure also comprises a thermoelectric cooling device formed on a second side of the semiconductor structure in close proximity to a region of the semiconductor structure where heat dissipation is desired, wherein the thermoelectric cooling device includes a Peltier junction. In other embodiments, the method comprises forming an electronic device on a first side of a semiconductor structure. The method also comprises forming a thermoelectric cooling device on a second side of the semiconductor structure in close proximity to a region of the semiconductor structure where heat dissipation is desired, wherein the thermoelectric cooling device includes a Peltier junction.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: International Business Machines Corporation
    Inventors: Nathaniel R. Chadwick, Jeffrey P. Gambino, Kirk D. Peterson
  • Publication number: 20150115433
    Abstract: The present invention relates to a method of making a semiconductor device having a chip embedded in a heat spreader and electrically connected to a hybrid substrate. In accordance with a preferred embodiment, the method is characterized by the step of attaching a chip-on-interposer subassembly on a heat spreader using an adhesive with the chip inserted into a cavity of the heat spreader. The heat spreader provides thermal dissipation and the interposer provides a CTE-matched interface and primary fan-out routing for the chip.
    Type: Application
    Filed: August 1, 2014
    Publication date: April 30, 2015
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Patent number: 9018754
    Abstract: An isolation structure can include a structure material with thermal conductivity greater than silicon dioxide, yet electrical conductivity such that the structure material can replace silicon dioxide as an insulator. At least one column can extend to a target layer from a top surface of a semiconductor device near an active area of the device. At least one lateral portion can extend from the column(s) substantially parallel to the target layer and can extend between multiple columns in the target layer, such as in a cavity formed by lateral etching. The structure material can include, for example, aluminum nitride (AlN).
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Qizhi Liu, Zhenzhen Ye, Yan Zhang
  • Patent number: 9018744
    Abstract: A semiconductor device comprises a carrier. Further, the semiconductor devices comprises a semiconductor chip comprising a first main surface and a second main surface opposite to the first main surface, wherein a first electrode is arranged on the first main surface and the semiconductor chip is mounted on the carrier with the second main surface facing the carrier. Further, an encapsulation body embedding the semiconductor chip is provided. The semiconductor device further comprises a contact clip, wherein the contact clip is an integral part having a bond portion bonded to the first electrode and having a terminal portion forming an external terminal of the semiconductor device.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: April 28, 2015
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Khalil Hosseini
  • Publication number: 20150108630
    Abstract: An electronic device includes a first circuit board; a heat sink fixed to the first circuit board to form a cavity between the heat sink and the first circuit board; and a plurality of electronic components fixed to a surface of the heat sink facing the first circuit board inside the cavity, the plurality of electric components having heights different from each other, wherein each of the plurality of electronic components is electrically coupled to the first circuit board by a second circuit board and being different from the first circuit board.
    Type: Application
    Filed: August 14, 2014
    Publication date: April 23, 2015
    Applicant: FUJITSU LIMITED
    Inventors: Takaharu IZUNO, Osamu SAITO, Mitsuaki HAYASHI, Kenji JOKO, Hideaki MATSUMOTO, Minoru FUJII
  • Publication number: 20150108632
    Abstract: A conductive thin film including a binder matrix and semiconductor nanowires dispersed therein is disclosed. The semiconductor nanowires are in the range of 30% to 50% by weight percentage of the thin film. The present invention also discloses a method of making such thin film. The method includes the steps of: mixing a plurality of semiconductor nanowires with a polymer binder to obtain a printing ink; thinning the printing ink with a solvent to achieve a predetermined viscosity; printing the printing ink on a substrate to form a conductive thin film thereon and evaporating the solvent at a rate slower than the evaporation rate of water.
    Type: Application
    Filed: July 21, 2014
    Publication date: April 23, 2015
    Inventor: Caiming SUN
  • Publication number: 20150108625
    Abstract: A semiconductor device includes a package body, a semiconductor die embedded in the package body and a heat spreader attached to a top surface of the package body and spaced from semiconductor die. The heat spreader may be formed of solder that is melted within a recess in the top surface of the package body.
    Type: Application
    Filed: August 19, 2014
    Publication date: April 23, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: You Ge, Meng Kong Lye, Penglin Mei
  • Patent number: 9013035
    Abstract: Methods and apparatuses for improved integrated circuit (IC) packages are described herein. In an aspect, an IC device package includes an IC die having a contact pad, where the contact pad is located on a hotspot of the IC die. The hotspot is thermally coupled to a thermal interconnect member. In an aspect, the package is encapsulated in a mold compound. In a further aspect, a heat spreader is attached to the mold compound, and is thermally coupled to the thermal interconnect member. In another aspect, a thermal interconnect member thermally is coupled between the heat spreader and the substrate.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 21, 2015
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan
  • Publication number: 20150102479
    Abstract: Method for manufacturing an electronic semiconductor package, in which method an electronic chip (100) is coupled to a carrier, the electronic chip is at least partially encapsulated by means of an encapsulation structure having a discontinuity, and the carrier is partially encapsulated, and at least one part of the discontinuity and a volume connected thereto adjoining an exposed surface section of the carrier are covered by an electrically insulating thermal interface structure, which electrically decouples at least one part of the carrier with respect to its surroundings.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 16, 2015
    Inventors: Edward FUERGUT, Manfred MENGEL
  • Publication number: 20150102486
    Abstract: Provided is a method of mounting a chip. The method includes: forming a bump at one surface of a cavity formed concavely in an inner direction of a substrate; performing a coining process to flatten a surface of the bump; coating a solder material on the bump subjected to the coining process; and bonding a chip and the bump by melting the solder material, wherein an electrode portion or a metal portion is formed on a bottom of the chip. For a metal substrate according to the present invention, wherein a vertical insulating layer is included, since the electrode portion of the chip and the electrode portion of the substrate have to be electrically connected, the metal substrate is bonded to the electrode portion of the chip using the bump additionally formed on the metal substrate, so the heat generated in the chip can be rapidly transferred to the substrate, and the junction temperature of the chip can be decreased, thereby enhancing the light efficiency and the.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: Bum Mo Ahn, Ki Myung Nam, Seung Ho Park
  • Publication number: 20150104907
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 16, 2015
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek