Complementary Field Effect Transistors Patents (Class 438/153)
  • Patent number: 8759166
    Abstract: Disclosed is a method of manufacturing a thin film transistor device that includes the following steps: forming slanted portions 51 in edges of crystalline semiconductor films 13 (13a and 13b); forming a resist film 15 on the crystalline semiconductor film 13a so as to expose the slanted portions 51 and so as to cover the entire crystalline semiconductor film 13b; performing half exposure of the resist film 15 that is formed on the crystalline semiconductor film 13a; injecting a p-type impurity only into the slanted portions 51 of the crystalline semiconductor film 13a; removing the resist film 15 that is formed on the crystalline semiconductor film 13a by ashing; and injecting the p-type impurity into the entire crystalline semiconductor film 13a.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 24, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroki Mori, Masaki Saitoh, Takumi Tomita
  • Patent number: 8741721
    Abstract: A semiconductor device and manufacturing method thereof capable of improving an operating speed of a MOSFET using an inexpensive structure. The method comprises the steps of forming a stress film to cover a source, drain, sidewall insulating layer and gate of the MOSFET and forming in the stress film a slit extending from the stress film surface toward the sidewall insulating layer. As a result, an effect of allowing local stress components in the stress films on the source and the drain to be relaxed by local stress components in the stress film on the gate is suppressed by the slit.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: June 3, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Publication number: 20140103437
    Abstract: An improved fin field-effect transistor (FinFET) is built on a compound fin, which has a doped core and lightly doped epitaxial channel region between that core and the gate dielectric. The improved structure reduces FinFET random doping fluctuations when doping is used to control threshold voltage. Further, the transistor design affords better source and drain conductance when compared to prior art FinFETs. Three representative embodiments of the key structure are described in detail.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Applicants: GOLD STANDARD SIMULATIONS LTD., SEMI SOLUTIONS LLC
    Inventors: Ashok K. Kapoor, Robert J. Strain
  • Patent number: 8697503
    Abstract: A method of manufacturing a thin film electronic device includes applying a plastic coating to a rigid carrier substrate using a wet casting process, the plastic coating forming a plastic substrate and include a transparent plastic material doped with a UV absorbing additive. Thin film electronic elements are formed over the plastic substrate, and the rigid carrier substrate is released from the plastic substrate. This method forms transparent substrate materials suitable for a laser release process, through doping of the plastic material of the substrate with a UV absorber. This UV absorber absorbs in the wavelength of the lift-off laser (for example 308-351 nm, or 355 nm) with a very high absorption.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: April 15, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Eliav Itzhak Haskal, David James McCulloch, Dirk Jan Broer
  • Patent number: 8652887
    Abstract: The present invention relates to a method for providing a Silicon-On-Insulator (SOI) stack that includes a substrate layer, a first oxide layer on the substrate layer and a silicon layer on the first oxide layer (BOX layer). The method includes providing at least one first region of the SOI stack wherein the silicon layer is thinned by thermally oxidizing a part of the silicon layer and providing at least one second region of the SOI stack wherein the first oxide layer (BOX layer) is thinned by annealing.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 18, 2014
    Assignee: Soitec
    Inventors: Bich-Yen Nguyen, Carlos Mazure, Richard Ferrant
  • Publication number: 20140038368
    Abstract: A method for fabricating a semiconductor device includes forming a gate stack on an active region of a silicon-on-insulator substrate. The active region is within a semiconductor layer and is doped with an p-type dopant. A gate spacer is formed surrounding the gate stack. A first trench is formed in a region reserved for a source region and a second trench is formed in a region reserved for a drain region. The first and second trenches are formed while maintaining exposed the region reserved for the source region and the region reserved for the drain region. Silicon germanium is epitaxially grown within the first trench and the second trench while maintaining exposed the regions reserved for the source and drain regions, respectively.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland CHANG, Isaac LAUER, Chung-Hsun LIN, Jeffrey W. SLEIGHT
  • Patent number: 8637357
    Abstract: A CMOS device with transistors having different gate dielectric materials and a method of manufacture thereof. A CMOS device is formed on a workpiece having a first region and a second region. A first gate dielectric material is deposited over the second region. A first gate material is deposited over the first gate dielectric material. A second gate dielectric material comprising a different material than the first gate dielectric material is deposited over the first region of the workpiece. A second gate material is deposited over the second gate dielectric material. The first gate material, the first gate dielectric material, the second gate material, and the second gate dielectric material are then patterned to form a CMOS device having a symmetric Vt for the PMOS and NMOS FETs.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 8624321
    Abstract: A thin film transistor is provided, which includes a gate insulating layer covering a gate electrode, a microcrystalline semiconductor layer provided over the gate insulating layer, an amorphous semiconductor layer overlapping the microcrystalline semiconductor layer and the gate insulating layer, and a pair of impurity semiconductor layers which are provided over the amorphous semiconductor layer and to which an impurity element imparting one conductivity type is added to form a source region and a drain region. The gate insulating layer has a step adjacent to a portion in contact with an end portion of the microcrystalline semiconductor layer. A second thickness of the gate insulating layer in a portion outside the microcrystalline semiconductor layer is smaller than a first thickness thereof in a portion in contact with the microcrystalline semiconductor layer.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 7, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshiyuki Kurokawa, Hiromichi Godo, Hidekazu Miyairi
  • Patent number: 8563367
    Abstract: A method of fabricating an array substrate for an in-plane switching (IPS)-mode liquid crystal display (LCD) device, which includes a common electrode and a pixel electrode with a fine line width, are provided. The formation of the pixel electrode and the common electrode of the array substrate includes depositing two different metal layers and patterning the two different metal layers using a selective etching process. Thus, the pixel electrode and a central common electrode may be formed to have a fine line width so that the IPS-mode LCD device can have an improved aperture ratio.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 22, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: Oh-Nam Kwon
  • Patent number: 8563341
    Abstract: The present invention discloses a thin film transistor array substrate and a manufacturing method for the same. A transparent conductive layer and a first metal layer are deposited on a substrate, and a multi-tone mask is utilized to form a gate electrode and a common electrode. A gate insulative layer and a semi-conductive layer are deposited on the substrate with the gate electrode and the common electrode, and the semi-conductive layer is patterned by a second mask to retain a region of the semi-conductive layer that is there-above the gate electrode. A second metal layer is deposited on the substrate with the gate insulative layer along with the retained semi-conductive layer, and the second metal layer is patterned by a third mask to form a source electrode, a drain electrode, and a pixel electrode. The present invention provides a simple manufacturing method.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 22, 2013
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Pei Jia, Liu-yang Yang
  • Publication number: 20130273699
    Abstract: A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.
    Type: Application
    Filed: June 13, 2013
    Publication date: October 17, 2013
    Inventors: Dureseti Chidambarrao, Brian J. Greene, Yue Liang, Xiaojun Yu
  • Patent number: 8559216
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a plurality of first interconnections arranged parallel, a plurality of second interconnections arranged parallel to intersect the first interconnections, and memory cell portions respectively arranged at intersecting portions between the first and second interconnections and each configured by laminating a variable-resistance element and a diode element. The diode element has a laminated structure having a first insulating film, a conductive fine grain layer and a second insulating film. The physical film thickness of the second insulating film is greater than the first insulating film and the dielectric constant of the second insulating film is greater than the first insulating film.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 15, 2013
    Assignee: Kabushiki Kaisha Toshbia
    Inventors: Naoki Yasuda, Daisuke Matsushita, Koichi Muraoka
  • Patent number: 8551828
    Abstract: To suppress an effect of metal contamination caused in manufacturing an SOI substrate. After forming a damaged region by irradiating a semiconductor substrate with hydrogen ions, the semiconductor substrate is bonded to a base substrate. Heat treatment is performed to cleave the semiconductor substrate; thus an SOI substrate is manufactured. Even if metal ions enter the semiconductor substrate together with the hydrogen ions in the step of hydrogen ion irradiation, the effect of metal contamination can be suppressed by the gettering process. Accordingly, the irradiation with hydrogen ions can be performed positively by an ion doping method.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: October 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi
  • Patent number: 8551810
    Abstract: In a transistor including an oxide semiconductor film, a metal oxide film for preventing electrification which is in contact with the oxide semiconductor film and covers a source electrode and a drain electrode is formed. Then, oxygen is introduced (added) to the oxide semiconductor film through the metal oxide film and heat treatment is performed. Through these steps of oxygen introduction and heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor film, so that the oxide semiconductor film is highly purified. Further, by providing the metal oxide film, generation of a parasitic channel on a back channel side of the oxide semiconductor film can be prevented in the transistor.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8551821
    Abstract: The present invention relates to an enhancement normally off nitride semiconductor device and a method of manufacturing the same. The method includes the steps of: forming a buffer layer on a substrate; forming a first nitride semiconductor layer on the buffer layer; forming a second nitride semiconductor layer on the first nitride semiconductor layer; etching a gate region above the second nitride semiconductor layer up to a predetermined depth of the first nitride semiconductor layer; forming an insulating film on the etched region and the second nitride semiconductor layer; patterning a source/drain region, etching the insulating film in the source/drain region, and forming electrodes in the source/drain region; and forming a gate electrode on the insulating film in the gate region. In this manner, the present invention provides a method of easily implementing a normally off enhancement semiconductor device by originally blocking 2DEG which is generated under a gate region.
    Type: Grant
    Filed: December 4, 2010
    Date of Patent: October 8, 2013
    Assignee: Kyungpook National University Industry-Academic Cooperation Foundation
    Inventors: Jung Hee Lee, Ki Sik Im, Jong Bong Ha
  • Patent number: 8551849
    Abstract: Aimed at providing a highly reliable semiconductor device appropriately increased in stress at the channel region so as to improve carrier injection rate, thereby dramatically improved in transistor characteristics, and made adaptable also to recent narrower channel width, and a method of manufacturing the same, and a method of manufacturing the same, a first sidewall composed of a stress film having expandability is formed on the side faces of a gate electrode, a second sidewall composed of a film having smaller stress is formed on the first sidewall, and a semiconductor, which is a SiC layer for example, is formed as being positioned apart from the first sidewall while placing the second sidewall in between.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: October 8, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8546210
    Abstract: It is an object of the present invention to provide a method of separating a thin film transistor, and circuit or a semiconductor device including the thin film transistor from a substrate by a method different from that disclosed in the patent document 1 and transposing the thin film transistor, and the circuit or the semiconductor device to a substrate having flexibility. According to the present invention, a large opening or a plurality of openings is formed at an insulating film, a conductive film connected to a thin film transistor is formed at the opening, and a peeling layer is removed, then, a layer having the thin film transistor is transposed to a substrate provided with a conductive film or the like. A thin film transistor according to the present invention has a semiconductor film which is crystallized by laser irradiation and prevents a peeling layer from exposing at laser irradiation not to be irradiated with laser light.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Yamamoto, Koichiro Tanaka, Atsuo Isobe, Daisuke Ohgarane, Shunpei Yamazaki
  • Patent number: 8518762
    Abstract: Provided is a method for manufacturing a semiconductor device having favorable electric characteristics with a high yield. A groove and/or a contact hole reaching a semiconductor region or a conductive region is formed in an insulating film covering the semiconductor region or the conductive region; a first conductive film is formed in the groove and/or the contact hole; the first conductive film is exposed to plasma generated from a mixed gas of an oxidizing gas and a halogen-based gas and to an atmosphere containing water to be fluidized partially or entirely; and a second conductive film is formed over the first conductive film.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 27, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Yuta Endo
  • Patent number: 8513765
    Abstract: A device and method for forming a semiconductor device include growing a raised semiconductor region on a channel layer adjacent to a gate structure. A space is formed between the raised semiconductor region and the gate structure. A metal layer is deposited on at least the raised semiconductor region. The raised semiconductor region is silicided to form a silicide into the channel layer which extends deeper into the channel layer at a position corresponding to the space.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam G. Shahidi
  • Patent number: 8501556
    Abstract: A thin film transistor (“TFT”) includes a poly silicon layer formed on a flexible substrate and including a source region, a drain region, and a channel region, and a gate stack formed on the channel region of the poly silicon layer, wherein the gate stack includes first and second gate stacks, and a region of the poly silicon layer between the first and second gate stacks is an off-set region. A method of manufacturing the TFT is also provided.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jang-yeon Kwon, Sang-yoon Lee, Jong-man Kim, Kyung-bae Park, Ji-sim Jung
  • Patent number: 8486773
    Abstract: A semiconductor film having an impurity region to which at least an n-type or p-type impurity is added and a wiring are provided. The wiring includes a diffusion prevention film containing a conductive metal oxide, and a low resistance conductive film over the diffusion prevention film. In a contact portion between the wiring and the semiconductor film, the diffusion prevention film and the impurity region are in contact with each other. The diffusion prevention film is formed in such a manner that a conductive film is exposed to plasma generated from a mixed gas of an oxidizing gas and a halogen-based gas to form an oxide of a metal material contained in the conductive film, the conductive film in which the oxide of the metal material is formed is exposed to an atmosphere containing water to be fluidized, and the fluidized conductive film is solidified.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 16, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tetsuhiro Tanaka
  • Patent number: 8482008
    Abstract: A thin film transistor having a crystalline silicon film that is formed over an insulating substrate with a gate electrode and a gate insulating film in between, and has a channel region in a region corresponding to the gate electrode; an insulating channel protective film that is selectively formed in a region corresponding to the channel region on the crystalline silicon film; an n+ silicon film having a source region and a drain region that sandwich a region corresponding to the channel region on the channel protective film and the crystalline silicon film; and a metal film having a source electrode and a drain electrode that respectively correspond to the source region and the drain region.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 9, 2013
    Assignee: Sony Corporation
    Inventors: Toshiaki Arai, Yoshio Inagaki
  • Patent number: 8435851
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8426859
    Abstract: A semiconductor device includes a semiconductor layer, a first insulating layer, a gate electrode which is formed on the first insulating layer and has a portion overlapping a channel region of the semiconductor layer with the first insulating layer sandwiched in between, a second insulating layer which is formed on the first insulating layer and covers the gate electrode, and a capacitor electrode which is formed on the second insulating layer and has a portion facing the gate electrode with the second insulating layer sandwiched in between. The second insulating layer has a thin portion, whose thickness is thinner than that of the second insulating layer in surrounding regions, on the portion of the gate electrode overlapping the channel region. A part of the capacitor electrode faces the portion of the gate electrode overlapping the channel region with the thin portion of the second insulating layer sandwiched in between.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 23, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobuaki Kakinuma
  • Patent number: 8426309
    Abstract: Embodiments of the present invention provide methods for fabricating graphene nanoelectronic devices with semiconductor compatible processes, which allow wafer scale fabrication of graphene nanoelectronic devices. Embodiments of the present invention also provide methods for passivating graphene nanoelectronic devices, which enable stacking of multiple graphene devices and the creation of high density graphene based circuits. Other embodiments provide methods for producing devices with graphene layer segments having multiple thicknesses.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 23, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan W. Ward, Michael J. O'Connor
  • Patent number: 8410002
    Abstract: An object is to provide a semiconductor device with a novel structure and favorable characteristics. A semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode electrically connected to the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode, and the drain electrode, and a gate electrode over the gate insulating layer. The source electrode and the drain electrode include an oxide region formed by oxidizing a side surface thereof. Note that the oxide region of the source electrode and the drain electrode is preferably formed by plasma treatment with a high frequency power of 300 MHz to 300 GHz and a mixed gas of oxygen and argon.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 2, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 8395186
    Abstract: A method and structures are provided for implementing vertical transistors utilizing wire vias as gate nodes. The vertical transistors are high performance transistors fabricated up in the stack between the planes of the global signal routing wire, for example, used as vertical signal repeater transistors. An existing via or a supplemental vertical via between wire planes provides both an electrical connection and the gate node of the novel vertical transistor.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8389995
    Abstract: A method for producing a solid-state semiconducting structure, includes steps in which: (i) a monocrystalline substrate is provided; (ii) a monocrystalline oxide layer is formed, by epitaxial growth, on the substrate; (iii) a bonding layer is formed by steps in which: (a) the impurities are removed from the surface of the monocrystalline oxide layer; (b) a semiconducting bonding layer is deposited by slow epitaxial growth; and (iv) a monocrystalline semiconducting layer is formed, by epitaxial growth, on the bonding layer so formed. The solid-state semiconducting heterostructures so obtained are also described.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 5, 2013
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Guillaume Saint-Girons, Ludovic Largeau, Gilles Patriarche, Philippe Regreny, Guy Hollinger
  • Patent number: 8383431
    Abstract: An organic light emitting diode (OLED) including: a substrate; a reflection layer on the substrate and including metal; a first electrode on the reflection layer and including a light transparent aluminum zinc oxide (AZO); an organic layer on the first electrode and including an emitting layer; and a second electrode on the organic layer and including a semi-transparent reflection layer.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: February 26, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Won-Jong Kim, Chang-Ho Lee, Jong-Hyuk Lee, Young-Woo Song, Yong-Tak Kim, Jin-Baek Choi, Joon-Gu Lee, Se-Jin Cho, Hee-Joo Ko, Il-Soo Oh, Hye-Lim Lee, Kyu-Hawn Hwang
  • Patent number: 8377761
    Abstract: A substrate diode for an SOI device is formed in accordance with an appropriately designed manufacturing flow, wherein transistor performance enhancing mechanisms may be implemented substantially without affecting the diode characteristics. In one aspect, respective openings for the substrate diode may be formed after the formation of a corresponding sidewall spacer structure used for defining the drain and source regions, thereby obtaining a significant lateral distribution of the dopants in the diode areas, which may therefore provide sufficient process margins during a subsequent silicidation sequence on the basis of a removal of the spacers in the transistor devices. In a further aspect, in addition to or alternatively, an offset spacer may be formed substantially without affecting the configuration of respective transistor devices.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 19, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andreas Gehring, Jan Hoentschel, Andy Wei
  • Patent number: 8373165
    Abstract: A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-hoon Son, Si-young Choi, Jong-wook Lee
  • Patent number: 8362526
    Abstract: A method of fabricating a liquid crystal display device includes forming first, second, and third active patterns on a substrate having a pixel region and a driving region, wherein the first and second active patterns are in the driving region and the third active pattern is in the pixel region, the first, second, and third active patterns each having an active region, a source region, and a drain region with the source and drain regions on opposing sides of the active region, forming a gate insulator on the first, second, and third active patterns, forming first, second, and third gate electrodes on the gate insulator, wherein the first, second, and third gate electrodes correspond to the active regions of the first, second, and third active patterns, respectively, doping the source and drain regions of the first, second, and third active patterns with n? ions using the first, second, and third gate electrodes as a doping mask, doping the n? doped source and drain regions of the second active pattern with p+
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 29, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: Joon Young Yang
  • Patent number: 8349670
    Abstract: A memory cell has N?6 transistors, in which two are access transistors, at least one pair [say (N?2)/2] are pull-up transistors, and at least another pair [say (N?2)/2] are pull-down transistors. The pull-up and pull-down transistors are all coupled between the two access transistors. Each of the access transistors and the pull-up transistors are the same type, p-type or n-type. Each of the pull-down transistors is the other type, p-type or n-type. The access transistors are floating body devices. The pull-down transistors are non-floating body devices. The pull-up transistors may be floating or non-floating body devices. Various specific implementations and methods of making the memory cell are also detailed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: January 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Steven J. Koester, Jeffrey W. Sleight
  • Patent number: 8350298
    Abstract: A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: January 8, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xi Wang, Miao Zhang, Jing Chen, Zhongying Xue
  • Patent number: 8343799
    Abstract: An object is to manufacture a semiconductor device including an oxide semiconductor at low cost with high productivity in such a manner that a photolithography process is simplified by reducing the number of light-exposure masks. In a method for manufacturing a semiconductor device including a channel-etched inverted-stagger thin film transistor, an oxide semiconductor film and a conductive film are etched using a mask layer formed with the use of a multi-tone mask which is a light-exposure mask through which light is transmitted so as to have a plurality of intensities. The etching step is performed by wet etching in which an etching solution is used.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: January 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunichi Ito, Miyuki Hosoba
  • Patent number: 8324070
    Abstract: A semiconductor device includes a NMOS transistor of a peripheral circuit region. The NMOS transistor is formed over a relaxed silicon germanium layer and a silicon layer to have a tensile strain structure, thereby increasing electron mobility of a channel region in operation of the device. The semiconductor device may include a second active region including a first silicon layer connected to a first active region of a semiconductor substrate, a second silicon layer and a relaxed silicon germanium layer formed over the first silicon layer expected to be a NMOS region, and a NMOS gate formed over the second silicon layer.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: December 4, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Taek Hwang
  • Patent number: 8318554
    Abstract: In forming a thin film transistor, to form a film superior in quality to a film formed by a conventional CVD method and to form a film equal or superior in quality to a film formed by a thermal oxidation method at a temperature which does not affect a substrate. Plasma oxidation or plasma nitridation with a low electron temperature and a high electron density is performed to at least one of a glass substrate, a semiconductor film containing amorphous silicon formed into a predetermined pattern, a gate electrode and a wire pulled from the gate electrode, an insulating film to be a gate insulating film, and a protective film with a temperature of the glass substrate set at a temperature 100° C. or more lower than a strain point of the glass substrate.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: November 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Shunpei Yamazaki
  • Patent number: 8298882
    Abstract: Fabricating of semiconductor devices includes: depositing epitaxially a SiGe layer onto both NFET and PFET portions of a Si surface; blanket disposing a first sequence of layers over the SiGe layer including a high-k dielectric and a metal, incorporating the first sequence of layers into the gatestacks and gate insulators of both NFET devices and PFET devices; the first sequence of layers is selected to yield desired device parameter values for the PFET devices; removing the gatestack, the gate dielectric, and the SiGe layer for the NFET devices, re-forming the NFET devices by deploying a second sequence of layers that include a second high-k dielectric and a second metal; the second sequence of layers is selected to yield desired device parameter values for the NFET devices.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Keith Kwong Hon Wong
  • Patent number: 8299471
    Abstract: The invention discloses an organic electroluminescent device includes a substrate. The substrate includes a first control area and a second control area, a polysilicon active layer disposed on the first control area, and a first conductivity type source/drain area disposed in the polysilicon active layer. A first dielectric layer is disposed on the polysilicon active layer serving as a first gate dielectric layer, a first gate and a second gate is disposed on the polysilicon active layer and the second control area, respectively, wherein the first gate and the first conductivity type source/drain area constitute a first conductivity type thin film transistor serving as a switch element. A second dielectric layer disposed on the first gate and the second gate serves as a second gate dielectric layer, a micro-crystal silicon active layer disposed over the second gate.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: October 30, 2012
    Assignee: Chimei Innolux Corporation
    Inventors: Hanson Liu, Ryan Lee, Chun-Hsiang Fang
  • Patent number: 8273609
    Abstract: The present invention relates to a method for fabricating thin film transistors (TFTs), which includes the following steps: forming a semi-conductive layer on a substrate; forming a patterned photoresist layer with a first thickness and a second thickness on the semi-conductive layer; pattering the semi-conductive layer by using the patterned photoresist layer as a mask to form a patterned semi-conductive layer; removing the second thickness of the patterned photoresist layer; performing a first ion doping process on the patterned semi-conductive layer by using the first thickness of the patterned photoresist layer as a mask; removing the first thickness of the patterned photoresist layer; and forming a dielectric layer and a gate on the patterned semi-conductive layer. The present invention also discloses a method for fabricating an array substrate including aforementioned TFTs.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: September 25, 2012
    Assignee: Chimei Innolux Corporation
    Inventors: Kuo Chu Liao, Shan Hung Tsai, Su Fen Chen, Ming Yu Chung
  • Patent number: 8268688
    Abstract: A method for producing VDMOS transistors in which a specific layer arrangement and a specific method sequence allow setting up an improved gate contact when simultaneously producing source and gate contacts using a single contact hole mask (photo mask).
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: September 18, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Jochen Doehnel, Siegfried Hering
  • Patent number: 8247277
    Abstract: A manufacturing method of a thin film transistor is provided. An insulating pattern layer having at least one protrusion is formed on a substrate. At least one spacer and a plurality of amorphous semiconductor patterns separated from each other are formed on the insulating pattern layer. The spacer is formed at one side of the protrusion and connected between the amorphous semiconductor patterns. The spacer and the amorphous semiconductor patterns are crystallized. The protrusion and the insulating pattern layer below the spacer are removed so that a beam structure having a plurality of corners is formed and suspended over the substrate. A carrier tunneling layer, a carrier trapping layer and a carrier blocking layer are sequentially formed to compliantly wrap the corners of the beam structure. Hereafter, a gate is formed on the substrate to cover the beam structure and wrap the carrier blocking layer.
    Type: Grant
    Filed: February 4, 2012
    Date of Patent: August 21, 2012
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Huang-Chung Cheng, Ta-Chuan Liao, Sheng-Kai Chen, Ying-Hui Chen, Chi-Neng Mo
  • Patent number: 8241708
    Abstract: Metal and/or silicon oxides are produced by hydrolysis of alkoxide precursors in the presence of either an acid catalyst or a base catalyst in a supercritical fluid solution. The solubility of the acid catalysts in the supercritical fluid can be increased by complexing the catalyst with a Lewis base that is soluble in the supercritical fluid. The solubility of the base catalysts in the supercritical fluid can be increased by complexing the catalyst with a Lewis acid that is soluble in the supercritical fluid. The solubility of water in the solution is increased by the interaction with the acid or base catalyst.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: August 14, 2012
    Assignees: Micron Technology, Inc., Idaho Research Foundation
    Inventors: Chien M. Wai, Hiroyuki Ohde, Stephen J. Kramer
  • Patent number: 8236635
    Abstract: In a method for manufacturing a semiconductor device including a channel-etched inverted-staggered thin film transistor, an oxide semiconductor film and a conductive film are etched using a mask layer formed with the use of a multi-tone mask which is a light-exposure mask through which light is transmitted so as to have a plurality of intensities. The etching step is performed by dry etching in which an etching gas is used.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: August 7, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Taiga Muraoka
  • Patent number: 8232599
    Abstract: An integrated circuit is provided that integrates an bulk FET and an SOI FET on the same chip, where the bulk FET includes a gate conductor over a gate oxide formed over a bulk substrate, where the gate dielectric of the bulk FET has the same thickness and is substantially coplanar with the buried insulating layer of the SOI FET. In a preferred embodiment, the bulk FET is formed from an SOI wafer by forming bulk contact trenches through the SOI layer and the buried insulating layer of the SOI wafer adjacent an active region of the SOI layer in a designated bulk device region. The active region of the SOI layer adjacent the bulk contact trenches forms the gate conductor of the bulk FET which overlies a portion of the underlying buried insulating layer, which forms the gate dielectric of the bulk FET.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Shreesh Narasimha, Ning Su, Huiling Shang
  • Patent number: 8222643
    Abstract: A thin film transistor having a crystalline silicon film that is formed over an insulating substrate with a gate electrode and a gate insulating film in between, and has a channel region in a region corresponding to the gate electrode; an insulating channel protective film that is selectively formed in a region corresponding to the channel region on the crystalline silicon film; an n+ silicon film having a source region and a drain region that sandwich a region corresponding to the channel region on the channel protective film and the crystalline silicon film; and a metal film having a source electrode and a drain electrode that respectively correspond to the source region and the drain region.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: July 17, 2012
    Assignee: Sony Corporation
    Inventors: Toshiaki Arai, Yoshio Inagaki
  • Patent number: 8207063
    Abstract: The present invention relates to a process of making a zinc-oxide-based thin film semiconductor, for use in a transistor, comprising thin film deposition onto a substrate comprising providing a plurality of gaseous materials comprising at least first, second, and third gaseous materials, wherein the first gaseous material is a zinc-containing volatile material and the second gaseous material is reactive therewith such that when one of the first or second gaseous materials are on the surface of the substrate the other of the first or second gaseous materials will react to deposit a layer of material on the substrate and wherein the third gaseous material is inert with respect to reacting with the first or second gaseous materials.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: June 26, 2012
    Assignee: Eastman Kodak Company
    Inventors: Peter J. Cowdery-Corvan, David H. Levy, Shelby F. Nelson, Diane C. Freeman, Thomas D. Pawlik
  • Patent number: 8208086
    Abstract: Provided are an organic semiconductor structure and a method of manufacturing the same, an organic thin film transistor (OTFT) using the organic semiconductor structure and a method of manufacturing the OTFT, and a display apparatus using the same.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 26, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Nack Bong Choi, Min Joo Kim
  • Patent number: 8202773
    Abstract: A PMOS transistor is disclosed which includes a nitrogen containing barrier to oxygen diffusion between a gate dielectric layer and a metal gate in the PMOS transistor, in combination with a low oxygen region of the metal gate in direct contact with the nitrogen containing barrier and an oxygen rich region of the metal gate above the low oxygen content metal region. The nitrogen containing barrier may be formed by depositing nitrogen containing barrier material on the gate dielectric layer or by nitridating a top region of the gate dielectric layer. The oxygen rich region of the metal gate may be formed by depositing oxidized metal on the low oxygen region of the metal gate or by oxidizing a top region of the low oxygen region of the metal gate.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 19, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroaki Niimi, Huang-Chun Wen
  • Patent number: 8198147
    Abstract: In a replacement gate approach for forming high-k metal gate electrodes in semiconductor devices, a tapered configuration of the gate openings may be accomplished by using a tensile stressed dielectric material provided laterally adjacent to the gate electrode structure. Consequently, superior deposition conditions may be achieved while the tensile stress component may be efficiently used for the strain engineering in one type of transistor. Furthermore, an additional compressively stressed dielectric material may be applied after providing the replacement gate electrode structures.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: June 12, 2012
    Assignee: GlobalFoundries, Inc.
    Inventors: Frank Feustel, Kai Frohberg, Thomas Werner