Making Regenerative-type Switching Device (e.g., Scr, Igbt, Thyristor, Etc.) Patents (Class 438/133)
  • Patent number: 8952456
    Abstract: A representative electrostatic discharge (ESD) protection circuit includes a silicon-controlled rectifier comprising an alternating arrangement of a first P-type semiconductor material, a first N-type semiconductor material, a second P-type semiconductor material and a second N-type semiconductor material electrically coupled between an anode and a cathode. The anode is electrically coupled to the first P-type semiconductor material and the cathode is electrically coupled to the second N-type semiconductor material. The ESD protection circuit further includes an inductor electrically coupled between the anode and the second P-type semiconductor material or between the cathode and the first N-type semiconductor material.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Do Ker, Chun-Yu Lin
  • Patent number: 8952418
    Abstract: Some embodiments include gated bipolar junction transistors. The transistors may include a base region between a collector region and an emitter region; with a B-C junction being at an interface of the base region and the collector region, and with a B-E junction being at an interface of the base region and the emitter region. The transistors may include material having a bandgap of at least 1.2 eV within one or more of the base, emitter and collector regions. The gated transistors may include a gate along the base region and spaced from the base region by dielectric material, with the gate not overlapping either the B-C junction or the B-E junction. Some embodiments include memory arrays containing gated bipolar junction transistors. Some embodiments include methods of forming gated bipolar junction transistors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 10, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Rajesh N. Gupta, Farid Nemati, Scott T. Robins
  • Patent number: 8940588
    Abstract: Aspects of the disclosure provide a dual electrostatic discharge (ESD) protection device in fin field effect transistor (FinFET) process technology and methods of forming the same. In one embodiment, the dual ESD protection device includes: a bulk silicon substrate; a shallow trench isolation (STI) region formed over the bulk silicon substrate; a first ESD device positioned above the STI region; and a second ESD device positioned below the STI region, wherein the first ESD device conducts current above the STI region and the second ESD device conducts current below the STI region.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher Stephen Putnam
  • Publication number: 20150022921
    Abstract: A semiconductor structure for enhanced ESD protection is disclosed. The semiconductor structure includes a plurality of fingers, wherein each finger of the plurality of fingers includes a plurality of voltage clamps, and each voltage clamp of the plurality of voltage clamps includes at least a first well having a first conductivity type and a second well having a second conductivity type, and a connection between a well tie of the first well of a first voltage clamp of the plurality of voltage clamps and a well tie of the first well of a second voltage clamp of the plurality of voltage clamps, wherein the connection is enabled to couple a bias voltage associated with a current flow in the first voltage clamp to the second voltage clamp, and the first voltage clamp and the second voltage clamp are thereby enabled to trigger on substantially simultaneously.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 22, 2015
    Applicant: INTERSIL AMERICAS LLC
    Inventor: James Edwin Vinson
  • Patent number: 8928030
    Abstract: An A-NPC circuit is configured so that the intermediate potential of two connected IGBTs is clamped by a bidirectional switch including two RB-IGBTs. Control is applied to the turn-on di/dt of the IGBTs during the reverse recovery of the RB-IGBTs. The carrier life time of an n? drift region in each RB-IGBT constituting the bidirectional switch is comparatively longer than that in a typical NPT structure device. A low life time region is also provided in the interface between the n? drift region and a p collector region, and extends between the n? drift region and the p collector region. Thus, it is possible to provide a low-loss semiconductor device, a method for manufacturing the semiconductor device and a method for controlling the semiconductor device, in which the reverse recovery loss is reduced while the reverse recovery current peak and the jump voltage peak during reverse recovery are suppressed.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hong-fei Lu
  • Patent number: 8927347
    Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: January 6, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Toshio Nakajima, Syoji Higashida
  • Patent number: 8921126
    Abstract: A process for manufacturing a TMR sensor is disclosed wherein the blocking temperature of the AFM layer in the TMR sensor has been raised by inserting a magnetic seed layer between the AFM layer and the bottom shield. This gives the device improved thermal stability, including improved SNR and BER.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: December 30, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Junjie Quan, Kunliang Zhang, Min Li, Hui-Chuan Wang
  • Patent number: 8923666
    Abstract: Embodiments of the present invention provide an electrically controlled optical fuse. The optical fuse is activated electronically instead of by the light source itself. An applied voltage causes the fuse temperature to rise, which induces a transformation of a phase changing material from transparent to opaque. A gettering layer absorbs excess atoms released during the transformation.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Raghavasimhan Sreenivasan
  • Publication number: 20140363930
    Abstract: A method for manufacturing a transient voltage suppressing (TVS) array substantially following a manufacturing process for manufacturing a vertical semiconductor power device. The method includes a step of opening a plurality of isolation trenches in an epitaxial layer of a first conductivity type in a semiconductor substrate followed by applying a body mask for doping a body region having a second conductivity type between two of the isolation trenches. The method further includes a step of applying an source mask for implanting a plurality of doped regions of the first conductivity type constituting a plurality of diodes wherein the isolation trenches isolating and preventing parasitic PNP or NPN transistor due to a latch-up between the doped regions of different conductivity types.
    Type: Application
    Filed: June 8, 2013
    Publication date: December 11, 2014
    Inventor: Madhur Bobde
  • Patent number: 8901530
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: December 2, 2014
    Assignees: SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
  • Publication number: 20140339603
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes: a substrate; a first region over the substrate; a second region laterally adjacent to the first region; a third region disposed laterally adjacent to the second region on a side of the second region opposite the first region; a fourth region disposed within a portion of the first region proximate the second region; a fifth region disposed within a portion of the second region proximate the first region, wherein the fourth region and the fifth region are separated by a first isolation area; a sixth region disposed within a portion of the third region proximate the second region; and a seventh region disposed within the second region and below the fifth region.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 20, 2014
    Inventors: Hsi-Yu Kuo, Chin-Yuan Ko
  • Patent number: 8889492
    Abstract: Embodiments generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching capacity by using multiple layers of variable resistance layers. In one embodiment, the resistive switching element comprises at least three layers of variable resistance materials to increase the number of logic states. Each variable resistance layer may have an associated high resistance state and an associated low resistance state. As the resistance of each variable resistance layer determines the digital data bit that is stored, the multiple variable resistance layers per memory element allows for additional data storage without the need to further increase the density of nonvolatile memory devices.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: November 18, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventor: Tony P. Chiang
  • Patent number: 8865541
    Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: October 21, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Farzan Farbiz, Akram A. Salman
  • Patent number: 8860080
    Abstract: Protection circuit architectures with integrated supply clamps and methods of forming the same are provided herein. In certain implementation, an integrated circuit interface protection device includes a first diode protection structure and a first thyristor protection structure electrically connected in parallel between a signal pin a power high supply. Additionally, the protection device includes a second diode protection structure and a second thyristor protection structure electrically connected in parallel between the signal pin and a power low supply. Furthermore, the protection device includes a third diode protection structure and a third thyristor protection structure electrically connected in parallel between the power high supply and the power low supply.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 14, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Javier Alejandro Salcedo
  • Patent number: 8853713
    Abstract: Resistive memory having confined filament formation is described herein. One or more method embodiments include forming an opening in a stack having a silicon material and an oxide material on the silicon material, and forming an oxide material in the opening adjacent the silicon material, wherein the oxide material formed in the opening confines filament formation in the resistive memory cell to an area enclosed by the oxide material formed in the opening.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Jun Liu
  • Patent number: 8847278
    Abstract: A semiconductor device includes an active section for a main current flow and a breakdown withstanding section for breakdown voltage. An external peripheral portion surrounds the active section on one major surface of an n-type semiconductor substrate. The breakdown withstanding section has a ring-shaped semiconductor protrusion, with a rectangular planar pattern including a curved section in each of four corners thereof, as a guard ring. The ring-shaped semiconductor protrusion has a p-type region therein, is sandwiched between a plurality of concavities deeper than the p-type region, and has an electrically conductive film across an insulator film on the surface thereof. Because of this, it is possible to manufacture at low cost a breakdown withstanding structure with which a high breakdown voltage is obtained in a narrow width, wherein there is little drop in breakdown voltage, even when there are variations in a patterning process of a field oxide film.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Manabu Takei, Yusuke Kobayashi
  • Patent number: 8841696
    Abstract: An SCR includes a first doped region of a first type having a first doping concentration. A first well of the first type and a first well of a second type are disposed in upper areas of the first doped region of the first type such that the first well of the second type is laterally spaced from the first well of the first type by a non-zero distance. A second doped region of the first type has a second doping concentration that is greater than the first doping concentration and is disposed in the first well of the second type to form an anode of the SCR. A first doped region of the second type is disposed in the first well of the first type and forms a cathode of the SCR.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jam-Wem Lee, Yi-Feng Chang
  • Patent number: 8841174
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Patent number: 8841175
    Abstract: A method for manufacturing a vertical trench IGBT includes: forming a body layer of a second conductivity type on a semiconductor substrate of a first conductivity type; forming a trench passing through the body layer; forming a trench gate in the trench via a gate insulating film; forming a polysilicon film containing an impurity of a first conductivity type on the body layer; diffusing the impurity from the polysilicon film into the body layer to form an emitter layer of a first conductivity type on the body layer; and forming a collector layer of a second conductivity type on a lower surface of the semiconductor substrate.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hidenori Fujii
  • Patent number: 8823001
    Abstract: The present disclosure discloses a method for manufacturing a TFT array substrate, comprising: depositing a gate metal layer, a gate insulating layer, a semiconductor layer and a source-drain electrode layer in this order on a base substrate, performing a first photolithograph process to form a common electrode line, a gate line, a gate electrode, a source electrode, a drain electrode and a channel defined between the source electrode and the drain electrode; depositing a passivation layer, performing a second photolithograph process to form a first via hole and a second via hole in the passivation layer; and depositing a pixel electrode layer and a data line layer in this order, perform a third photolithograph process to form a data line connected to the source electrode through the first via hole and a pixel electrode connected to the drain electrode through the second via hole.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 2, 2014
    Assignees: Boe Technology Group Co., Ltd., Hefei Boe Optoelectronics Technology Co., Ltd.
    Inventor: Yunqi Zhang
  • Patent number: 8816497
    Abstract: An electronic component includes a III-N transistor and a III-N rectifying device both encased in a single package. A gate electrode of the III-N transistor is electrically connected to a first lead of the single package or to a conductive structural portion of the single package, a drain electrode of the III-N transistor is electrically connected to a second lead of the single package and to a first electrode of the III-N rectifying device, and a second electrode of the III-N rectifying device is electrically connected to a third lead of the single package.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 26, 2014
    Assignee: Transphorm Inc.
    Inventor: Yifeng Wu
  • Patent number: 8815654
    Abstract: A Silicon on Insulator (SOI) Integrated Circuit (IC) chip with devices such as a vertical Silicon Controlled Rectifier (SCR), vertical bipolar transistors, a vertical capacitor, a resistor and/or a vertical pinch resistor and method of making the device(s). The devices are formed in a seed hole through the SOI surface layer and insulator layer to the substrate. A buried diffusion, e.g., N-type, is formed through the seed hole in the substrate. A doped epitaxial layer is formed on the buried diffusion and may include multiple doped layers, e.g., a P-type layer and an N-type layer. Polysilicon, e.g., P-type, may be formed on the doped epitaxial layer. Contacts to the buried diffusion are formed in a contact liner.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Junjun Li, Souvick Mitra, Mahmoud A Mousa, Christopher S. Putnam
  • Publication number: 20140231864
    Abstract: An electrostatic discharge protection device is provided. The electrostatic discharge protection device can include a semiconductor substrate having a first well and a second well, a silicon controller rectifier (SCR) device, and first and second impurity areas disposed on the first and second wells to form a PN junction. The SCR can have a PNPN structure or an NPNP structure, and the PN junction structure and the SCR device can be alternately disposed when the substrate is viewed from above.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 21, 2014
    Applicant: DONGBU HITEK CO., LTD.
    Inventors: Jae Hyun YOO, Jong Min KIM
  • Patent number: 8810004
    Abstract: A resistor-equipped transistor includes a package that provides an external collector connection node (114, 134), an external emitter connection node (120, 140) and an external base connection node (106, 126). The package contains a substrate upon which a transistor (102, 122), first and second resistors, and first and second diodes are formed. The transistor has an internal collector (118, 138), an internal emitter (120, 140) and an internal base (116, 136) with the first resistor (104, 124) being electrically connected between the internal base and the external base connection node and the second resistor (108, 128) being electrically connected between the internal base and the internal emitter.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: August 19, 2014
    Assignee: NXP, B.V.
    Inventors: Stefan Bengt Berglund, Steffen Holland, Uwe Podschus
  • Patent number: 8809129
    Abstract: Device structures, design structures, and fabrication methods for a silicon controlled rectifier. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. A doped region of a second conductivity type is formed in the well. A cathode of a silicon controlled rectifier and a cathode of a diode are formed in the device region. The silicon controlled rectifier comprises a first portion of the well and an anode comprised of a first portion of the doped region. The diode comprises a second portion of the well and an anode comprised of a second portion of the doped region.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Junjun Li
  • Publication number: 20140225157
    Abstract: Methods and apparatus are disclosed for ESD protection circuits. An ESD protection circuit may comprise a first region of an n type material, a second region of a p type material adjacent to the first region, a third region of an n type material within the second region and separated from the first region, and a fourth region of a p type material within the third region. There may be multiple parts within the first region and the second region, made of different n type or p type materials. An ESD protection circuit may further comprise a fifth region of a p type material, contained within the first region.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140225158
    Abstract: Methods and apparatus are disclosed for ESD protection circuits. An ESD protection circuit may comprise a lateral silicon controlled rectifier (SCR) circuit and a lateral PNP bipolar junction transistor (BJT) circuit. The SCR circuit comprises a first region on an n type buried layer (NBL), a second region on the NBL, a fourth region formed within the first region, and a fifth region formed within the second region. The PNP circuit comprises the second region on the NBL, a third region on the NBL, and a sixth region formed within the third region. The first region is the 1st N node of the SCR circuit and is connected with the base of the PNP circuit, which is the third region, by the NBL, and the 2nd P node of the SCR circuit is shared with the collector of the PNP circuit.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Yu Kuo, Chi-Kuang Chen
  • Patent number: 8785972
    Abstract: An electrostatic protection circuit in a semiconductor device includes a first first-conductivity type well extending in a first direction over a semiconductor substrate, a second first-conductivity type well extending in a second direction over the semiconductor substrate and perpendicular to the first direction with one end coupled to a first long side of the first first-conductivity type well, and a second-conductivity type well formed around the first first-conductivity type well and the second first-conductivity type well. It also includes a first high-concentration second-conductivity type region extending in the second direction on a surface of the second first-conductivity type well and a first high-concentration first-conductivity type region extending in the second direction on a surface of the second-conductivity type well while facing the first high-concentration second-conductivity type region.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: July 22, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yasuyuki Morishita
  • Patent number: 8779516
    Abstract: A second conduction-type MIS transistor in which a source is coupled to a second power source over the surface of a first conduction-type well and a drain is coupled to the open-drain signal terminal is provided. A second conduction-type first region is provided at both sides of the MIS transistor in parallel with a direction where the electric current of the MIS transistor flows and coupled to the open-drain signal terminal. The whole these components are surrounded by a first conduction-type guard ring coupled to the second power source and the outside surrounded by the first conduction-type guard ring is further surrounded by a second conduction-type guard ring coupled to a first power source. Thereby, the semiconductor device is capable of achieving ESD protection of an open-drain signal terminal having a small area and not providing a protection element between power source terminals.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Toshikatsu Kawachi
  • Patent number: 8772092
    Abstract: A method for forming an integrated circuit. The method includes forming a first guard ring around at least one transistor over a substrate, the first guard ring having a first type dopant. The method further includes forming a second guard ring around the first guard ring, the second guard ring having a second type dopant. The method includes forming a first doped region adjacent to the first guard ring, the first doped region having the second type dopant. The method further includes forming a second doped region adjacent to the second guard ring, the second doped region having the first type dopant, wherein the first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD).
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yu-Chang Jong, Chun-Chien Tsai
  • Patent number: 8772870
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate and having a first conductivity type, a gate structure supported by the semiconductor substrate between the source and drain regions, a well region in the semiconductor substrate, having a second conductivity type, and in which a channel region is formed under the gate structure during operation, and a shunt region adjacent the well region in the semiconductor substrate and having the second conductivity type. The shunt region has a higher dopant concentration than the well region to establish a shunt path for charge carriers of the second conductivity type that electrically couples the well region to a potential of the source region.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 8, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xiaowei Ren, David C. Burdeaux, Robert P. Davidson, Michele L. Miera
  • Patent number: 8772091
    Abstract: Apparatus and methods for electronic circuit protection under high stress operating conditions are provided. In one embodiment, an apparatus includes a substrate having a first p-well, a second p-well adjacent the first p-well, and an n-type region separating the first and second p-wells. An n-type active area is over the first p-well and a p-type active area is over the second p-well. The n-type and p-type active areas are electrically connected to a cathode and anode of a high reverse blocking voltage (HRBV) device, respectively. The n-type active area, the first p-well and the n-type region operate as an NPN bipolar transistor and the second p-well, the n-type region, and the first p-well operate as a PNP bipolar transistor. The NPN bipolar transistor defines a relatively low forward trigger voltage of the HRBV device and the PNP bipolar transistor defines a relatively high reverse breakdown voltage of the HRBV device.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 8, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Javier A Salcedo, David Hall Whitney
  • Patent number: 8766232
    Abstract: According to a method of fabricating the semiconductor memory device, a contact plug can be protected while mold openings are formed. A semiconductor memory device may include a mold dielectric layer on an entire surface of a substrate, the substrate including a first region and a second region. A contact plug may be provided in a contact hole formed through the mold dielectric layer in the first region. A variable resistor may be provided in a mold opening formed through the mold dielectric layer in the second region. An upper surface of the contact plug may be at a level equal to or lower than an upper surface of the mold dielectric layer.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sukhun Choi, Boun Yoon, Kevin Ahn, Doo-Sung Yun
  • Patent number: 8766325
    Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: July 1, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Toshio Nakajima, Syoji Higashida
  • Patent number: 8748236
    Abstract: A method for manufacturing a semiconductor device includes irradiating light to an effective region of a semiconductor substrate. A wavelength of the light is a wavelength adapted so that light absorptance of the semiconductor substrate increases if an intensity of the light increases. The light is irradiated so that a focus point of the light is made within the semiconductor substrate in the irradiating.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: June 10, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Atsushi Tanida
  • Patent number: 8741698
    Abstract: Atomic layer deposition (ALD) can be used to form a dielectric layer of zirconium oxide for use in a variety of electronic devices. Forming the dielectric layer includes depositing zirconium oxide using atomic layer deposition. A method of atomic layer deposition to produce a metal-rich metal oxide comprises the steps of providing a silicon substrate in a reaction chamber, pulsing a zirconium precursor for a predetermined time to deposit a first layer, and oxidizing the first layer with water vapor to produce the metal-rich metal oxide. The metal-rich metal oxide has superior properties for non-volatile resistive-switching memories.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: June 3, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Jinhong Tong, Vidyut Gopal, Imran Hashim, Randall Higuchi, Albert Lee
  • Patent number: 8742456
    Abstract: An integrated trench-MOS-controlled-thyristor plus trench gated diode combination, in which the trenches are preferably formed at the same time. A backside polarity reversal process permits a backside p+ region in the thyristor areas, and only a backside n+ region in the diode areas (for an n-type device). This is particularly advantageous in motor control circuits and the like, where the antiparallel diode permits the thyristor to be dropped into existing power MOSFET circuit designs. In power conversion circuits, the antiparallel diode can conveniently serve as a freewheeling diode.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: June 3, 2014
    Assignee: Pakal Technologies LLC
    Inventors: Hidenori Akiyama, Richard A. Blanchard, Woytek Tworzydlo
  • Patent number: 8728877
    Abstract: On a single-crystal substrate, a drift layer is formed. The drift layer has a first surface facing the single-crystal substrate, and a second surface opposite to the first surface, is made of silicon carbide, and has first conductivity type. On the second surface of the drift layer, a collector layer made of silicon carbide and having second conductivity type is formed. By removing the single-crystal substrate, the first surface of the drift layer is exposed. A body region and an emitter region are formed. The body region is disposed in the first surface of the drift layer, and has the second conductivity type different from the first conductivity type. The emitter region is disposed on the body region, is separated from the drift layer by the body region, and has first conductivity type.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda
  • Patent number: 8722469
    Abstract: A memory cell and a process for manufacturing the same are provided. In the process, a first electrode layer is formed on a conductive layer over a substrate, and then a transition metal layer is formed on the first electrode layer. After that, the transition metal layer is subjected to a plasma oxidation step to form a transition metal oxide layer as a precursor of a data storage layer, and a second electrode layer is formed on the transition metal oxide layer. A memory cell is formed after the second electrode layer, the transition metal oxide layer and the first electrode layer are patterned into a second electrode, a data storage layer and a first electrode, respectively.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 13, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Ming-Daou Lee, Chia-Hua Ho, Erh-Kun Lai, Kuang-Yeu Hsieh
  • Patent number: 8723156
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 13, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim
  • Publication number: 20140127867
    Abstract: Device structures and design structures for a silicon controlled rectifier, as well as methods for fabricating a silicon controlled rectifier. The device structure includes first and second layers of different materials disposed on a top surface of a device region containing first and second p-n junctions of the silicon controlled rectifier. The first layer is laterally positioned on the top surface in vertical alignment with the first p-n junction. The second layer is laterally positioned on the top surface of the device region in vertical alignment with the second p-n junction. The material comprising the second layer has a higher electrical resistivity than the material comprising the first layer.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kiran V. Chatty, Robert J. Gauthier, JR., Junjun Li, Alain Loiseau
  • Patent number: 8703547
    Abstract: The present invention provides a device for electrostatic discharge and the method of manufacturing thereof. P-well is formed on the substrate, and a first N+ doped region, a second N+ doped region and a P+ doped region are formed in the P-well; both ends of each doped region adopt shallow trench isolation for isolation. A lightly doped source-drain region portion is formed between the first N+ doped region and the shallow trench isolation connected thereto. Under the source-drain region, a halo injection with an inverse type is formed. The reverse conduction voltage of the collector of the bipolar transistor is lowered through the introduction of special doped region and the adoption of lightly doped source-drain technology for manufacturing the source-drain region as well as the manufacturing of halo injection with inverse type under the source-drain region, thus reducing the trigger voltage of the device.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 22, 2014
    Assignee: Grace Semiconductor Manufacturing Corporation
    Inventors: Yi Shan, Jun He
  • Patent number: 8698119
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: April 15, 2014
    Assignees: Sandisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
  • Patent number: 8691634
    Abstract: A thyristor device includes a semiconductor body and a conductive anode. The semiconductor body has a plurality of doped layers forming a plurality of dopant junctions and includes an optical thyristor, a first amplifying thyristor, and a switching thyristor. The conductive anode is disposed on a first side of the semiconductor body. The optical thyristor is configured to receive incident radiation to generate a first electric current, and the first amplifying thyristor is configured to increase the first electric current from the optical thyristor to at least a threshold current. The switching thyristor switches to the conducting state in order to conduct a second electric current from the anode and through the semiconductor body.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 8, 2014
    Assignee: General Electric Company
    Inventors: Ahmed Elasser, Stephen Daley Arthur, Alexey Vert, Stanislav Ivanovich Soloviev, Peter Almern Losee
  • Patent number: 8685800
    Abstract: A technique for addressing single-event latch-up (SEL) in a semiconductor device includes determining a location of a parasitic silicon-controlled rectifier (SCR) in an integrated circuit design of the semiconductor device. In this case, the parasitic SCR includes a parasitic pnp bipolar junction transistor (BJT) and a parasitic npn BJT. The technique also includes incorporating a first transistor between a first power supply node and an emitter of the parasitic pnp BJT in the integrated circuit design. The first transistor includes a first terminal coupled to the first power supply node, a second terminal coupled to the emitter of the parasitic pnp BJT, and a control terminal. The first transistor is not positioned between a base of the pnp BJT and the first power supply node. The first transistor limits current conducted by the parasitic pnp bipolar junction transistor following an SEL.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jianan Yang, James D. Burnett, Brad J. Garni, Thomas W. Liston, Huy Van Pham
  • Publication number: 20140070231
    Abstract: A semiconductor device is provided. The semiconductor device includes an avalanche photodiode unit and a thyristor unit. The avalanche photodiode unit is configured to receive incident light to generate a trigger current and comprises a wide band-gap semiconductor. The thyristor unit is configured to be activated by the trigger current to an electrically conductive state. A semiconductor device and a method for making a semiconductor device are also presented.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Stanislav Ivanovich Soloviev, Ahmed Elasser, Alexander Viktorovich Bolotnikov, Alexey Vert, Peter Almern Losee
  • Publication number: 20140061716
    Abstract: An electrostatic discharge protection clamp adapted to limit a voltage appearing across protected terminals of an integrated circuit to which the electrostatic discharge protection clamp is coupled is presented. The electrostatic discharge protection clamp includes a substrate, and a first electrostatic discharge protection device formed over the substrate.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Chai Ean c. Gill, Changsoo Hong
  • Patent number: 8664690
    Abstract: A bi-directional triode thyristor (TRIAC) device for high voltage electrostatic discharge (ESD) protection may include a substrate, an N+ doped buried layer, an N-type well region and two P-type well regions. The N+ doped buried layer may be disposed proximate to the substrate. The N-type well region may encompass the two P-type well regions such that a portion of the N-type well region is interposed between the two P-type well regions. The P-type well regions may be disposed proximate to the N+ doped buried layer and comprise one or more N+ doped plates and one or more P+ doped plates. The portion of the N-type well region that is interposed between the two P-type well regions may comprise one or more P-type portions, such as a P+ doped plate or a P-type implant.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: March 4, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsin-Liang Chen, Shuo-Lun Tu, Wing-Chor Chan, Shyi-Yuan Wu
  • Publication number: 20140057398
    Abstract: A memory cell includes a thyristor having a plurality of alternately doped, vertically superposed semiconductor regions; a vertically oriented access transistor having an access gate; and a control gate operatively laterally adjacent one of the alternately doped, vertically superposed semiconductor regions. The control gate is spaced laterally of the access gate. Other embodiments are disclosed, including methods of forming memory cells and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor.
    Type: Application
    Filed: October 30, 2013
    Publication date: February 27, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Sanh D. Tang
  • Publication number: 20140057397
    Abstract: Device structures, design structures, and fabrication methods for a silicon controlled rectifier. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. A doped region of a second conductivity type is formed in the well. A cathode of a silicon controlled rectifier and a cathode of a diode are formed in the device region. The silicon controlled rectifier comprises a first portion of the well and an anode comprised of a first portion of the doped region. The diode comprises a second portion of the well and an anode comprised of a second portion of the doped region.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li