Making Device Array And Selectively Interconnecting Patents (Class 438/128)
  • Patent number: 8703562
    Abstract: A manufacturing method of a random access memory includes the following steps: providing a semiconductor structure having an array region and a peripheral region; forming a plurality of first trenches in the array region, and concurrently, a plurality of second trenches on the peripheral region; forming a polysilicon layer to cover the array region and the peripheral region, and the first and the second trenches are filled up with the polysilicon layer; planarizing the polysilicon layer so the remaining polysilicon layer only resides in the first and the second trenches; forming a conductive layer on the semiconductor structure; patterning the conductive layer to form a plurality of landing pads on the array region, and a plurality of bit line units on the peripheral region; and forming a plurality of capacitor units which is in electrical connection to the landing pads.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 22, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron-Fu Chu
  • Patent number: 8704204
    Abstract: Disclosed herein are nanoscale devices comprising one or more ferroelectric nanoshells characterized as having an extreme curvature in at least one spatial dimension. Also disclosed are ferroelectric field effect transistors and metal ferroelectric metal capacitors comprising one or more ferroelectric nanoshells. Methods for controlling spontaneous ferroelectric polarization in nanoshell devices are also disclosed.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: April 22, 2014
    Assignee: Drexel University
    Inventors: Jonathan E. Spanier, Stephen S. Nonnenmann, Oren David Leaffer
  • Publication number: 20140103415
    Abstract: A charge pump circuit includes a substrate and first well region formed in the substrate. A first transistor includes first and second conduction regions disposed in the first well region. A second well region is formed in the substrate. A third well region is formed within the second well region. A second transistor includes first and second conduction regions disposed in the third well region. The second well region and third well region are coupled to a common terminal. The common terminal receives a local potential and the first well region and second well region are commonly maintained at the local potential. The first transistor and second transistor operate within the charge pump cell. A plurality of charge pump cells can be cascaded together with an output of a first charge pump cell coupled to an input of a second charge pump cell.
    Type: Application
    Filed: September 13, 2013
    Publication date: April 17, 2014
    Applicant: Semtech Corporation
    Inventors: Daniel Aebischer, Michel Chevroulet
  • Patent number: 8698519
    Abstract: A L-level permutable switching network (L-PSN) having switches and multiple levels of conductors that are used to connect a first plurality of conductors to other multiple sets of conductors within respective interconnect resources constraints. The L-PSN can be applied in a wide range of applications, in tandem or hierarchically, to provide a large switch network used in network, routers, and programmable logic circuits. The L-PSN is used to connect a first set of conductors, through the L-PSN, to multiple sets of conductors in a given logic circuit hierarchy whereby the conductors in each of the multiple sets are equivalent or exchangeable, which in term, by construction, makes the first set of conductors equivalent when used in the next level of circuit hierarchy. The L-PSN is scalable for large sized sets of conductors and can be used in tandem or hierarchically to enable programmable interconnections among large sized circuits.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: April 15, 2014
    Assignee: Advantage Logic, Inc.
    Inventors: Peter M. Pani, Benjamin S. Ting
  • Patent number: 8697498
    Abstract: A method of manufacturing a Three Dimensional (3D) semiconductor memory device can be provided by forming at least one trench in a plate stack structure to divide the plate stack structure into a plurality of sub-plate stack structures between forming a plurality of vertical active patterns in the plate stack structure and forming pads of a stepped structure from the plate stack structure.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byong-hyun Jang, Dongchul Yoo, Chanjin Park, Hanmei Choi
  • Patent number: 8698119
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: April 15, 2014
    Assignees: Sandisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
  • Patent number: 8691633
    Abstract: A semiconductor device is provided that includes a substrate, a static random access memory (SRAM) unit cell formed in the substrate, a first metal layer formed over the substrate the first metal layer providing local interconnection to the SRAM unit cell, a second metal layer formed over the first metal layer, the second metal layer including: a bit line and a complementary bit line each having a first thickness and a Vcc line disposed between the bit line and the complementary bit line, and a third metal layer formed over the second metal layer, the third metal layer including a word line having a second thickness greater than the first thickness.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon Jhy Liaw
  • Patent number: 8685798
    Abstract: Methods for forming through vias in an integrated circuit package are disclosed. A substrate having a first surface is covered with an encapsulation layer of uncured material; the method includes inserting an upper mold tool having a first plurality of pillars into the encapsulation layer to imprint through vias extending to the first surface of the substrate; curing the encapsulation layer and the through vias; removing the upper mold tool from the encapsulation layer; and disposing conductor material within the through vias to make electrical connectors within the through vias. In additional methods, a method for forming an encapsulation layer using an upper and lower mold tool to form through vias and a mold cavity is disclosed.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: April 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Liang Shao, Chih-Hang Tung, Chen-Hua Yu, Hao-Yi Tsai, Mirng-Ji Lii, Da-Yuan Shih
  • Patent number: 8685799
    Abstract: An RRAM at an STI region is disclosed with a vertical BJT selector. Embodiments include defining an STI region in a substrate, implanting dopants in the substrate to form a well of a first polarity around and below an STI region bottom portion, a band of a second polarity over the well on opposite sides of the STI region, and an active area of the first polarity over each band of second polarity at the surface of the substrate, forming a hardmask on the active areas, removing an STI region top portion to form a cavity, forming an RRAM liner on cavity side and bottom surfaces, forming a top electrode in the cavity, removing a portion of the hardmask to form spacers on opposite sides of the cavity, and implanting a dopant of the second polarity in a portion of each active area remote from the cavity.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 1, 2014
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Shyue Seng Tan, Eng Huat Toh, Elgin Quek
  • Publication number: 20140078826
    Abstract: A NAND flash memory chip includes word lines formed by etching through concentric conductive loops and, in the same etch step, etching through a conductive strip to form select lines. A conductive loop forms two word lines which are in different erase blocks and are separately controlled by peripheral circuits.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Inventors: Jongsun Sel, Tuan Pham, Kazuya Tokunaga
  • Patent number: 8674333
    Abstract: Variable-resistance memory material cells are contacted by vertical bottom spacer electrodes. Variable-resistance material memory spacer cells are contacted along the edge by electrodes. Processes include the formation of the bottom spacer electrodes as well as the variable-resistance material memory spacer cells. Devices include the variable-resistance memory cells.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 18, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8673669
    Abstract: A CMOS image sensor, in which an implantation process is performed on substrate under isolation structures each disposed between two adjacent photosensor cell structures. The implantation process is a destructive implantation to form lattice effects/trap centers. No defect repair process is carried out after the implantation process is performed. The implants can reside at the isolation structures or in the substrate under the isolation structures. Dark leakage and crosstalk are thus suppressed.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: March 18, 2014
    Assignee: United Microelectronics Corp.
    Inventor: Hsin-Ping Wu
  • Patent number: 8674232
    Abstract: A device-embedded flexible printed circuit board (FPCB) and a method of manufacturing the device-embedded FPCB are provided. The device-embedded FPCB includes: a first conductive layer; a first insulating layer which is disposed on the first conductive layer and includes at least one bump hole and at least one groove; a first plating layer which is formed in the at least one groove of the first insulating layer; and a device which includes at least one bump which is inserted into the at least one bump hole to be connected to the first conductive layer.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Yang-sik Cho, Sung-taik Hong, Gun-ho Wang
  • Patent number: 8673692
    Abstract: Disclosed herein is a novel charging controlled RRAM (Resistance Random Access Memory), and various methods of making such a charging controlled RRAM device. In one example, a device disclosed herein includes a first word line structure formed above a substrate, wherein the first word line structure includes a gate electrode and a nano-crystal containing layer of insulating material, a second word line structure formed above the substrate, wherein the second word line structure comprises a gate electrode and a nano-crystal containing layer of insulating material, a first implant region formed in the substrate proximate the first word line structure, wherein the first implant region defines a first bit line, and a second implant region formed in the substrate proximate the second word line structure, wherein the second implant region defines a second bit line.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: March 18, 2014
    Assignees: GLOBALFOUNDRIES Singapore PTE Ltd., Nanyang Technological University
    Inventors: Shyue Seng Tan, Tu Pei Chen
  • Patent number: 8674356
    Abstract: An apparatus comprising an integrated circuit, an interconnect layer within said integrated circuit, and one or more connections. The integrated circuit may be configured to provide an electrically measurable interconnect pattern by enabling one or more of a plurality of components. The one or more connections may each configured to enable a respective one of the components. The connections may be programmable while the apparatus is part of a wafer. The interconnect pattern may be configured to identify the apparatus after the apparatus has been manufactured.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 18, 2014
    Assignee: M/A-COM Technology Solutions Holdings, Inc.
    Inventor: Alexandre Jean-Marie Bessemoulin
  • Patent number: 8669155
    Abstract: A hybrid channel semiconductor device and a method for forming the same are provided.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 11, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8669144
    Abstract: Some embodiments include methods of forming memory arrays. A stack of semiconductor material plates may be patterned to subdivide the plates into pieces. Electrically conductive tiers may be formed along sidewall edges of the pieces. The pieces may then be patterned into an array of wires, with the array having vertical columns and horizontal rows. Individual wires may have first ends joining to the electrically conductive tiers, may have second ends in opposing relation to the first ends, and may have intermediate regions between the first and second ends. Gate material may be formed along the intermediate regions. Memory cell structures may be formed at the second ends of the wires. A plurality of vertically-extending electrical interconnects may be connected to the wires through the memory cell structures, with individual vertically-extending electrical interconnects being along individual columns of the array. Some embodiments include memory arrays incorporated into integrated circuitry.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Janos Fucsko
  • Publication number: 20140065772
    Abstract: A programmable non-volatile device is made with a floating gate that functions as a FET gate that overlaps a portion of a source/drain region and allows for variable coupling through geometry and/or biasing conditions. This allows a programming voltage for the device to be imparted to the floating gate through variable capacitive coupling, thus changing the state of the device. Multi-state embodiments are also possible. The invention can be used in environments such as data encryption, reference trimming, manufacturing ID, security ID, and many other applications.
    Type: Application
    Filed: October 8, 2013
    Publication date: March 6, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: David Liu, John Nicholas Gross
  • Patent number: 8664042
    Abstract: A method to construct configurable systems, the method including: providing a first configurable system including a first die and a second die, where the connections between the first die and the second die include through-silicon-via (“TSV”), where the first die is diced from a first wafer using first dice lines; providing a second configurable system including a third die and a fourth die, where the connections between the third die and the fourth die include through-silicon-via (“TSV”), where the third die is diced from a third wafer using third dice lines; and processing the first wafer and the third wafer utilizing at least 20 masks that are the same; where the first dice lines are substantially different than the third dice lines, and where the second die includes a configurable I/O to connect the first configurable system to external devices.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 4, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8643004
    Abstract: With a non-linear element (e.g., a diode) with small reverse saturation current, a power diode or rectifier is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode and having a concentration of hydrogen of 5×1019 atoms/cm3 or less, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and third electrodes provided in contact with the gate insulating film and facing each other with the first electrode, the oxide semiconductor film, and the second electrode interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrodes are connected to the first electrode or the second electrode. With the non-linear element, a power diode or a rectifier is formed.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8642398
    Abstract: A resistive random access memory including, an insulating layer, a hard mask layer, a bottom electrode, a memory cell and a top electrode is provided. The insulating layer is disposed on the bottom electrode. The insulating layer has a contact hole having a first width. The hard mask layer has an opening. A portion of the memory cell is exposed from the opening and has a second width smaller than the first width. The top electrode is disposed on the insulating layer and is coupled with the memory cell.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: February 4, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Ming-Daou Lee, Chia-Hua Ho, Erh-Kun Lai, Kuang-Yeu Hsieh
  • Publication number: 20140030856
    Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Patent number: 8637353
    Abstract: Methods and systems for altering the electrical resistance of a wiring path. The electrical resistance of the wiring path is compared with a target electrical resistance value. If the electrical resistance of the wiring path exceeds the target electrical resistance value, an electrical current is selectively applied to the wiring path to physically alter a portion of the wiring path. The current may be selected to alter the wiring path such that the electrical resistance drops to a value less than or equal to the target electrical resistance value.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 8637876
    Abstract: Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a plurality of light emitting cells including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a first electrode layer connected to the first conductive semiconductor layer of a first light emitting cell of the plural light emitting cells; a plurality of second electrode layers under the light emitting cells, a portion of the second electrode layers being connected to the first conductive semiconductor layer of an adjacent light emitting cells; a third electrode layer disposed under a last light emitting cell of the plural light emitting cells; a first electrode connected to the first electrode layer; a second electrode connected to the third electrode layer; an insulating layer around the first to third electrode layers; and a support member under the insulating layer.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 28, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sang Youl Lee, Jung Hyeok Bae, Ji Hyung Moon, Juno Song
  • Patent number: 8637897
    Abstract: A semiconductor light emitting device includes a substrate and a plurality of light emitting cells arranged on the substrate. Each of the light emitting cells includes a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light. An interconnection structure electrically connects the first-conductivity-type and the second-conductivity-type semiconductor layers of one light emitting cell to the first-conductivity-type and the second-conductivity-type semiconductor layers of another light emitting cell. A light conversion part is formed in a light emitting region defined by the light emitting cells and includes a red and/or a green light conversion part respectively having a red and/or a green light conversion material.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je Won Kim, Tae Sung Jang, Jong Gun Woo, Jong Ho Lee
  • Publication number: 20140015564
    Abstract: A circuit and methods for mitigating radiation-induced Single Event Effects (SEE) in Silicon-on-Insulator (SOI) Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuits are presented. A primary logic output is generated from a primary logic gate in response to an input. A redundant logic output is generated from a redundant logic gate that duplicates the primary logic output in response to the input if an SEE is not present. An interleaved C-gate output is generated from an interleaved C-gate that emulates an inverter output when the primary logic output and the redundant logic output match, and does not changes its output when the primary logic output and the redundant logic output do not match during the SEE.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Inventors: Ethan Cannon, Salim Rabaa, Josh Mackler
  • Patent number: 8629006
    Abstract: The present invention provides architectures for hybrid integrated circuits and methods for producing these hybrid integrated circuits that contain both field programmable gate arrays and mask programmable gate arrays, a form of application specific integrated circuits. Methods for producing an integrated circuit that is field programmable as well as mask programmable include the steps of: designing wafer bank layers and finishing layers, where the wafer bank layers provide a plurality of selectable functional blocks; fabricating said wafer bank layers; designing mask programmed interconnect layers for said integrated circuit, where the interconnect layers interconnect selected ones of the plurality of functional blocks from the wafer bank layers; fabricating the interconnect layers on the wafer bank layers; and fabricating the finishing layers on the interconnect layers to produce the integrated circuit.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 14, 2014
    Assignee: Agate Logic, Inc.
    Inventors: Steven Winegarden, Ronald Nicholson, John Jun Yu
  • Patent number: 8621746
    Abstract: A method for making phase change memory is provided. The method includes following steps. A substrate is provided. A plurality of first row electrode leads and the second row electrode leads is located on the substrate. A carbon nanotube layer is applied on the substrate to cover the first row electrode lead and the second row electrode lead. The carbon nanotube layer is patterned to form a plurality of carbon nanotube units located on the second row electrode lead. A phase change layer is applied on the surface of each carbon nanotube unit. A plurality of first electrodes, a plurality of second electrodes, a plurality of first row electrode leads and a plurality of second row electrode leads is located on the substrate.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: January 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Qun-Qing Li, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8614515
    Abstract: A wiring method for a semiconductor integrated circuit has the steps of, separately from a first layer on which a first signal wiring pattern is mainly formed, laying out a first power-supply wiring pattern on a second layer so that a plurality of rows of the first power-supply wiring pattern are regularly arranged with vacant areas each interposed between the rows and making narrower a width of each vacant area than a narrowest width of a row among the rows of the first power-supply wiring pattern, and laying out a second signal wiring pattern electrically conductive to the first layer in two or more rows of the vacant areas on the second layer so that the second signal wiring pattern is not in contact with adjacent rows of the first power-supply wiring pattern on both sides.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tetsuaki Utsumi
  • Publication number: 20130336037
    Abstract: A vertical switching layer of a 3D memory device serves to switch a set of vertical local bit lines to a corresponding set of global bit lines, the vertical switching layer being a 2D array of TFT channels of vertical thin-film transistors (TFTs) aligned to connect to an array of local bit lines, each TFT switching a local bit line to a corresponding global bit line. The TFTs in the array have a separation of lengths Lx and Ly along the x- and y-axis respectively such that a gate material layer forms a surround gate around each TFT in an x-y plane and has a thickness that merges to form a row select line along the x-axis while maintaining a separation of length Ls between individual row select lines. The surround gate improves the switching capacity of the TFTs.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 19, 2013
    Applicant: SanDisk 3D LLC
    Inventors: Yung-Tin Chen, Steven J. Radigan, Roy E. Scheuerlein, Raul Adrian Cernea
  • Publication number: 20130334591
    Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method includes forming a second stacked body on the planarized interlayer insulating film and on the uppermost stair. The second stacked body includes a second conductive film thicker than the first conductive film and a second insulating film stacked on the second conductive film. The method includes dividing the second stacked body into a select gate on the uppermost stair and a plurality of wall portions in a staircase region below the uppermost stair. The method includes forming a plurality of vias piercing the interlayer insulating film under a region between the wall portions and reaching the first conductive film of each of the stairs.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 19, 2013
    Inventor: Toru MATSUDA
  • Patent number: 8610176
    Abstract: An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Prayag B. Patel, Pratyush Kamal, Foua Vang, Chock H. Gan, Pr Chidambaram, Chethan Swamynathan
  • Patent number: 8609457
    Abstract: Generally, the present disclosure is directed to a semiconductor device with DRAM bit lines made from the same material as the gate electrodes in non-memory regions of the device, and methods of making the same. One illustrative method disclosed herein comprises forming a semiconductor device including a memory array and a logic region. The method further comprises forming a buried word line in the memory array and, after forming the buried word line, performing a first common process operation to form at least a portion of a conductive gate electrode in the logic region and to form at least a portion of a conductive bit line in the memory array.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 17, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser, Frank Jakubowski
  • Publication number: 20130329479
    Abstract: An array of nonvolatile memory cells includes a plurality of vertically stacked tiers of nonvolatile memory cells. The tiers individually include a first plurality of horizontally oriented first electrode lines and a second plurality of horizontally oriented second electrode lines crossing relative to the first electrode lines. Individual of the memory cells include a crossing one of the first electrode lines and one of the second electrode lines and material there-between. Specifically, programmable material, a select device in series with the programmable material, and current conductive material in series between and with the programmable material and the select device are provided in series with such crossing ones of the first and second electrode lines. The material and devices may be oriented for predominant current flow in defined horizontal and vertical directions. Method and other implementations and aspects are disclosed.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8603866
    Abstract: An array substrate includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor connected to the gate and data lines, a pixel electrode in the pixel region, and a common electrode including first, second, third, fourth and fifth portions, wherein the first and second portions are disposed at both sides of the data line, each of the third and fourth portions is connected to the first and second portions, and the fifth portion is connected to the second portion and is extended into a next pixel region adjacent to the pixel region.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: December 10, 2013
    Assignee: LG Display Co., Ltd
    Inventors: Eun-Hong Kim, Bong-Mook Yim, Jung-Hwan Kim
  • Patent number: 8598619
    Abstract: A semiconductor light emitting device includes a substrate and a plurality of light emitting cells arranged on the substrate. Each of the light emitting cells includes a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light. An interconnection structure electrically connects the first-conductivity-type and the second-conductivity-type semiconductor layers of one light emitting cell to the first-conductivity-type and the second-conductivity-type semiconductor layers of another light emitting cell. A light conversion part is formed in a light emitting region defined by the light emitting cells and includes a red and/or a green light conversion part respectively having a red and/or a green light conversion material.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je Won Kim, Tae Sung Jang, Jong Gun Woo, Jong Ho Lee
  • Publication number: 20130314146
    Abstract: The present description relates to a semiconductor device including an array of two or more switching elements and a controller electrically connected to the array of switching elements. At least one switching element of the array of switching elements has a different electrical resistance than at least another switching element of the array of switching elements. The controller is configured to generate and transmit at least one coarse tuning signal and at least one fine tuning signal. The array of switching elements is configured to alter an electrical resistance of the array of switching elements in response to the at least one coarse tuning signal and the at least one fine tuning signal. The present description also includes a method of making a semiconductor device and a method of using a semiconductor device.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Mu-Shan Lin
  • Patent number: 8587985
    Abstract: A memory array with graded resistance lines includes a first set of lines intersecting a second set of lines. A line from one of the sets of lines includes a graded resistance along a length of the line.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: November 19, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, John Paul Strachan, Wei Wu, Janice H. Nickel
  • Publication number: 20130302948
    Abstract: A memory array includes a base circuitry layer and a plurality of memory array layers stacked sequentially to form the memory array. Each memory array layer is electrically coupled to the base circuitry layer. Each memory array layer includes a plurality of memory units. Each memory unit includes a vertical pillar transistor electrically coupled to a memory cell.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dadi Setiadi, Peter Nicholas Manos, Hsing-Kuen Liou, Paramasivan Kamatchi Subramanian, Young Pil Kim, Hyung-Kyu Lee, Maroun Georges Khoury, Chulmin Jung
  • Publication number: 20130295726
    Abstract: Some embodiments include methods of forming memory arrays. A stack of semiconductor material plates may be patterned to subdivide the plates into pieces. Electrically conductive tiers may be formed along sidewall edges of the pieces. The pieces may then be patterned into an array of wires, with the array having vertical columns and horizontal rows. Individual wires may have first ends joining to the electrically conductive tiers, may have second ends in opposing relation to the first ends, and may have intermediate regions between the first and second ends. Gate material may be formed along the intermediate regions. Memory cell structures may be formed at the second ends of the wires. A plurality of vertically-extending electrical interconnects may be connected to the wires through the memory cell structures, with individual vertically-extending electrical interconnects being along individual columns of the array. Some embodiments include memory arrays incorporated into integrated circuitry.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Inventors: Sanh D. Tang, Janos Fucsko
  • Publication number: 20130292633
    Abstract: Methods and memory devices formed using etch bias homogenization are provided. One example method of forming a memory device using etch bias homogenization includes forming conductive material at respective levels over a substrate. Each respective level of conductive material is electrically coupled to corresponding circuitry on the substrate during patterning of the respective level of conductive material so that each respective level of conductive material has a homogenized etch bias during patterning thereof. Each respective level of conductive material electrically coupled to corresponding circuitry on the substrate is patterned.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fabio Pellizzer, Hernan A. Castro, Eddie T. Flores
  • Patent number: 8575703
    Abstract: In a semiconductor device having paired transistors, an imbalance in characteristics of the paired transistors is reduced or prevented while an increase in circuit area is reduced or prevented. First and second transistors have first and second regions having the same active region pattern, and third and fourth transistors have third and fourth regions having the same active region pattern. The active regions of the third and fourth transistors have a longer length in the channel length direction than that of the active regions of the first and second transistors. The third and fourth regions have a narrower width in the channel length direction than that of the first and second regions.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Tomoyuki Ishizu
  • Patent number: 8575675
    Abstract: A nonvolatile memory device includes a first channel comprising a pair of first pillars vertically extending from a substrate and a first coupling portion positioned under the pair of first pillars and coupling the pair of first pillars, a second channel adjacent to the first channel comprising a pair of second pillars vertically extending from the substrate and a second coupling portion positioned under the pair of second pillars and coupling the pair of second pillars, a plurality of gate electrode layers and interlayer dielectric layers alternately stacked along the first and second pillar portions, and first and second trenches isolating the plurality of gate electrode layers between the pair of first pillar portions and between the pair of second pillar portions, respectively.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 5, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sun-Mi Park, Byung-Soo Park, Sang-Hyun Oh
  • Patent number: 8569763
    Abstract: A display panel device having a structure that is more reliable than that of a conventional display panel device includes: a bank and an opening surrounded by an inclined side wall of the bank; a pixel electrode that is a first electrode layer formed on the opening of the bank; a hole injection layer and an organic EL layer that are organic functional layers formed on the first electrode layer; and a common electrode that is a second electrode layer formed on the organic functional layers, wherein the first electrode layer has (i) an end portion that is in contact with the side wall of the bank so that the end portion runs on the side wall, and (ii) a depressed portion that opens upward in a peripheral portion close to the end portion.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 29, 2013
    Assignee: Panasonic Corporation
    Inventor: Kenichi Nendai
  • Patent number: 8569115
    Abstract: A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: October 29, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Dariusz Golda, Andreas Bibl
  • Patent number: 8563942
    Abstract: The invention relates to a multi-beam deflector array means for use in a particle-beam exposure apparatus employing a beam of charged particles, said multi-beam deflector array means having an overall plate-like shape with a membrane region and a buried CMOS-layer, said membrane region comprising a first side facing towards the incoming beam of particles and a second side opposite to the first side, an array of apertures, each aperture allowing passage of a corresponding beam element formed out of said beam of particles, and an array of electrodes, each aperture being associated with at least one of said electrodes and the electrodes being controlled via said CMOS layer, wherein the electrodes are pillared, standing proud of the main body of the multi-beam deflector array means, the electrodes being connected to one side of the main body of the multi-beam deflector array means by means of bonding connections.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: October 22, 2013
    Assignee: IMS Nanofabrication AG
    Inventor: Elmar Platzgummer
  • Patent number: 8563438
    Abstract: A manufacturing method of a semiconductor device of which cost can be suppressed by using a nanoimprinting method is provided. In the invention, a gate insulating film, a conductive film, and a resist are formed in sequence over a semiconductor film and a resist is hardened while pressing a mold formed with a pattern to the resist. Therefore, the pattern is transferred to the resist, the surface of the resist to which the pattern is transferred is ashed until a part of the conductive film is exposed, the resist having the ashed surface is used a mask, and the conductive film is etched.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: October 22, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shinji Maekawa
  • Patent number: 8558304
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 15, 2013
    Assignee: SanDisk Corporation
    Inventors: Jian Chen, Xiangfeng Duan, Chao Liu, Madhuri Nallabolu, J. Wallace Parce, Srikanth Ranganathan
  • Patent number: 8551816
    Abstract: The present invention allows for direct chip-to-chip connections using the shortest possible signal path.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Steven A. Cordes, Matthew J. Farinelli, Sherif A. Goma, Peter A. Gruber, John U. Knickerbocker, James L. Speidell
  • Publication number: 20130257699
    Abstract: Disclosed is a driver circuit including a latch circuit, a shift register circuit, and a switching circuit, where the latch circuit is provided over the shift register circuit and the switching circuit. The shift register circuit and the switching circuit may have a silicon-based semiconductor, while the latch circuit may have an oxide semiconductor. The latch circuit includes a first transistor and a second transistor connected in series. The latch circuit may further include a first capacitor and a second capacitor which are electrically connected to the first transistor and the second transistor. A display device using the driver circuit as well as a method for preparing the driver circuit is also disclosed.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hideto Ohnuma, Kei Takahashi