Multiple Parallel Current Paths (e.g., Grid Gate, Etc.) Patents (Class 438/193)
  • Patent number: 9219064
    Abstract: A semiconductor device includes a first transistor and a second transistor. The first transistor includes a first nanowire extending through a first gate electrode and between first source and drain regions. The second transistor includes a second nanowire extending through a second gate electrode and between a second source and drain regions. The first nanowire has a first size in a first direction and a second size in a second direction, and the second nanowire has a second size in the first direction and substantially the second size in the second direction. The first nanowire has a first on current and the second nanowire has a second on current. The on current of the first nanowire may be substantially equal to the on current of the second nanowire based on a difference between the sizes of the first and second nanowires. In another arrangement, the on currents may be different.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: December 22, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sang-Su Kim
  • Patent number: 9093395
    Abstract: A diode includes a substrate characterized by a first dislocation density and a first conductivity type, a first contact coupled to the substrate, and a masking layer having a predetermined thickness and coupled to the semiconductor substrate. The masking layer comprises a plurality of continuous sections and a plurality of openings exposing the substrate and disposed between the continuous sections. The diode also includes an epitaxial layer greater than 5 ?m thick coupled to the substrate and the masking layer. The epitaxial layer comprises a first set of regions overlying the plurality of openings and characterized by a second dislocation density and a second set of regions overlying the set of continuous sections and characterized by a third dislocation density less than the first dislocation density and the second dislocation density. The diode further includes a second contact coupled to the epitaxial layer.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 28, 2015
    Assignee: Avogy, Inc.
    Inventors: David P. Bour, Linda Romano, Thomas R. Prunty, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Richard J. Brown
  • Patent number: 8969180
    Abstract: A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: March 3, 2015
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Richard J. Brown, Isik C. Kizilyalli
  • Patent number: 8911926
    Abstract: A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: December 16, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jeong-Won Kim, Min Kang, Bong-Yeon Kim, Jin-Ho Ju, Dong-Min Kim, Tae-Gyun Kim, Joo-Kyoung Park, Chul-Won Park, Jun-Hyuk Woo, Won-Young Lee, Hyun-Joo Lee, Eun Jeagal
  • Patent number: 8884270
    Abstract: Vertical junction field effect transistors (VJFETs) having improved heat dissipation at high current flow while maintaining the desirable specific on-resistance and normalized saturated drain current properties characteristic of devices having small pitch lengths are described. The VJFETs comprise one or more electrically active source regions in electrical contact with the source metal of the device and one or more electrically inactive source regions not in electrical contact with the source metal of the device. The electrically inactive source regions dissipate heat generated by the electrically active source regions during current flow.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 11, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Janna Casady, Jeffrey Casady, Kiran Chatty, David Sheridan, Andrew Ritenour
  • Publication number: 20140291691
    Abstract: A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
    Type: Application
    Filed: February 27, 2014
    Publication date: October 2, 2014
    Applicant: Avogy, Inc.
    Inventors: Donald R. Disney, Hui Nie, Isik C. Kizilyalli, Richard J. Brown
  • Patent number: 8716716
    Abstract: A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 6, 2014
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Richard J. Brown, Isik C. Kizilyalli
  • Patent number: 8698164
    Abstract: A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: April 15, 2014
    Assignee: Avogy, Inc.
    Inventors: Donald R. Disney, Hui Nie, Isik C. Kizilyalli, Richard J. Brown
  • Patent number: 8679950
    Abstract: A semiconductor device includes a first fin formed of a first semiconductor material and a second fin comprising a layer formed of a second semiconductor material. The first semiconductor material is silicon, and the second semiconductor material is silicon-germanium (SiGe). The second fin further includes a layer of the first semiconductor material below the layer of the second semiconductor material. The semiconductor device also includes a hard mask layer on the first and second fins and an insulator layer that is disposed below the first and second fins. The first and second fins are used to form an N-channel and a P-channel semiconductor device, respectively.
    Type: Grant
    Filed: May 26, 2012
    Date of Patent: March 25, 2014
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Mieno Fumitake
  • Patent number: 8642463
    Abstract: A routing layer for a semiconductor die is disclosed. The routing layer includes pads for attaching solder bumps; bond-pads bonded to bump-pads of a die having an integrated circuit, and traces interconnecting bond-pads to pads. The routing layer is formed on a layer of dielectric material. The routing layer includes conductive traces at least partially surrounding some pads so as to absorb stress from solder bumps attached to the pads. Parts of the traces that surround pads protect parts of the underlying dielectric material proximate the solder bumps, from the stress.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 4, 2014
    Assignee: ATI Technologies ULC
    Inventors: Roden Topacio, Gabriel Wong
  • Patent number: 8580584
    Abstract: A system and method of increasing productivity of OLED material screening includes providing a substrate that includes an organic semiconductor, processing regions on the substrate by combinatorially varying parameters associated with the OLED device production on the substrate, performing a first characterization test on the processed regions on the substrate to generate first results, processing regions on the substrate in a combinatorial manner by varying parameters associated with the OLED device production on the substrate based on the first results of the first characterization test, performing a second characterization test on the processed regions on the substrate to generate second results, and determining whether the substrate meets a predetermined quality threshold based on the second results.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: November 12, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Chi-I Lang
  • Patent number: 8513125
    Abstract: A method for manufacturing a device comprising a structure with nanowires based on a semiconducting material such as Si and another structure with nanowires based on another semiconducting material such as SiGe, and is notably applied to the manufacturing of transistors.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: August 20, 2013
    Assignee: Commissariat a l'energie atomique et aux alternatives
    Inventors: Emeline Saracco, Jean-Francois Damlencourt, Michel Heitzmann
  • Patent number: 8492228
    Abstract: A method includes forming a first gate stack over a portion of a fin, forming a dummy gate stack over the fin, growing an epitaxial material from exposed portions of the fin, forming a layer of dielectric material over the epitaxial material, the first gate stack, and the dummy gate stack, performing a planarizing process that removes portions of the layer of dielectric material, the first gate stack, and the dummy gate stack, pattering a first mask over portions of the layer of dielectric material and the dummy gate stack, forming a silicide material on exposed portions of the first gate stack, removing the first mask, pattering a second mask over portions of the layer of dielectric material and the first gate stack, removing a polysilicon portion of the dummy gate stack to define a cavity, removing the second mask, and forming a second gate stack in the cavity.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Junli Wang
  • Patent number: 8482028
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductive type, and a periodic array structure having a second semiconductor layer of a first conductive type and a third semiconductor layer of a second conductive type periodically arrayed on the first semiconductor layer in a direction parallel with a major surface of the first semiconductor layer. The second semiconductor layer and the third semiconductor layer are disposed in dots on the first semiconductor layer. A periodic structure in the outermost peripheral portion of the periodic array structure is different from a periodic structure of the periodic array structure in a portion other than the outermost peripheral portion.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Toshiyuki Naka, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita
  • Publication number: 20130146886
    Abstract: A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Donald R. Disney, Hui Nie, Isik C. Kizilyalli, Richard J. Brown
  • Patent number: 8389973
    Abstract: A memory includes a first tunneling field effect transistor including a first drain and a first source, the first drain coupled to a first resistive memory element. The memory includes a second tunneling field effect transistor including a second drain and sharing the first source, the second drain coupled to a second resistive memory element. The memory includes a first region coupled to the first source for providing a source node.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: March 5, 2013
    Assignee: Qimonda AG
    Inventor: Thomas Nirschl
  • Patent number: 8349676
    Abstract: Apparatus, systems, and methods may include managing electrostatic discharge events by using a semiconductor device having a non-aligned gate to implement a snap-back voltage protection mechanism. Such devices may be formed by doping a semiconductor substrate to form a first conductive region as a well, forming one of a source region and a drain region in the well, depositing a layer of polysilicon on the substrate to establish a gating area that does not overlap the one of the source region and the drain region, and forming an integrated circuit supported by the substrate to couple to the one of the source region and the drain region to provide snap-back voltage operation at a node between the integrated circuit and the source or drain region. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 8, 2013
    Assignee: Synopsys, Inc.
    Inventors: Cong Khieu, Yanjun Ma, Jaideep Mavoori
  • Patent number: 8343836
    Abstract: A recessed gate FET device includes a substrate having an upper and lower portions, the lower portion having a reduced concentration of dopant material than the upper portion; a trench-type gate electrode defining a surrounding channel region and having a gate dielectric material layer lining and including a conductive material having a top surface recessed to reduce overlap capacitance with respect to the source and drain diffusion regions formed at an upper substrate surface at either side of the gate electrode. There is optionally formed halo implants at either side of and abutting the gate electrode, each halo implants extending below the source and drain diffusions into the channel region. Additionally, highly doped source and drain extension regions are formed that provide a low resistance path from the source and drain diffusion regions to the channel region.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 8298837
    Abstract: A system and method of increasing productivity of OLED material screening includes providing a substrate that includes an organic semiconductor, processing regions on the substrate by combinatorially varying parameters associated with the OLED device production on the substrate, performing a first characterization test on the processed regions on the substrate to generate first results, processing regions on the substrate in a combinatorial manner by varying parameters associated with the OLED device production on the substrate based on the first results of the first characterization test, performing a second characterization test on the processed regions on the substrate to generate second results, and determining whether the substrate meets a predetermined quality threshold based on the second results.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 30, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Chi-I Lang
  • Patent number: 8241733
    Abstract: A method of placing a logo on an article or substrate by placing a contrast sheet behind the logo and a blocking sheet therebetween to prevent a shadow effect. The contrast sheet and blocking sheet may be hidden within the hem of an article.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 14, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Walter G. Bauer, Kroy D. Johnson, Thomas D. Ehlert, Patrick S. McNichols
  • Publication number: 20120139013
    Abstract: A static induction transistor comprising: a region of semiconductor material having a first conductivity type; at least two spaced-apart gate regions formed in the region of semiconductor material, the gate regions having a second conductivity type that is opposite to the first conductivity type; at least one source region having the first conductivity type formed in the region of semiconductor material between the spaced-apart gate regions; a drain region having the first conductivity type formed in the region of semiconductor and spaced-apart from the source region to define a channel region therebetween; and a dielectric carrier separation layer formed at the periphery of the gate regions.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Inventors: Sandeep Bahl, Constantin Bulucea
  • Patent number: 8101486
    Abstract: Methods are provided for fabricating a semiconductor device. A method comprises forming a layer of a first semiconductor material overlying the bulk substrate and forming a layer of a second semiconductor material overlying the layer of the first semiconductor material. The method further comprises creating a fin pattern mask on the layer of the second semiconductor material and anisotropically etching the layer of the second semiconductor material and the layer of the first semiconductor material using the fin pattern mask as an etch mask. The anisotropic etching results in a fin formed from the second semiconductor material and an exposed region of first semiconductor material underlying the fin. The method further comprises forming an isolation layer in the exposed region of first semiconductor material underlying the fin.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: January 24, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Witold Maszara, Hemant Adhikari
  • Patent number: 7927938
    Abstract: Methods, devices, and systems integrating Fin-JFETs and Fin-MOSFETs are provided. One method embodiment includes forming at least on Fin-MOSFET on a substrate and forming at least on Fin-JFET on the substrate.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Badih El-Kareh, Leonard Forbes
  • Patent number: 7858429
    Abstract: Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, first and second conductive layers deposited onto at least a portion of the dielectric liner, and a conductive fill material deposited into the passage over at least a portion of the second conductive layer and electrically coupled to the bond-pad.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Round Rock Research, LLC
    Inventors: Salman Akram, Charles M. Watkins, Kyle K. Kirby, Alan G. Wood, William M. Hiatt
  • Patent number: 7851283
    Abstract: Therefore, disclosed above are embodiments of a multi-fin field effect transistor structure (e.g., a multi-fin dual-gate FET or tri-gate FET) that provides low resistance strapping of the source/drain regions of the fins, while also maintaining low capacitance to the gate by raising the level of the straps above the level of the gate. Embodiments of the structure of the invention incorporate either conductive vias or taller source/drain regions in order to electrically connect the source/drain straps to the source/drain regions of each fin. Also, disclosed are embodiments of associated methods of forming these structures.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Thomas Ludwig, Edward J. Nowak
  • Patent number: 7851832
    Abstract: Electrode placement which applies easy heat dispersion of a semiconductor device with high power density and high exothermic density is provided for the semiconductor device including: a gate electrode, a source electrode, and a drain electrode which are placed on a first surface of a substrate 10, and have a plurality of fingers, respectively; gate terminal electrodes G1, G2, . . . , G4, source terminal electrodes S1, S2, . . . , S5, and a drain terminal electrode D which are placed on the first surface, and governs a plurality of fingers, respectively every the gate electrode, the source electrode, and the drain electrode; active areas AA1, AA2, . . . , AA5 placed on the substrate of the lower part of the gate electrode, the source electrode, and the drain electrode; a non-active area (BA) adjoining the active areas and placed on the substrate; and VIA holes SC1, SC2, . . .
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: December 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 7718480
    Abstract: In an NMOS active clamp device and an NMOS active clamp array with multiple source and drain contacts, the robustness against ESD events is increased by reducing channel resistance through the inclusion of one or more p+ regions formed at least partially in the source and electrically connected to the one or more source contacts.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: May 18, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Marcel ter Book, Peter J. Hopper
  • Patent number: 7638379
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be implemented in SiC and can include epitaxially grown n-type drift and p-type trenched gate regions, and an n-type epitaxially regrown channel region on top of the trenched p-gate regions. A source region can be epitaxially regrown on top of the channel region or selectively implanted into the channel region. Ohmic contacts to the source, gate and drain regions can then be formed. The devices can include edge termination structures such as guard rings, junction termination extensions (JTE), or other suitable p-n blocking structures. The devices can be fabricated with different threshold voltages, and can be implemented for both depletion and enhanced modes of operation for the same channel doping. The devices can be used as discrete power transistors and in digital, analog, and monolithic microwave integrated circuits.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: December 29, 2009
    Assignees: SemiSouth Laboratories, Inc., Mississippi State University
    Inventors: Lin Cheng, Michael S. Mazzola
  • Patent number: 7615802
    Abstract: The invention relates to a semiconductor structure for controlling a current (I), comprising a first n-conductive semiconductor region (2), a current path that runs within the first semiconductor region (2) and a channel region (22). The channel region (22) forms part of the first semiconductor region (2) and comprises a base doping. The current (I) in the channel region (22) can be influenced by means of at least one depletion zone (23, 24). The channel region (22) contains an n-conductive channel region (225) for conducting the current, said latter region having a higher level of doping than the base doping. The conductive channel region (225) is produced by ionic implantation in an epitaxial layer (262) that surrounds the channel region (22).
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: November 10, 2009
    Assignee: SiCED Electronics Development GmbH & Co. KG
    Inventors: Rudolf Elpelt, Heinz Mitlehner, Reinhold Schörner
  • Publication number: 20090127592
    Abstract: Methods, devices, and systems integrating Fin-JFETs and Fin-MOSFETs are provided. One method embodiment includes forming at least on Fin-MOSFET on a substrate and forming at least on Fin-JFET on the substrate.
    Type: Application
    Filed: November 19, 2007
    Publication date: May 21, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Badih El-Kareh, Leonard Forbes
  • Patent number: 7504677
    Abstract: Methods and apparatus are provided for RF switches (100, 200). In a preferred embodiment, the apparatus comprises one or more multi-gate n-channel enhancement mode FET transistors (50, 112, 114). When used in pairs (112, 114) each has its source (74, 133) coupled to a first common RF I/O port (116) and drains coupled respectively to second and third RF I/O ports (118, 120), and gates (136, 138), coupled respectively to first and second control terminals (122, 124). The multi-gate regions (66, 68) of the FETs (50) are parallel coupled, spaced-apart and serially arranged between source (72) and drain (76). Lightly doped n-regions (Ldd, Lds) are provided serially arranged between the spaced-apart multi-gate regions (66, 68), the lightly doped n-regions (Ldd, Lds) being separated by more heavily doped n-regions (84).
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: March 17, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Elizabeth C. Glass, Olin L. Hartin, Neil T. Tracht
  • Patent number: 7501297
    Abstract: A method of manufacturing a thin film transistor array panel is provided, The method includes: forming a gate line on a substrate; forming a gate insulating layer on the gate line; forming a semiconductor layer on the gate insulating layer; forming a data line and a drain electrode on the semiconductor layer; depositing a passivation layer on the data line and the drain electrode; forming a photoresist including a first portion and a second portion thinner than the first portion on the passivation layer; etching the passivation layer using the photoresist as a mask to expose a portion of the drain electrode at least in part; removing the second portion of the photoresist; depositing a conductive film; and removing the photoresist to form a pixel electrode on the exposed portion of the drain electrode.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: March 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jang-Soo Kim, Soo-Jin Kim, Kyoung-Tai Han, Hee-Hwan Choe, Joo-Han Kim
  • Patent number: 7432145
    Abstract: A low on-state resistance power semiconductor device has a shape and an arrangement that increase the channel density and the breakdown voltage The power semiconductor device comprises a plurality of individual cells formed on a semiconductor substrate (62). Each individual cell comprises a plurality of radially extending branches (80) having source regions (37) within base regions (36). The plurality of individual cells are arranged such that at least one branch of each cell extends towards at least one branch of an adjacent cell and wherein the base region (36) of the extending branches merge together to form a single and substantially uniformly doped base region (36) surrounding drain islands (39) at the surface of the semiconductor substrate (62).
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: October 7, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean-Michel Reynes, Ivana Deram, Adeline Feybesse
  • Publication number: 20080124853
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be implemented in SiC and can include epitaxially grown n-type drift and p-type trenched gate regions, and an n-type epitaxially regrown channel region on top of the trenched p-gate regions. A source region can be epitaxially regrown on top of the channel region or selectively implanted into the channel region. Ohmic contacts to the source, gate and drain regions can then be formed. The devices can include edge termination structures such as guard rings, junction termination extensions (JTE), or other suitable p-n blocking structures. The devices can be fabricated with different threshold voltages, and can be implemented for both depletion and enhanced modes of operation for the same channel doping. The devices can be used as discrete power transistors and in digital, analog, and monolithic microwave integrated circuits.
    Type: Application
    Filed: November 6, 2007
    Publication date: May 29, 2008
    Applicants: SEMISOUTH LABORATORIES, INC., MISSISSIPPI STATE UNIVERSITY
    Inventors: Lin Cheng, Michael S. Mazzola
  • Patent number: 7374986
    Abstract: In a field effect transistor (FET), and a method of fabricating the same, the FET includes a semiconductor substrate, source and drain regions formed on the semiconductor substrate, a plurality of wire channels electrically connecting the source and drain regions, the plurality of wire channels being arranged in two columns and at least two rows, and a gate dielectric layer surrounding each of the plurality of wire channels and a gate electrode surrounding the gate dielectric layer and each of the plurality of wire channels.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 20, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungmin Kim, Ming Li, Eungjung Yoon
  • Patent number: 7282400
    Abstract: Improved methods and structures are provided that are lateral to surfaces with a (110) crystal plane orientation such that an electrical current of such structures is conducted in the <110> direction. Advantageously, improvements in hole carrier mobility of approximately 50% can be obtained by orienting the structure's channel in a (110) plane such that the electrical current flow is in the <110> direction. Moreover, these improved methods and structures can be used in conjunction with existing fabrication and processing techniques with minimal or no added complexity.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Wendell P. Noble, Leonard Forbes, Alan R. Reinberg
  • Patent number: 7115921
    Abstract: Gate conductors on an integrated circuit are formed with enlarged upper portions which are utilized to electrically connect the gate conductors with other devices. A semiconductor device comprises a gate conductor with an enlarged upper portion which electrically connects the gate conductor to a local diffusion region. Another semiconductor device comprises two gate conductors with enlarged upper portions which merge to create electrically interconnected gate conductors. Methods for forming the above semiconductor devices are also described and claimed.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: October 3, 2006
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Timothy Joseph Dalton, Louis L. Hsu, Carl Radens, Keith Kwong Hon Wong, Chih-Chao Yang
  • Patent number: 7074657
    Abstract: A multiple-channel semiconductor device has fully or partially depleted quantum wells and is especially useful in ultra large scale integration devices, such as CMOSFETs. Multiple channel regions are provided on a substrate with a gate electrode formed on the uppermost channel region, separated by a gate oxide, for example. The vertical stacking of multiple channels and the gate electrode permit increased drive current in a semiconductor device without increasing the silicon area occupied by the device.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: July 11, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James N. Pan, John G. Pellerin, Jon Cheek
  • Patent number: 7049185
    Abstract: In a semiconductor device including active areas where transistors are formed and a field area for isolating the active areas from each other, the field area has a plurality of dummy areas where dummy gates are formed.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: May 23, 2006
    Assignee: NEC Electronics Corporation
    Inventor: Kazuyuki Ito
  • Patent number: 6933186
    Abstract: A method of improving the tolerance of a back-end-of-the-line (BEOL) thin film resistor is provided. Specifically, the method of the present invention includes an anodization step which is capable of converting a portion of base resistor film into an anodized region. The anodized resistor thus formed has a sheet resistivity that is higher than that of the base resistor film.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: August 23, 2005
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Kenneth J. Stein, Seshadri Subbanna, Richard P. Volant
  • Patent number: 6929988
    Abstract: The cellular structure of the power device includes a substrate that has a highly doped drain region. Over the substrate there is a more lightly doped epitaxial layer of the same doping. Above the epitaxial layer is a well region formed of an opposite type doping. Covering the wells is an upper source layer of the first conductivity type that is heavily doped. The trench structure includes a sidewall oxide or other suitable insulating material that covers the sidewalls of the trench. The bottom of the trench is filled with a doped polysilicon shield. An interlevel dielectric such as silicon nitride covers the shield. The gate region is formed by another layer of doped polysilicon. A second interlevel dielectric, typically borophosphosilicate glass (BPSG) covers the gate. In operation, current flows vertically between the source and the drain through a channel in the well when a suitable voltage is applied to the gate.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 16, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Zeng
  • Patent number: 6888182
    Abstract: A thin film transistor of the present invention is provided with (i) a plurality of divided channel regions formed under a gate electrode, and (ii) divided source regions and divided drain regions between which each of the divided channel regions is sandwiched, the divided source regions being connected with one another, and the divided drain regions being connected with one another. Here, the divided channel regions are so arranged that a spacing between the divided channel regions is smaller than a channel divided width which is a width of one divided channel region, the channel divided width is not more than 50 ?m, and the spacing is not less than 3 ?m. With this arrangement, it is possible to provide a thin film transistor capable of obtaining reliability with reducing the variation in threshold voltage by reducing the self-heating at the channel regions, as well as capable of reducing the increase of a layout area.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: May 3, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masahiro Mitani, Yasumori Fukushima
  • Patent number: 6855989
    Abstract: A fin field effect transistor includes a fin, a source region, a drain region, a first gate electrode and a second gate electrode. The fin includes a channel. The source region is formed adjacent a first end of the fin and the drain region is formed adjacent a second end of the fin. The first gate electrode includes a first layer of metal material formed adjacent the fin. The second gate electrode includes a second layer of metal material formed adjacent the first layer. The first layer of metal material has a different work function than the second layer of metal material. The second layer of metal material selectively diffuses into the first layer of metal material via metal interdiffusion.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: February 15, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Haihong Wang, Shibly S. Ahmed, Ming-Ren Lin, Bin Yu
  • Patent number: 6853020
    Abstract: A double-gate semiconductor device includes a substrate, an insulating layer, a fin and two gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. A first gate is formed on the insulating layer and is located on one side of the fin. A portion of the first gate includes conductive material doped with an n-type dopant. The second gate is formed on the insulating layer and is located on the opposite side of the fin as the first gate. A portion of the second gate includes conductive material doped with a p-type dopant.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: February 8, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, Judy Xilin An
  • Publication number: 20040014263
    Abstract: A high-voltage and low on-resistance semiconductor device incorporates a trench structure that provides improved switching characteristics. In a preferred embodiment, a Trench Lateral Power MISFET is provided having a gate, channel and drift regions that are built on the side-walls of the trench. The process used to form the MISFET involves a self-aligned trench bottom contact hole to contact a source provided at the bottom of the trench to achieve minimum pitch and very low on-resistance. An example of a MISFET with 80 V breakdown voltage having a cell pitch of 3.4 microns is disclosed in which an on-resistance of 0.7 m&OHgr;-cm2 is realized. The switching characteristics of the MISFET are twice as good as that of prior MISFET device structures.
    Type: Application
    Filed: June 10, 2003
    Publication date: January 22, 2004
    Inventors: Naoto Fujishima, C. Andre T. Salama
  • Patent number: 6558996
    Abstract: Plural p+-type regions are formed on a silicon substrate, and thereafter, an n-type epitaxial growth layer is formed. Narrow concave portions are formed to extend between the surface of the epitaxial growth layer 14 and the silicon substrate and to have the almost the same lateral sectional shape. As a result, remaining parts, which are defined by the concave portions, of the epitaxial growth layer on p+-type field limiting rings are separated from the silicon substrate. Thus, a depletion layer is spread beyond the field limiting rings and a large forward voltage-resistance can be realized.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 6, 2003
    Assignee: NGK Insulators, Inc.
    Inventor: Naohiro Shimizu
  • Patent number: 6551865
    Abstract: Openings are formed in a laminate of a polycrystalline silicon film and an LTO film on a channel layer. While the laminate is used as a mask, impurities are implanted into a place in the channel layer which is assigned to a source region. Also, impurities are implanted into another place in the channel layer which is assigned to a portion of a second gate region. A portion of the polycrystalline silicon film which extends from the related opening is thermally oxidated. The LTO film and the oxidated portion of the polycrystalline silicon film are removed. While a remaining portion of the polycrystalline silicon film is used as a mask, impurities are implanted into a place in the channel layer which is assigned to the second gate region. Accordingly, the source region and the second gate region are formed on a self-alignment basis which suppresses a variation in channel length.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: April 22, 2003
    Assignee: Denso Corporation
    Inventors: Rajesh Kumar, Hiroki Nakamura, Jun Kojima
  • Patent number: 6524876
    Abstract: A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad. Next, a passivation layer is deposited and patterned to form contact holes respectively exposing the drain electrode, the gate pad, and the data pad.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: February 25, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bum-Ki Baek, Mun-Pyo Hong, Jang-Soo Kim, Sung-Wook Huh, Jong-Soo Yoon, Dong-Gyu Kim
  • Patent number: 6486011
    Abstract: This invention discloses the present invention discloses a junction field effect transistor (JFET) device supported on a substrate. The JFET device includes a gate surrounded by a depletion region. As the distance between the gates is large enough, there is a gap between the depletion regions surrounding adjacent gates. Depletion mode JFET transistor which is normally on is provided. The normally on transistors respond to negative bias applied to the gates to shut of the current path in the substrate. The current path in the substrate is normally available with a zero gate bias. As the distance between the gates is reduced, the JFET transistor is normally off because the depletion regions surround the gates shut of the current channel. The depletion region responding to a positive bias applied to the gate to open a current path in the substrate wherein the current path in the substrate is shut off when the gate is zero biased.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: November 26, 2002
    Assignee: Lovoltech, Inc.
    Inventor: Ho-Yuan Yu
  • Patent number: 6355513
    Abstract: A semiconductor device efficiently providing the DC currents required in both discrete and integrated circuits operated at low DC supply voltages. The device disclosed in the present invention is an asymmetrical, enhancement mode, Junction Field Effect Transistor (JFET). The device consists of an epitaxial layer on the surface of a substrate, both of which are doped with the same polarity. The epitaxial layer has a graded doping profile with doping density increasing with distance from the substrate. A grill-like structure is constructed within the upper and lower bounds of, and extending throughout the length and width of the epitaxial layer, and is doped with a polarity opposite to that of the epitaxial layer. A first electrical connection made to the exposed side of the substrate is defined as the drain electrode. A second electrical connection made to the exposed surface of the epitaxial layer is defined as the source electrode.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: March 12, 2002
    Assignee: Lovoltech, Inc.
    Inventor: Ho-Yuan Yu