Including Selectively Removing Material To Undercut And Expose Storage Node Layer Patents (Class 438/254)
  • Patent number: 8129251
    Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Patent number: 8114732
    Abstract: A method and system for forming a non-volatile memory structure. The method includes providing a semiconductor substrate and forming a gate dielectric layer overlying a surface region of the semiconductor substrate. A polysilicon gate structure is formed overlying the gate dielectric layer. The method subjects the polysilicon gate structure to an oxidizing environment to cause formation of a first silicon oxide layer overlying the polysilicon gate structure and formation of an undercut region underneath the polysilicon gate structure. An aluminum oxide material is formed overlying the polysilicon gate structure filling the undercut region. In a specific embodiment, the aluminum oxide material has a nanocrystalline silicon material sandwiched between a first aluminum oxide layer and a second aluminum oxide layer. The aluminum oxide material is subjected to a selective etching process while maintaining the aluminum oxide material in an insert region in a portion of the undercut region.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Mieno Fumitake
  • Patent number: 8084323
    Abstract: The invention provides a method for forming a stack capacitor of a memory device, including providing a substrate, forming a patterned sacrificial layer with a plurality of first openings over the substrate, conformally forming a first conductive layer on the patterned sacrificial layer and in the first openings, forming a second conductive layer on the first conductive layer to seal the first openings with a void formed therein, removing a portion of the first and second conductive layers to expose the patterned sacrificial layer, and removing at least a portion of the patterned sacrificial layer to form bottom cell plates.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 27, 2011
    Assignee: Nanya Technology Corporation
    Inventor: Shin-Yu Nieh
  • Patent number: 8053308
    Abstract: In a method of forming a pattern, a mold layer having an opening is formed on a substrate. A conductive layer is formed on the mold layer having the opening, the conductive layer having a substantially uniform thickness. A buffer layer pattern is formed in the opening having the conductive layer, the buffer layer pattern having a cross-linked structure of water-soluble copolymers including a repeating unit of N-vinyl-2-pyrrolidone and a repeating unit of acrylate. An upper portion of the conductive layer exposed over the buffer layer pattern is etched. Accordingly, a conductive pattern for a semiconductor device is formed on the substrate. The method of forming a pattern may simplify manufacturing processes for a capacitor and a semiconductor device, and may improve their efficiencies.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Min Kim, Jae-Ho Kim, Young-Ho Kim, Myung-Sun Kim
  • Patent number: 8048757
    Abstract: A method for fabricating a capacitor includes forming an isolation layer over a cell region and a peripheral region of a substrate. The isolation layer forms a plurality of open regions in the cell region. Storage nodes are formed on surfaces of the open regions. An upper portion of the isolation layer is etched to expose upper outer walls of the storage nodes. A sacrificial pattern is formed over the isolation layer to enclose the upper outer walls of the storage nodes. The isolation layer in the peripheral region is etched to expose side portions of the resulting structure obtained after forming the sacrificial pattern in the cell region. With the sacrificial pattern supporting the storage nodes, the isolation layer in the cell region is removed. The sacrificial pattern is then removed.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae-Sung Roh, Kee-Jeung Lee, Han-Sang Song, Seung-Jin Yeom, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim
  • Patent number: 8048758
    Abstract: A method for fabricating a capacitor includes forming an isolation layer over a cell region and a peripheral region of a substrate. The isolation layer forms a plurality of open regions in the cell region. Storage nodes are formed on surfaces of the open regions. A sacrificial pattern is formed over the isolation layer and covers the cell region. The isolation layer is etched in the peripheral region to expose side portions of the resulting structure obtained after forming the sacrificial pattern in the cell region. With the sacrificial pattern supporting the storage nodes, the isolation layer in the cell region is removed. The sacrificial pattern is then removed.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae-Sung Roh, Kee-Jeung Lee, Han-Sang Song, Seung-Jin Yeom, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim
  • Patent number: 8021948
    Abstract: A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 20, 2011
    Assignee: IMEC
    Inventors: Bogdan Govoreanu, Stefan De Gendt, Sven Van Elshocht, Tom Schram
  • Patent number: 8017475
    Abstract: A method of fabricating a high-performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used, such as a Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) or other Anti-Reflective Coatings (ARCS), such as a conductive film like TiN. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. A Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: September 13, 2011
    Assignee: IXYS CH GmbH
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 7985645
    Abstract: A semiconductor device having a high aspect cylindrical capacitor and a method for fabricating the same is presented. The high aspect cylindrical type capacitor is a stable structure which is not prone to causing bunker defects and losses in a guard ring. The semiconductor device includes the cylindrical type capacitor structure, a storage node oxide, a guard ring hole, a conductive layer, and a capping oxide. The cylindrical type capacitor structure in a cell region includes a cylindrical type lower electrode, a dielectric and an upper electrode. The storage node oxide is in a peripheral region over the semiconductor substrate. The conductive layer coating the guard ring hole. The guard ring hole at a boundary of the peripheral region that adjoins the cell region over the semiconductor substrate. The capping oxide partially fills in a part of the conductive layer. The gapfill film filling in the rest of the conductive layer.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 26, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Cheol Hwan Park, Ho Jin Cho, Dong Kyun Lee
  • Patent number: 7956386
    Abstract: A wiring structure in a semiconductor device may include a first insulation layer formed on a substrate, a first contact plug, a capping layer pattern, a second insulation layer and a second contact plug. The first insulation layer has a first opening that exposes a contact region of the substrate. The first contact plug is formed on the contact region to partially fill up the first opening. The capping layer pattern is formed on the first contact plug to fill up the first opening. The second insulation layer is formed on the capping layer pattern and the first insulation layer. The second insulation layer has a second opening passing through the capping layer pattern to expose the first contact plug. The second contact plug is formed on the first contact plug in the second opening. Since the wiring structure includes the capping layer pattern, the wiring structure may prevent a contact failure by preventing chemicals from permeating into the first contact plug.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Soon Bae, Sei-Ryung Choi
  • Patent number: 7919386
    Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes within a capacitor array area over a substrate. The capacitor electrodes comprise outer lateral sidewalls. The plurality of capacitor electrodes is supported at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form said retaining structure. The plurality of capacitor electrodes is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 5, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D. Mark Durcan
  • Patent number: 7910452
    Abstract: A method for fabricating a capacitor includes forming an isolation layer over a substrate. The isolation layer forms a plurality of open regions. Storage nodes are formed on surfaces of the open regions. An upper portion of the isolation layer is etched to expose upper outer walls of the storage nodes. A sacrificial layer is formed over the isolation layer to enclose the upper outer walls of the storage nodes. The isolation layer and the sacrificial layer are then removed.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 22, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae-Sung Roh, Kee-Jeung Lee, Han-Sang Song, Seung-Jin Yeom, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim
  • Patent number: 7897454
    Abstract: The present invention provides a metal-insulator-metal capacitor, which comprises a semiconductor substrate; an interlayer dielectric layer disposed on the semiconductor substrate; and an insulation trench and two metal trenches all running through the interlayer dielectric layer and allowing the semiconductor substrate to be exposed; wherein the metal trenches being located on each side of the insulation trench and sharing a trench wall with the insulation trench respectively, the insulation trench being filled with insulation material as an insulation structure, the metal trenches being filled with metal material as electrodes of the capacitor.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: March 1, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Yuan Wang, Buxin Zhang
  • Patent number: 7892919
    Abstract: The invention discloses a method of forming an isolation layer in a semiconductor device. The method includes providing a semiconductor substrate having a trench formed therein; forming a first insulating layer in the trench; and forming a densified second insulating layer on the first insulating layer. In the above method, a void is not generated in the isolation layer so a bending phenomenon of an active region can be reduced or prevented to improve an electrical characteristic of the semiconductor.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 22, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jung Geun Kim, Cheol Mo Jeong, Whee Won Cho
  • Patent number: 7892920
    Abstract: A method for manufacturing a semiconductor device which minimizes the line width of a pattern and allows a low temperature oxide film and a thinly formed photoresist film to serve as ion blockers when performing an ion implantation process on the semiconductor substrate.
    Type: Grant
    Filed: October 12, 2008
    Date of Patent: February 22, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Myung-Soo Kim
  • Patent number: 7879671
    Abstract: A method for manufacturing a semiconductor device that is less prone to DC failures brought about by unwanted defects on capacitors in the device is presented. Manufacturing defects such as scratches are known to occur when making capacitors and that these defects are thought to be a primary cause of subsequent performance DC failures in the completed semiconductor devices. The method includes the steps of depositing, removing, forming, polishing, etching and forming. A sacrificial layer is exploited to allow a subsequent polishing down step to mechanically remove defects from the capacitors.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: February 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyuk Kwon
  • Patent number: 7858483
    Abstract: A method for forming a capacitor of a semiconductor device includes forming a first insulation layer having a storage node plug on a semiconductor substrate; forming an etch stop layer and a second insulation layer sequentially on the substrate having the first insulation layer; forming a hole exposing a portion of the storage node plug by selectively etching the second insulation layer by using the etch stop layer; recessing a portion of the storage node plug exposed by the hole; forming a barrier metal layer on a surface of the recessed storage node plug; forming a storage node electrode connected to the storage node plug through the barrier metal layer in the hole; and forming a dielectric layer and a metal layer for a plate electrode sequentially on the storage node electrode.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: December 28, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyung Bok Choi, Jong Bum Park, Kee Jeung Lee, Jong Min Lee
  • Patent number: 7847379
    Abstract: A through-silicon via stack package contains package units. Each package unit includes a semiconductor chip; a through-silicon via formed in the semiconductor chip; a first metal line formed on an upper surface and contacting a portion of a top surface of the through-silicon via; and a second metal line formed on a lower surface of the semiconductor chip and contacting a second portion of a lower surface of the through-silicon via. When package units are stacked, the second metal line formed on the lower surface of the top package unit and the first metal line formed on the upper surface of the bottom package unit are brought into contact with the upper surface of the through-silicon via of the bottom package unit and the lower surface of the through-silicon via of the top package unit, respectively. The stack package is lightweight and compact, and can form excellent electrical connections.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: December 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Qwan Ho Chung
  • Patent number: 7846795
    Abstract: A bit line of a semiconductor device includes a first interlayer dielectric film disposed on a semiconductor substrate, a plurality of bit line stacks disposed on the first interlayer dielectric film, a plurality of bit line spacers disposed on side walls of the bit line stacks, and a buffer film disposed on the bit line spacers, the first interlayer dielectric film and the bit line stacks; and a method for fabricating the same.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: December 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jie Won Chung
  • Patent number: 7846809
    Abstract: A method for forming a capacitor of a semiconductor device includes the steps of forming first and second sacrificial insulation layers over a semiconductor substrate divided into first and second regions. The second and first sacrificial insulation layers in the first region are etched to define in the first region of the semiconductor substrate. Storage nodes on surfaces of the holes are formed. A partial thickness of the second sacrificial insulation layer is etched to partially expose upper portions of the storage nodes. A mask pattern is formed to cover the first region while exposing the second sacrificial insulation layer remaining in the second region. The exposed second sacrificial insulation layer in the second region is removed to expose the first sacrificial insulation layer in the second region. The exposed first sacrificial insulation layer in the second region and the first sacrificial insulation layer in the first region is removed. The mask pattern is removed.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: December 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Gyu Hyun Kim
  • Patent number: 7824998
    Abstract: A method includes forming an amorphous carbon layer over a first dielectric layer formed over a substrate, forming a second dielectric layer over the amorphous carbon layer; and forming an opening within the amorphous carbon layer and second dielectric layer by a first etch process to partially expose a top surface of the first dielectric layer. A substantially conformal metal-containing layer is formed over the second dielectric layer and within the opening. The second dielectric layer and a portion of the metal-containing layer are removed. The amorphous carbon layer is removed by an oxygen-containing plasma process to expose a top surface of the first dielectric layer. An insulating layer is formed over the metal-containing layer, and a second metal-containing layer is formed over the insulating layer to form a capacitor.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 2, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Hung Liu, Ming Chyi Liu, Yeur-Luen Tu, Chi-Hsin Lo, Chia-Shiung Tsai
  • Publication number: 20100267215
    Abstract: In a semiconductor device according to embodiments of the invention, a capacitor includes a storage electrode having a cylindrical storage conductive layer pattern and connecting members formed on the upper portion of the cylindrical storage conductive layer pattern. The connecting member connects to an adjacent connecting member of another storage electrode. A dielectric layer and a plate electrode are successively formed on the storage electrode. All of the capacitors are connected by one another by forming cylindrical storage electrodes so that the storage electrode does not fall down when the capacitors have an extremely large aspect ratio. Thus, the capacitance of the capacitors may be improved to the desired level. A semiconductor device that includes these capacitors may have improved reliability and the throughput of a semiconductor manufacturing process may be increased.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 21, 2010
    Inventor: Je-Min Park
  • Patent number: 7816222
    Abstract: A semiconductor device and a method for manufacturing the same are provided. The semiconductor device includes cylinder type bottom electrodes connected to a contact plug formed over a semiconductor substrate, and a supporting pattern formed between the cylinder type bottom electrodes, wherein a portion of sidewalls of the bottom electrodes is higher than the supporting pattern and the other portion of the sidewalls of the bottom electrode is lower than the supporting pattern.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: October 19, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong Kuk Kim, Seung Bum Kim
  • Patent number: 7799591
    Abstract: A semiconductor device comprises a first contact plug, a first structure and a second insulating layer, or comprises a first contact plug, a first structure, a protruding region and a second insulating layer. The first contact plug extends in a predetermined direction and including a step converting a cross section area of the first contact plug perpendicular to the predetermined direction discontinuously via the step in one end side. The second insulating layer is formed on side surface of a part of the first contact plug closer to the first structure than the step, or on side surfaces of the protruding region and a part of the first contact plug closer to the first structure than the step.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: September 21, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Fujimoto
  • Patent number: 7790546
    Abstract: A method for forming a capacitor in a semiconductor device comprises forming an inter-layer layer on a semi-finished substrate; etching the inter-layer insulation layer to form a plurality of first contact holes; forming a first insulation layer on sidewalls of the first contact holes; forming a plurality of storage-node contact plugs filled into the first contact holes; forming a second insulation layer with a different etch rate from the first insulation layer over the storage-node contact plugs; forming a third insulation layer on the second insulation layer; sequentially etching the third insulation layer and the second insulation layer to form a plurality of second contact holes exposing the storage-node contact plugs; and forming the storage node on each of the second contact holes.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: September 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jun-Hyeub Sun, Sung-Kwon Lee, Sung-Yoon Cho
  • Patent number: 7759193
    Abstract: A method of forming a plurality of capacitors includes forming a plurality of individual capacitor electrodes using two masking steps. An earlier of the two masking steps is used to form an array of first openings over a plurality of storage node contacts. A later of the two masking steps is used to form an array of second openings received partially over and partially offset from the array of first openings. Overlapping portions of the first and second openings are received over the storage node contacts. After both of the two masking steps, conductive material of the individual capacitor electrodes is deposited into the overlapping portions of each of the first and second openings. The individual capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn
  • Patent number: 7741215
    Abstract: The present invention provides a method for manufacturing a semiconductor device, including the step of forming a hole penetrating an insulating film over a semiconductor substrate, wherein the step includes the steps of forming a pedestal at a position where a hole to be formed; forming an insulating film to bury the pedestal; forming a first hole in the insulating film so as to expose a top surface of the pedestal; and removing the pedestal to form a second hole continuous with the first hole to form a hole penetrating the insulating film.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 22, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Chiharu Takasaki
  • Patent number: 7736972
    Abstract: In order to form a storage electrode of a semiconductor memory device, an interlayer dielectric layer is formed on a semiconductor substrate having a bit line thereon. A contact hole exposing the semiconductor substrate is formed by patterning the interlayer dielectric layer. A polysilicon layer is etched to a predetermined thickness using polysilicon etching gas after the polysilicon layer is deposited. An over-etch process is performed relative to the polysilicon layer, and then a storage node contact having a planarized surface is formed in the contact hole by performing an etching process for planarizing the surface of the polysilicon layer. A mold insulating layer is formed on the resultant structure, in which the mold insulating layer exposes an area where the storage node contact is formed. A storage electrode coupled to the storage node contact is formed.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: June 15, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Eun
  • Patent number: 7723183
    Abstract: A capacitor is made by forming a buffer oxide layer, an etching stop layer, and a mold insulation layer over a semiconductor substrate having a storage node contact plug. The mold insulation layer and the etching stop layer are etched to form a hole in an upper portion of the storage node contact plug. A tapering layer is deposited over the mold insulation layer including the hole. The tapering layer and the buffer oxide layer are etched back so that the tapering layer is remained only at the upper end portion of the etched hole. A metal storage node layer formed on the etched hole over the remaining tapering layer. The mold insulation layer and the remaining tapering layer are removed to form a cylindrical storage node having a tapered upper end. A dielectric layer and a plate node are formed over the storage node.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: May 25, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ho Jin Cho, Cheol Hwan Park, Jae Soo Kim, Dong Kyun Lee
  • Patent number: 7709367
    Abstract: A method for fabricating a storage node contact in a semiconductor device includes forming a landing plug over a substrate, forming a first insulation layer over the landing plug, forming a bit line pattern over the first insulation layer, forming a second insulation layer over the bit line pattern, forming a mask pattern for forming a storage node contact over the second insulation layer, etching the second and first insulation layers until the landing plug is exposed to form a storage node contact hole including a portion having a rounded profile, filling a conductive material in the storage node contact hole to form a contact plug, and forming a storage node over the contact plug.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hae-Jung Lee, Ik-Soo Choi, Chang-Youn Hwang, Mi-Hyune You
  • Patent number: 7704828
    Abstract: A method of fabricating a semiconductor device is provided. The method includes forming a mold for forming a storage electrode, forming sacrificial spacers at side walls of openings in the mold, forming a conductive film for a storage electrode along the inside of the openings, removing the mold by a wet etching process, removing the sacrificial spacers by a dry etching process, and sequentially forming a dielectric film and an upper electrode on the storage electrode.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 27, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Oh, Jeong-Nam Han, Chang-Ki Hong, Kun-Tack Lee, Dae-Hyuk Kang, Sung-Il Cho
  • Patent number: 7700436
    Abstract: A microelectronic substrate and method for removing adjacent conductive and nonconductive materials from a microelectronic substrate. In one embodiment, the microelectronic substrate includes a substrate material (such as borophosphosilicate glass) having an aperture with a conductive material (such as platinum) disposed in the aperture and a fill material (such as phosphosilicate glass) in the aperture adjacent to the conductive material. The fill material can have a hardness of about 0.04 GPa or higher, and a microelectronics structure, such as an electrode, can be disposed in the aperture, for example, after removing the fill material from the aperture. Portions of the conductive and fill material external to the aperture can be removed by chemically-mechanically polishing the fill material, recessing the fill material inwardly from the conductive material, and electrochemically-mechanically polishing the conductive material.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott G. Meikle, Guy T. Blalock
  • Patent number: 7687906
    Abstract: A connecting terminal provided on a substrate and a connector provided on an electronic device are connected via a bump formed of a first member, which is formed of an anisotropic conductive paste including particles of a conductive material, and a second member which is different in conductivity from the first member. According to such a structure, since the anisotropic conductive paste which is softer as compared to a solder bump is used, stress applied to an interface between the bump and the connecting terminal is relaxed. Accordingly, reliability of connection can be assured even when using a substrate with large surface irregularities and/or bending, in which stress occurs relatively easily in a connection part of the bump and the connecting terminal.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: March 30, 2010
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Masanori Tsuruko
  • Patent number: 7687344
    Abstract: A first insulation layer is formed on a substrate structure including an inter-layer insulation layer and a storage node contact plug. The first insulation layer is etched to form a first opening exposing a portion of the storage node contact plug. The first opening is filled with an organic polymer layer. An etch stop layer and a second insulation layer are formed on the organic polymer layer and the first insulation layer. A photoresist pattern is formed on the second insulation layer. The second insulation layer and the etch stop layer are etched to form a second opening exposing a portion of the organic polymer layer. The photoresist pattern and the organic polymer layer are removed, thereby extending a portion of the second opening. A storage node is formed over the extended second opening and the second insulation layer.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung-Kwon Lee
  • Patent number: 7687403
    Abstract: A method of manufacturing a flash memory device includes providing a substrate having an insulating layer, a first mask layer over the insulating layer, a second mask layer over the first mask layer, a first photoresist pattern over the second mask layer, the first photoresist pattern having a first pitch. A material layer is provided over the first photoresist pattern. The material layer is etched to convert the material layer into a material layer pattern having a second pitch that is less than the first pitch. The second hard mask layer is etched using the material layer pattern to form a second hard mask layer pattern that extends along a first direction. A second photoresist pattern is etched, the second photoresist pattern defining a first region that is not exposed and a second region that is exposed, the second region extending along a second direction that is orthogonal to the first direction.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor
    Inventors: Guee Hwang Sim, Woo Yung Jung
  • Patent number: 7682924
    Abstract: A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Covering material is formed over an elevationally outer lateral interface of the conductive material within the trench and the insulative material of the circuitry area. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area and to expose the conductive material within the trench. The conductive material within the array area is incorporated into a plurality of capacitors.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Kevin R. Shea, Farrell Good
  • Patent number: 7682898
    Abstract: A semiconductor device of the present invention includes a plurality of lower electrodes covering the entire surfaces of a plurality of trenches formed in a first interlayer insulating film, a capacitive insulating film covering the entire surfaces of the plurality of lower electrodes, and an upper electrode covering the surfaces of the plurality of lower electrodes from above with the capacitive insulating film interposed between the upper electrode and the plurality of lower electrodes. The upper electrode is formed with a stress-relieving part, such as a crack, a notch or a recess.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 23, 2010
    Assignee: Panasonic Corporation
    Inventor: Yoshiyuki Shibata
  • Patent number: 7683428
    Abstract: A new class of high-density, vertical Fin-FET devices that exhibit low contact resistance is described. These vertical Fin-FET devices have vertical silicon “fins” (12A) that act as the transistor body. Doped source and drain regions (26A, 28A) are formed at the bottoms and tops, respectively, of the fins (12A). Gates (24A, 24B) are formed along sidewalls of the fins. Current flows vertically through the fins (12A) between the source and drain regions (26A, 28A) when an appropriate bias is applied to the gates (24A, 24B). An integrated process for forming pFET, nFET, multi-fin, single-fin, multi-gate and double-gate vertical Fin-FETs simultaneously is described.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Jochen Beintner, Ramachandra Divakaruni
  • Patent number: 7678646
    Abstract: To provide a semiconductor device capable of improving accuracy in finishing a hole in which a conductive plug right under a capacitor, and a manufacturing method of such a semiconductor device comprising the following steps: a step of forming first and second conductive plugs 32a, 32b in first and second holes 11a, 11b in a first insulating film 11; a step of forming a first opening 14a in an oxidation preventing insulating film 14; a step of forming an auxiliary conductive plug 36a in the first opening 14a; a step of forming a capacitor Q on the auxiliary conductive plug 36a; a step of forming third and fourth holes 41a, 41b in a second insulating film 41 covering the capacitor Q; a step of forming the second opening 14b in the oxidation preventing insulating film 14 under the fourth hole 41b; a step of forming a third conductive plug 47a in the third hole 41a; and a step of forming a fourth conductive plug 47b in the third hole 41a.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Akio Itoh, Naoya Sashida
  • Patent number: 7670903
    Abstract: A method for fabricating a cylindrical capacitor. The method includes forming an isolation structure including an interlayer on a substrate, the substrate having a plurality of contact plugs formed therein, forming a plurality of opening regions by etching the isolation structure, thereby exposing selected portions of the contact plugs, forming storage nodes on a surface of the opening regions, etching selected portions of the isolation structure to form a patterned interlayer that encompasses selected portions of the storage nodes, thereby supporting the storage nodes, removing remaining portions of the isolation structure, and removing the patterned interlayer to expose inner and outer walls of the storage nodes.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 2, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Ki-Seon Park, Jae-Sung Roh, Deok-Sin Kil, Han-Sang Song, Seung-Jin Yeom, Jin-Hyock Kim, Kee-Jeung Lee
  • Patent number: 7666737
    Abstract: A method of forming a metal-insulator-metal capacitor has the following steps. A stack dielectric structure is formed by alternately depositing a plurality of second dielectric layers and a plurality of third dielectric layers. A wet etch selectivity of the second dielectric layer relative to said third dielectric layer is of at least 5:1. An opening is formed in the stack dielectric structure, and then a wet etch process is employed to remove relatively-large portions of the second dielectric layers and relatively-small portions of the third dielectric layers to form a plurality of lateral recesses in the second dielectric layers along sidewalls of the opening. A bottom electrode layer is formed to extend along the serrate sidewalls, a capacitor dielectric layer is formed on the bottom electrode layer, and a top electrode layer is formed on the capacitor dielectric layer.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: February 23, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Kuo-Chi Tu
  • Patent number: 7651907
    Abstract: A method for fabricating a semiconductor device, the method includes forming an etch stop layer and an insulation layer over a substrate having a first region and a second region, selectively removing the insulation layer and the etch stop layer in the first region to expose parts of the substrate, thereby forming at least two electrode regions on the exposed substrate and a resultant structure, forming a conductive layer over the resultant structure, removing the conductive layer in the second region, removing the insulation layer in the first region and the second region by using wet chemicals, and removing parts of the conductive layer, which formed between the at least two electrode regions in the first region, to form cylinder type electrodes in the first region.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: January 26, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Patent number: 7640651
    Abstract: Embodiments of the invention provide fabrication processes for the co-fabrication of microprobe arrays along with one or more space transformers wherein the fabrication processes include the forming and adhering of a plurality of layers to previously formed layers and wherein at least a portion of the plurality of layers are formed from at least one structural material and at least one sacrificial material that is at least in part released from the plurality of layers after formation and wherein the space transformer includes a plurality of interconnect elements that connect one side to the array of probes that has a first spacing to another side that has a second spacing where the second spacing is greater than the first spacing. In some embodiments, the fabrication process includes a plurality of electrodeposition operations.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: January 5, 2010
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard, Christopher A. Bang, Pavel B. Lembrikov
  • Patent number: 7641316
    Abstract: An ink jet head circuit board is provided which has heaters to generate thermal energy for ink ejection as they are energized. This circuit board reduces areas of the heaters to achieve higher printing resolution and image quality. This board also prevents a degradation of thermal energy efficiency and reduces power consumption. The protective insulation layer for the electrode wire layer is formed of two layers and one of the two layers is removed from above the heater to improve the heat energy efficiency. The resistor layer is deposited over the electrode wire layer. The patterning for removing the protective insulation layer is done in a wider range than a gap of the electrode wire layer, the gap being used to form the heater. Further, by forming the electrode wires in two layers, a possible reduction in an effective bubble generation area of the heater can be prevented.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: January 5, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshiyasu Sakai, Teruo Ozaki, Kenji Ono, Ichiro Saito, Sakai Yokoyama, Satoshi Ibe, Kazuaki Shibata
  • Patent number: 7629183
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a PbTiOx film having a predominantly (111) orientation on a lower electrode as a nucleation layer by an MOCVD process with a film thickness exceeding 2 nm, and forming a PZT film having a predominantly (111) orientation on the nucleation layer, wherein the step of forming the PbTiOx film is conducted under an oxygen partial pressure of less than 340 Pa.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: December 8, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Kenji Matsumoto, Masayuki Nasu, Tomoyuki Sakoda
  • Patent number: 7625795
    Abstract: Container capacitor structure and method of construction. An etch mask and etch are used to expose portions of an exterior surface of an electrode (“bottom electrodes”) of the structure. The etch provides a recess between proximal pairs of container capacitor structures, which is available for forming additional capacitance. A capacitor dielectric and top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Surface area common to both the first electrode and second electrodes is increased over using only the interior surface, providing additional capacitance without decreasing spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location. Clearing of the capacitor dielectric and the second electrode portions may be done at an upper location of a substrate assembly in contrast to clearing at a bottom location of a contact via.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez, Er-Xuan Ping
  • Patent number: 7611945
    Abstract: A method for forming a capacitor structure for a dynamic random access memory device. The method includes forming a device layer overlying a semiconductor substrate, e.g., silicon wafer. The method includes forming a first interlayer dielectric overlying the device layer and forming a via structure within the first interlayer dielectric layer. The method includes forming a first oxide layer overlying the first interlayer dielectric layer and forming a stop layer overlying the first oxide layer. The method includes forming a second oxide layer overlying the first stop layer and forming a trench region through a portion of the second oxide layer, through a portion of the stop layer, and a portion of the second oxide layer. A bottom electrode structure is formed to line the trench region. The bottom electrode structure includes an inner region. The bottom electrode structure is coupled to the via structure.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 3, 2009
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Jeong Gi Kim
  • Patent number: 7592220
    Abstract: In accordance with the objectives of the invention a new method and structure is provided for the creation of a capacitor. A contact pad and a lower capacitor plate have been provided over a substrate. Under the first embodiment of the invention, a layer of etch stop material, serving as the capacitor dielectric is deposited after which a triple layer of passivation is created over a substrate. The compound passivation layer is first etched, using a fuse mask, to define and expose the capacitor dielectric and a fuse area after which the passivation layer is second etched to define and expose the contact pad. A layer of AlCu is then deposited, patterned and etched to create a capacitor upper plate and a contact interconnect over the contact pad. Under a second embodiment of the invention, a triple layer of passivation is created over a layer of etch stop material deposited over a substrate, a contact pad and a lower capacitor plate have been provided over the substrate.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 22, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chuan Chang Lin, James Chiu
  • Patent number: 7585723
    Abstract: A method for fabricating a semiconductor device includes forming an insulation structure over a substrate structure including contact plugs, etching the insulation structure to form opening regions each of which has a lower opening portion having a critical dimension wider than an upper opening portion, and forming a conductive layer contacting the contact plugs inside the opening regions.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: September 8, 2009
    Assignee: Hynix Semiconductor Inc
    Inventor: Ky-Hyun Han
  • Patent number: 7579235
    Abstract: Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: August 25, 2009
    Assignee: Micron Technology, Inc.
    Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez, Er-Xuan Ping