Including Additional Field Effect Transistor (e.g., Sense Or Access Transistor, Etc.) Patents (Class 438/258)
  • Patent number: 8169018
    Abstract: A non-volatile memory device includes a semiconductor layer including a cell region and a peripheral region, a cell region gate structure disposed in the cell region of the semiconductor layer, and wherein the cell region gate structure includes a tunneling insulating layer and a first blocking insulating layer, a second blocking insulating layer, and a third blocking insulating layer. The no-volatile memory device further includes a peripheral region gate structure formed in the peripheral region of the semiconductor layer. The peripheral region gate structure includes a first peripheral region insulating layer including a same material as a material included in the tunneling insulating layer and a second peripheral region insulating layer including a same material as a material included in the third blocking insulating layer.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jang-hyun You, Jin-taek Park, Young-woo Park, Jung-dal Choi
  • Patent number: 8163614
    Abstract: A method for fabricating a NAND type flash memory device includes defining a select transistor region and a memory cell region in a semiconductor substrate, forming a tunnel insulating layer, a floating gate conductive layer, and a dielectric layer over a semiconductor substrate, etching the dielectric layer, thereby forming an opening exposing the floating gate conductive layer, forming a low resistance layer in the opening, forming a control gate conductive layer over the semiconductor substrate, and etching the control gate conductive layer, the dielectric layer, the floating gate conductive layer, and the tunnel insulating layer to form gate stacks of memory cells and source/drain select transistors.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 24, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Nam-Kyeong Kim, Won Sic Woo
  • Patent number: 8163608
    Abstract: Methods of fabricating a nonvolatile memory device include forming a trench mask pattern on a semiconductor substrate including a first region and a second region. Substrate trenches defining active regions are formed in the semiconductor substrate in the first region and the second region using the trench mask pattern as a mask. Device isolation layer patterns are formed on the semiconductor substrate including the trench mask pattern and substrate trenches. The device isolation patterns fill the substrate trenches in the first region and in the second region. First and second openings are formed exposing top surfaces of the corresponding active regions in the first and second regions by removing the trench mask pattern. The second opening has a greater width than the first opening. A first lower conductive pattern is formed in the first opening and has a bottom portion in a lower region of the first opening and an extended portion extending from the bottom portion to an upper region of the first opening.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: April 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-Tae Park, Jeong-Hyuk Choi
  • Patent number: 8163616
    Abstract: Nonvolatile memory devices and methods of manufacturing nonvolatile memory devices are provided. The method includes patterning a bulk substrate to form an active pillar; forming a charge storage layer on a side surface of active pillar; and forming a plurality of gates connected to the active pillar, the charge storage layer being disposed between the active pillar and the gates. Before depositing a gate, a bulk substrate is etched using a dry etching to form a vertical active pillar which is in a single body with a semiconductor substrate.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Daelok Bae, Jongwook Lee, Seungwoo Choi, Yong-Hoon Son, Jong-Hyuk Kang, Jung Ho Kim
  • Publication number: 20120094451
    Abstract: A method for fabricating a non-volatile memory device with asymmetric source/drain junctions, wherein a gate stack is formed on a semiconductor substrate, and impurity ions are implanted at a predetermined angle to form a source/drain junction in the semiconductor substrate. Thermal treatment of the semiconductor substrate forms an asymmetrically disposed source/drain junction between adjacent gate stacks.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 19, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Young Ok HONG, Myung Shik LEE
  • Patent number: 8158476
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao “Tony” Liu, Eric Freeman, Russell Nielsen
  • Patent number: 8159020
    Abstract: The invention relates to a nonvolatile two-transistor semiconductor memory cell and an associated fabrication method, source and drain regions (2 ) for a selection transistor (AT) and a memory transistor (ST) being formed in a substrate (1). The memory transistor (ST) has a first insulation layer (3 ), a charge storage layer (4), a second insulation layer (5) and a memory transistor control layer (6), while the selection transistor (AT) has a first insulation layer (3 ?) and a selection transistor control layer (4*). By using different materials for the charge storage layer (4) and the selection transistor control layer (4*), it is possible to significantly improve the charge retention properties of the memory cell by adapting the substrate doping with electrical properties remaining the same.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: April 17, 2012
    Assignee: Infineon Technologies AG
    Inventors: Franz Schuler, Georg Tempel
  • Patent number: 8153487
    Abstract: A semiconductor device includes a semiconductor substrate, a first insulating film provided on the semiconductor substrate, a charge storage layer provided on the first insulating film, a second insulating film comprising a plurality of insulating films provided on the charge storage layer and comprising a nitride film as an uppermost layer, and a single-layer control gate electrode provided on the second insulating film and comprising metal silicide.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wakako Takeuchi, Hiroshi Akahori, Murato Kawai
  • Publication number: 20120074483
    Abstract: A method of forming a device is disclosed. The method includes providing a substrate prepared with a cell area and forming first and second gates of first and second transistors in the cell area. The first gate includes a second sub-gate surrounding a first sub-gate. The first and second sub-gates of the first gate are separated by a first intergate dielectric layer. The second gate includes a second sub-gate surrounding a first sub-gate. The first and second sub-gates of the second gate are separated by a second intergate dielectric layer. The method also includes forming first and second junctions of the first and second transistors. A first gate terminal is formed and coupled to the second sub-gate of the first transistor. A second gate terminal is formed and coupled to at least the first sub-gate of the second transistor.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Sung Mun JUNG, Kian Hong LIM, Jianbo YANG, Swee Tuck WOO, Sanford CHU
  • Publication number: 20120074482
    Abstract: A method of forming a device is disclosed. The method includes providing a substrate prepared with a cell area separated by other active areas by isolation regions. First and second gates of first and second transistors in the cell area are formed. The first gate includes first and second sub-gates separated by a first intergate dielectric layer. The second gate includes a second sub-gate surrounding a first sub-gate. The first and second sub-gates of the second gate are separated by a second intergate dielectric layer. First and second junctions of the first and second transistors are formed. The method also includes forming a first gate terminal coupled to the second sub-gate of the first transistor and a second gate terminal coupled to at least the first sub-gate of the second transistor.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Sung Mun JUNG, Kian Hong LIM, Jianbo YANG, Swee Tuck WOO, Sanford CHU
  • Patent number: 8138043
    Abstract: A method of manufacturing a non-volatile semiconductor memory device including previously forming a recess in a first peripheral region on a semiconductor substrate, forming a first gate insulator having a first thickness in the recess, forming a second gate insulator having a second thickness less than the first thickness in an array region and a second peripheral region on the semiconductor substrate, successively depositing first and second gate electrode films and first and second mask insulators on each of the first and second gate insulators, forming an isolation trench on a surface of the semiconductor substrate to correspond to each position between the array region and the first and second regions of the peripheral region, depositing a buried insulator on the entire surface, and polishing an upper surface of the buried insulator so that the upper surface can be planarized.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Kamiya
  • Patent number: 8134201
    Abstract: A semiconductor memory device includes a memory cell transistor and a first MOS transistor. The memory cell transistor includes a first insulating film, a second insulating film, a control gate electrode, and a first diffusion layer. The first insulating film formed on the first active region. The second insulating film formed on the first insulating film. The control gate electrode formed so as to include a first metal film formed on the second insulating film and a first conductive film formed on the first metal film. The first MOS transistor includes a second conductive film, a second metal film, a third conductive film, and a second diffusion layer. The second conductive film formed on a second active region. The second metal film formed on the second conductive film. The third conductive film formed on a second metal film.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: March 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takayuki Toba
  • Patent number: 8134177
    Abstract: A switching element includes a first electrode having a first surface; a second electrode having a second surface which stands off from the first surface; and a channel region constituted by a plurality of unit channels, each unit channel having opposite ends thereof being in contact with the first electrode and the second electrode, and including fine particles which are aligned in lines in a first direction from the first surface of the first electrode to the second surface of the second electrode, and the unit channels being separated from one another in a second direction across the first direction.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: March 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kenichi Murooka
  • Patent number: 8125017
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai
  • Patent number: 8119481
    Abstract: A blocking dielectric engineered, charge trapping memory cell includes a charge trapping element that is separated from a gate by a blocking dielectric including a buffer layer in contact with the charge trapping element, such as silicon dioxide which can be made with high-quality, and a second capping layer in contact with said one of the gate and the channel. The capping layer has a dielectric constant that is higher than that of the first layer, and preferably includes a high-? material. The second layer also has a conduction band offset that is relatively high. A bandgap engineered tunneling layer between the channel and the charge trapping element is provided which, in combination with the multilayer blocking dielectric described herein, provides for high-speed erase operations by hole tunneling. In an alternative, a single layer tunneling layer is used.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: February 21, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Sheng-Chih Lai, Hang-Ting Lue, Chien-Wei Liao
  • Patent number: 8114739
    Abstract: Methods are provided for fabricating a transistor. An exemplary method involves depositing an oxide layer overlying a layer of semiconductor material, forming an oxygen-diffusion barrier layer overlying the oxide layer, forming a layer of high-k dielectric material overlying the oxygen-diffusion barrier layer, forming a layer of conductive material overlying the layer of high-k dielectric material, selectively removing portions of the layer of conductive material, the layer of high-k dielectric material, the oxygen-diffusion barrier layer, and the oxide layer to form a gate stack, and forming source and drain regions about the gate stack. When the conductive material is an oxygen-gettering conductive material, the oxygen-diffusion barrier layer prevents diffusion of oxygen from the deposited oxide layer to the oxygen-gettering conductive material.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: February 14, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Murshed M. Chowdhury, James K. Schaeffer
  • Patent number: 8114756
    Abstract: A method and manufacture for fabrication of flash memory is provided. In fabricating the periphery region of the flash memory, the low voltage gate oxides and high voltage gate oxides are grown to the same height as each other prior to STI etching. After STI etching and gap fill, the nitride above the high voltage gate oxide regions are etched, and the oxide in high voltage gate oxide regions is grown to the appropriate thickness for a high voltage gate oxide.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: February 14, 2012
    Assignee: Spansion LLC
    Inventors: Fei Wang, Chih-Yun Lin
  • Patent number: 8101483
    Abstract: A semiconductor device includes an insulating layer, a channel structure, an insulating structure and a gate. The channel structure includes a channel bridge for connecting two platforms. The bottom of the channel bridge is separated from the insulating layer by a distance, and the channel bridge has a plurality of separated doping regions. The insulating structure wraps around the channel bridge, and the gate wraps around the insulating structure.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: January 24, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Hang-Ting Lue
  • Patent number: 8084324
    Abstract: A nonvolatile semiconductor memory includes a memory cell transistor including a first floating gate electrode layer formed on a first tunneling insulating film, a first inter-gate insulating film, a first and a second control gate electrode layer, and a first metallic silicide film; a high voltage transistor including a high voltage gate electrode layer formed on the high voltage gate insulating film, a second inter-gate insulating film having an aperture, a third and a fourth control gate electrode layer, and a second metallic silicide film; a low voltage transistor including a second floating gate electrode layer formed on the second tunneling insulating film, a third inter-gate insulating film having an aperture, a fifth and a sixth control gate electrode layer, and a third metallic silicide film; and a liner insulating film directly disposed on a first source and drain region of the memory cell transistor, a second source and drain region of the low voltage transistor, and a third source and drain region
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kikuko Sugimae, Masayuki Ichige, Fumitaka Arai, Yasuhiko Matsunaga, Atsuhiro Sato
  • Patent number: 8076199
    Abstract: A memory and method of manufacture employing word line scaling. A layered stack, including a charge trapping component and a core polysilicon layer, is formed on a core section and a peripheral section of a substrate. A portion of the layered stack, including the core polysilicon layer is then removed from the peripheral section. A peripheral polysilicon layer, which is thicker than the core polysilicon layer of the layered stack, is next formed on the layered stack and the peripheral section. The layered stack is then isolated from the peripheral polysilicon layer by removing a portion of the peripheral polysilicon layer from the core section, and polysilicon lines are patterned in the isolated layered stack.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 13, 2011
    Assignee: Spansion LLC
    Inventors: Shenqing Fang, Chun Chen, Wenmei Li, Inkuk Kang, Gang Xue, Hyesook Hong
  • Patent number: 8076230
    Abstract: A method for simultaneous formation of a self-aligned contact of a core region and a local interconnect of a peripheral region of an integrated circuit includes etching a cap dielectric layer to simultaneously form a hole in the core region and a trench in the peripheral region of the cap dielectric layer, etching a dielectric layer to simultaneously form a hole in the core region and a trench in the peripheral region of the dielectric layer of the dielectric layer, etching a liner layer simultaneously on a shoulder of sidewall spacers associated with the hole and with the trench of the dielectric layer without etching the liner layer at a bottom area of the hole and the trench, performing an oxygen flushing to remove polymer residues, and etching simultaneously through the liner layer that lines the bottom area of the hole and the trench.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: December 13, 2011
    Assignee: Macronix International Co. Ltd.
    Inventor: An Chyi Wei
  • Publication number: 20110298032
    Abstract: A method for manufacturing Flash memory devices includes forming a well region in a substrate, depositing a gate dielectric layer overlying the well region, and depositing a first polysilicon layer overlying the gate dielectric layer. The method also includes depositing a dielectric layer overlying the first polysilicon layer and depositing a second polysilicon layer overlying the dielectric layer to form a stack layer. The method simultaneously patterns the stack layer to form a first flash memory cell, which includes a first portion of the second polysilicon layer overlying a first portion of the dielectric layer overlying a first portion of first polysilicon layer and to form a select device, which includes a second portion of second polysilicon layer overlying a second portion of dielectric layer overlying a second portion of first polysilicon layer. The method further includes forming source/drain regions using ion implant.
    Type: Application
    Filed: December 2, 2010
    Publication date: December 8, 2011
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: DANIEL XU, ROGER LEE
  • Publication number: 20110291180
    Abstract: Angled ion implants are utilized to form doped regions in a semiconductor pillar formed in an opening of a mask. The pillar is formed to a height less than the height of the mask. Angled ion implantation can be used to form regions of a semiconductor device such as a body tie region, a halo region, or current terminal extension region of a semiconductor device implemented with the semiconductor pillar.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Inventor: Mark D. Hall
  • Patent number: 8067284
    Abstract: A semiconductor device including a bilayer charge storing layer and methods of forming the same are provided. Generally, the method includes: (i) forming a first layer of the bilayer charge storing layer; and (ii) forming a second layer formed on a surface of the first layer, the second layer including an oxynitride charge trapping layer. Preferably, the first layer includes a substantially trap free oxynitride layer. More preferably, the oxynitride charge trapping layer includes a significantly higher stoichiometric composition of silicon than that of the first layer. In certain embodiments, the oxynitride charge trapping layer has a concentration of carbon selected to increase the number of traps therein. Other embodiments are also disclosed.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventor: Sagy Levy
  • Patent number: 8062945
    Abstract: Embodiments of methods of forming non-volatile memory structures are provided. In one such embodiment, first and second source/drain regions are formed on a substrate so that the first and second source/drain regions define an intervening channel region. A charge blocking layer is formed over the channel region. A trapping layer is formed over the charge blocking layer. A tunnel layer of two or more sub-layers is formed over the trapping layer, where the two or more sub-layers form a crested barrier tunnel layer. A control gate is formed over the tunnel layer.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 8048739
    Abstract: According to yet another embodiment, a method for forming a non-volatile memory device includes etching a substrate to form first and second trenches. The first and second trenches are filled with an insulating material to form first and second isolation structures. A conductive layer is formed over the first and second isolation structures and between the first and second isolation structures to form a floating gate. The conductive layer and the first isolation structure are etched to form a third trench having an upper portion and a lower portion, the upper portion having vertical sidewalls and the lower portion having sloping sidewalls. The third trench is filled with a conductive material to form a control gate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Patent number: 8043951
    Abstract: A method of manufacturing a semiconductor device on a substrate. The method may include forming a non-volatile memory in a memory area of the substrate. The forming non-volatile memory on a substrate may include formation in the memory area of a floating gate structure and of a control gate structure which is in a stacked configuration with the floating gate structure. One or more gate material layer may be formed in a logic area of the substrate. After forming the control gate structure and the gate material layer, a filling material layer may be deposited over the logic area and the memory area. The filling material layer may be partially removed by reducing the thickness of the filling material in the logic area and the memory area, at least until a top surface of the one or more gate material layer is exposed. Logic devices may be formed in the logic area, the formation may include forming a logic gate structure from the gate material layer.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: October 25, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Virginie Beugin, Massud Abubaker Aminpur
  • Publication number: 20110256679
    Abstract: A non-volatile storage device is disclosed that includes a set of connected non-volatile storage elements formed on a well, a bit line contact positioned in the well, a source line contact positioned in the well, a bit line that is connected to the bit line contact, and a source line that is connected to the source line contact and the well.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Inventor: Masaaki Higashitani
  • Patent number: 8039336
    Abstract: A method includes the steps of: introducing insulation film into a trench to provide a trench isolation; planarizing the trench isolation to expose a passivation film; and removing the passivation film and depositing a second silicon layer on a first silicon layer and the trench isolation; and in the step of depositing the first silicon layer the first silicon layer is an undoped silicon layer and in the step of depositing the second silicon layer the second silicon layer is a doped silicon layer or an undoped silicon layer subsequently having an impurity introduced thereinto or the like and thermally diffused through subsequent thermal hysteresis into the first silicon layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 18, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuki Morino, Yoshihiko Kusakabe, Ryuichi Wakahara
  • Patent number: 8034695
    Abstract: A method of manufacturing a semiconductor device comprising the steps of: forming a first silicon oxide film which covers a first region on the top surface of a silicon substrate, but which does not cover a second region and a third region thereon; oxidizing the silicon substrate to thicken the first silicon oxide film formed on the first region, and to form a second silicon oxide film on the second region and the third region; forming a first silicon film which covers the first region and the second region, but which does not cover the third region; etching and removing the second silicon oxide film formed on the third region by using the first silicon film as a mask; and forming a third silicon oxide film on the third region, the third silicon oxide film being thinner than the second silicon oxide film.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: October 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshito Suwa, Masataka Takebuchi
  • Publication number: 20110241094
    Abstract: According to one embodiment, a semiconductor memory device includes each of memory cells including a floating electrode above a semiconductor substrate via the gate insulator, a control gate electrode above the floating gate electrode via a first inter-gate insulator, first diffusion layers as source or drain, a contact electrode portion including a bottom electrode with an opening and a top electrode on the bottom electrode, the bottom electrode being arranged on the first gate insulator having the opening, the top electrode being electrically connected to the semiconductor substrate via the first opening, and a connection diffusion layer formed in the semiconductor substrate below the first opening.
    Type: Application
    Filed: March 17, 2011
    Publication date: October 6, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Mutsuo MORIKADO
  • Patent number: 8030159
    Abstract: There is provided a method of fabricating an EEPROM for forming a memory cell transistor and a selection transistor, the method includes: forming a first source region and a first drain region of the memory cell transistor; forming a first gate oxide film; forming a resist having at least one through hole on the first gate oxide film; adding conductivity type impurities through the through hole; partially removing the first gate oxide film and forming a tunnel oxide film in a region corresponding to the through hole; forming a floating gate electrode and a second gate oxide film formed on the floating gate electrode; forming a control gate electrode and a selection transistor gate electrode on the second gate oxide film and at a region in which the selection transistor is formed; and forming a second source region and a second drain region of the selection transistor.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 4, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Shinji Kyuutoku
  • Patent number: 8017511
    Abstract: Etching is performed on an insulating layer 23 and a conductive layer 32 with a photoresist 41 as the mask, to form an opening 51 in the conductive layer 32. After removing the photoresist 41, another insulating layer 24 is formed all over, which is etched back so as to expose a surface of a conductive layer 31, to thereby cover the inner wall of the opening 51. Then etching is performed on the conductive layer 31 with the latter insulating layer 24 as the mask, so as to form another opening 52 in the conductive layer 31. Then still another insulating layer 25 is formed all over, which is then etched back so as to expose a surface of the conductive layer 32, to thereby fill the opening 52 with the last formed insulating layer 25.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hidetoshi Nakata
  • Patent number: 8017991
    Abstract: Example embodiments provide a non-volatile memory device with increased integration and methods of operating and fabricating the same. A non-volatile memory device may include a plurality of first storage node films and a plurality of first control gate electrodes on a semiconductor substrate. A plurality of second storage node films and a plurality of second control gate electrodes may be recessed into the semiconductor substrate between two adjacent first control gate electrodes and below the bottom of the plurality of first control gate electrodes. A plurality of bit line regions may be on the semiconductor substrate and each may extend across the plurality of first control gate electrodes and the plurality of second control gate electrodes.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park, June-mo Koo
  • Patent number: 8017477
    Abstract: A nonvolatile memory device includes a plurality of first control gate electrodes, second control gate electrodes, first storage node films, and second storage node films. The first control gate electrodes are recessed into a semiconductor substrate. Each second control gate electrode is disposed between two adjacent first control gate electrodes. The second control gate electrodes are disposed on the semiconductor substrate over the first control gate electrodes. The first storage node films are disposed between the semiconductor substrate and the first control gate electrodes. The second storage node films are disposed between the semiconductor substrate and the second control gate electrodes. A method of fabricating the nonvolatile memory device includes forming the first storage node films, forming the first control gate electrodes, forming the second storage node films, and forming the second control gate electrodes.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park
  • Patent number: 8017478
    Abstract: A semiconductor device includes a memory cell gate structure having a first gate insulating film, a first gate electrode, a second gate insulating film, and a second gate electrode, a select gate structure having a third gate insulating film and a third gate electrode including a first electrode portion, a second electrode portion, and a third electrode portion between the first electrode portion and the second electrode portion, a first impurity diffusion layer formed in a surface area of the semiconductor substrate and located at a portion which corresponds to an area between the memory cell gate structure and the first electrode portion, and a second impurity diffusion layer formed in a surface area of the semiconductor substrate and located at a portion which corresponds to an area between the first electrode portion and second electrode portion.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shoichi Miyazaki
  • Patent number: 8012827
    Abstract: A method for manufacturing a dual workfunction semiconductor device and the device made thereof are disclosed. In one aspect, the method includes manufacturing a first transistor in a first region and a second transistor in a second region of a substrate, the first transistor including a first gate stack, the first gate stack having a first gate dielectric capping layer and a first metal gate electrode layer. The second gate stack is similar to the first gate stack. The method includes applying a first thermal budget to the first gate dielectric capping layer and a second thermal budget to the second gate dielectric capping material to tune the workfunction of the first and second gate stack, the first thermal budget being smaller than the second thermal budget such that after the thermal treatment the first and the second gate stack have different work functions.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: September 6, 2011
    Assignee: IMEC
    Inventors: HongYu Yu, Shou-Zen Chang, Thomas Y. Hoffmann, Philippe Absil
  • Patent number: 8008146
    Abstract: A method (that produces a structure) patterns at least two wires of semiconductor material such that a first wire of the wires has a larger perimeter than a second wire of the wires. The method performs an oxidation process simultaneously on the wires to form a first gate oxide on the first wire and a second gate oxide on the second wire. The first gate oxide is thicker than the second gate oxide. The method also forms gate conductors over the first gate oxide and the second gate oxide, forms sidewall spacers on the gate conductors, and dopes portions of the first wire and the second wire not covered by the sidewall spacers and the gate conductors to form source and drain regions within the first wire and the second wire.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Andres Bryant, Guy Cohen, Jeffrey W. Sleight
  • Patent number: 8008150
    Abstract: A method of forming a flash memory device in a memory cell region of a substrate includes forming a first insulating layer on the substrate, forming a first conductive layer on the first insulating layer, forming trench isolation regions in the substrate extending through the first conductive layer and the first insulating layer to define an active region in the memory cell region between the trench isolation regions, and selectively removing the first conductive layer and the first insulating layer from the memory cell region of the substrate to expose a surface of the active region between the trench isolation regions.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hoon Kim
  • Publication number: 20110207274
    Abstract: A method for forming a semiconductor device includes forming a first semiconductor layer over a substrate, forming a first photoresist layer over the first semiconductor layer, and using only a first single mask patterning the first photoresist layer to form a first patterned photoresist layer. The method further includes using the first patterned photoresist layer etching the first semiconductor layer to form a select gate and forming a charge storage layer over the select gate and a portion of the substrate. The method further includes forming a second semiconductor layer over the charge storage layer, forming a second photoresist layer over the second semiconductor layer, and using only a second single mask patterning the second photoresist layer to form a second patterned photoresist layer. The method further includes forming a control gate by anisotropically etching the second semiconductor layer and then subsequently isotropically etching the second semiconductor layer.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 25, 2011
    Inventors: SUNG-TAEG KANG, Jane A. Yater
  • Patent number: 8003463
    Abstract: A structure, design structure and method of manufacturing is provided for a dual metal gate Vt roll-up structure, e.g., multi-work function metal gate. The method of manufacturing the multi-work function metal gate structure comprises forming a first type of metal with a first work function in a central region and forming a second type of metal with a second work function in at least one edge region adjacent the central region. The first work-function is different from the second work function.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20110198682
    Abstract: In one embodiment, a nonvolatile semiconductor memory device includes a substrate, and a well of a first conductivity type formed in the substrate. The device further includes a plurality of first isolation layers disposed in parallel to each other in the well, and a second isolation layer disposed in parallel to the first isolation layers in the well, a width of a substrate surface between the second isolation layer and the first isolation layers being set greater than a width of a substrate surface between the first isolation layers. The device further includes a memory cell including a gate insulator, a floating gate, an inter-gate insulator, and a control gate sequentially disposed on the well between the first isolation layers, and a dummy cell including a gate insulator, a floating gate, an inter-gate insulator, and a control gate sequentially disposed on the well between the second isolation layer and one of the first isolation layers.
    Type: Application
    Filed: September 10, 2010
    Publication date: August 18, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kiyomi NARUKE
  • Patent number: 7998813
    Abstract: Fabrication methods for gate transistors in integrated circuit devices enable the formation of recessed access device structures or FinFET structures having P-type workfunctions. The fabrication methods also provide for the formation of access transistor gates of an access device following formation of the periphery transistor gates. Access devices and systems including same are also disclosed.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Patent number: 7998812
    Abstract: A semiconductor device includes a memory cell array area, a peripheral circuit area on a periphery of the memory cell array area, and a boundary area having a specific width between the memory cell array area and the peripheral circuit area, the memory cell array area including a cell area including nonvolatile semiconductor memory cells, linear wirings extending from inside of the cell area to an area outside the cell area, and lower layer wirings in a lower layer than the linear wirings in the boundary area and electrically connected to the linear wirings, and wiring widths of the lower layer wirings being larger than widths of the linear wirings, the peripheral circuit area including a patterns electrically connected to the linear wirings via the lower layer wirings, the boundary area failing to be provided with the linear wirings and a wiring in same layer as the linear wirings.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Sakuma, Takuya Futatsuyama
  • Patent number: 7998809
    Abstract: An improved process forming a floating gate region of a semiconductor memory device. The process includes using a ceria slurry for chemical mechanical planarization to provide “stop on polysilicon” capabilities, allowing a thin nitride layer, or in the alternative no nitride layer, to be used and reducing the number of processing steps required to form the floating gate region.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Naga Chandrasekaran
  • Patent number: 7981744
    Abstract: A field-effect transistor which comprises a buffer layer and a barrier layer each of which is made of a Group III nitride compound semiconductor and has a channel at the interface inside of the buffer layer to the barrier layer, wherein the barrier layer has multiple-layer structure comprising an abruct interface providing layer which composes the lowest semiconductor layer in said barrier layer and whose composition varies rapidly at the interface of said buffer layer, and an electrode connection plane providing layer which constructs the uppermost semiconductor layer and whose upper surface is formed flat.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: July 19, 2011
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Kosaki, Koji Hirata, Masanobu Senda, Naoki Shibata
  • Publication number: 20110169071
    Abstract: A memory string is formed to surround the side surface of a columnar portion and a charge storing layer, and includes plural first conductive layers functioning as gates of memory transistors, and a first protecting layer stacked to protect an upper portion of the plural first conductive layers. The plural first conductive layers constitute a first stairway portion formed stepwise such that their ends are located at different positions. Each first conductive layer constitutes a step of the first stairway portion. A top surface of a first portion of the first stairway portion is covered with the first protecting layer including a first number of layers, and A tope surface of a second portion of the first stairway portion located at a lower level than the first portion is covered with the first protecting layer including a second number of layers fewer than the first number of layers.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 14, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tsuneo Uenaka, Kazuyuki Higashi
  • Patent number: 7977191
    Abstract: A method of forming a flash memory device includes forming a plurality of memory gates over a semiconductor substrate, forming an oxide film over the uppermost surface and sidewalls of the memory gates and then forming a plurality of selective gates on sidewalls of each of the memory gates.
    Type: Grant
    Filed: December 27, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ki-Jun Yun
  • Patent number: 7972925
    Abstract: The present invention relates to a flash memory device and a fabrication method thereof. A trench may be formed within a junction region between word lines by etching a semiconductor substrate between not only a word line and a select line, but also between adjacent word lines. Accordingly, the occurrence of a program disturbance phenomenon can be prevented as the injection of hot carriers into a program-inhibited cell is minimized in a program operation.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 5, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yoo Nam Jeon, Ki Seog Kim
  • Patent number: 7968402
    Abstract: One aspect of this disclosure relates to a memory cell. In various embodiments, the memory cell includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode. In various embodiments, the memory cell is implemented in bulk semiconductor technology. In various embodiments, the memory cell is implemented in semiconductor-on-insulator technology. In various embodiments, the diode is gate-controlled. In various embodiments, the diode is charge enhanced by an intentionally generated charge in a floating body of an SOI access transistor. Various embodiments include laterally-oriented diodes (stacked and planar configurations), and various embodiments include vertically-oriented diodes.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya