Complementary Bipolar Transistors Patents (Class 438/322)
  • Patent number: 7282401
    Abstract: A method used in fabrication of a recessed access device transistor gate has increased tolerance for mask misalignment. One embodiment of the invention comprises forming a vertical spacing layer over a semiconductor wafer, then etching the vertical spacing layer and the semiconductor wafer to form a recess in the wafer. A conductive transistor gate layer is then formed within the trench and over the vertical spacing layer. The transistor gate layer is etched, which exposes the vertical spacing layer. A spacer layer is formed over the etched conductive gate layer and over the vertical spacing layer, then the spacer layer and the vertical spacing layer are anisotropically etched. Subsequent to anisotropically etching the vertical spacing layer, a portion of the vertical spacing layer is interposed between the semiconductor wafer and the etched conductive transistor gate layer in a direction perpendicular to the plane of a major surface of the semiconductor wafer.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7279793
    Abstract: An anti-reflective coating layer for the manufacturing of semiconductor devices is disclosed. In one example, a partial semiconductor device includes a substrate; a bottom anti-reflective coating (BARC) layer over the substrate, and the BARC layer is transformed from being hydrophobic to being hydrophilic during a lithography process; and a photoresist layer over the BARC layer.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: October 9, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bang-Ching Ho, Jen-Chieh Shih
  • Patent number: 7265010
    Abstract: The invention includes a method and resulting structure for fabricating high performance vertical NPN and PNP transistors for use in BiCMOS devices. The resulting high performance vertical PNP transistor includes an emitter region including silicon and germanium, and has its PNP emitter sharing a single layer of silicon with the NPN transistor's base. The method adds two additional masking steps to conventional fabrication processes for CMOS and bipolar devices, thus representing minor additions to the entire process flow. The resulting structure significantly enhances PNP device performance.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Peter B. Gray, Jeffrey B. Johnson
  • Patent number: 7253480
    Abstract: A structure of an electrostatic discharge protection circuit, in which a buried layer is formed in the substrate of the electrostatic discharge protection circuit, and a sinker layer electrically connected to the buried layer and a drain is also formed therein. Thereby, when the electrostatic discharge protection circuit is activated, the current flows from a source through the buried layer and the sinker layer to the drain. The current flow path is remote from the gate dielectric layer to avoid damaging the gate dielectric by a large current, so as to improve the dielectric strength of the electrostatic discharge protection circuit.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: August 7, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Shiao-Shien Chen, Tsun-Lai Hsu, Tien-Hao Tang, Hua-Chou Tseng
  • Patent number: 7217628
    Abstract: A complementary bipolar transistor is fabricated using an available portion of a silicon germanium (SiGe) low temperature epitaxial layer as the raised base region for a vertical NPN transistor, and another portion of the same SiGe LTE layer as a vertical PNP collector layer. The complementary pair of transistors is vertically aligned and operates in a single direction.
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: David C. Sheridan, Peter B. Gray, Jeffrey B. Johnson, Qizhi Liu
  • Patent number: 7190046
    Abstract: Structure and method are provided for forming a bipolar transistor. As disclosed, an intrinsic base layer is provided overlying a collector layer. A low-capacitance region is disposed laterally adjacent the collector layer. The low-capacitance region includes at least one of a dielectric region and a void disposed in an undercut underlying the intrinsic base layer. An emitter layer overlies the intrinsic base layer, and a raised extrinsic base layer overlies the intrinsic base layer.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: March 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hiroyuki Akatsu, Rama Divakaruni, Marwan Khater, Christopher M. Schnabel, William Tonti
  • Patent number: 7041563
    Abstract: The present invention includes a semiconductor device having a shallow trench isolation and a method of fabricating the same. The semiconductor device includes a gate electrode being arranged to cross over the active region. An oxide pattern is interposed between the active region and the edge of the gate electrode. The oxide pattern defines a channel region under the gate electrode. A lightly doped diffusion layer is formed in the active region downward and outward from the oxide pattern, and a heavy doped diffusion layer is formed in a predetermined region of the active region and surrounded by the lightly doped diffusion layer. In the method of fabricating the semiconductor substrate, a trench isolation layer is formed at a predetermined region of a semiconductor substrate to define an active region. A pair of preliminary lightly doped diffusion layers are formed in a line to cross over the active region. Then, oxide patterns are formed to cover at least the preliminary lightly doped diffusion layers.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: May 9, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myoung-Soo Kim
  • Patent number: 7033899
    Abstract: A method for fabricating semiconductor device is provided. A high stress layer formed on, under or on both sides of the transistors of the semiconductor device is employed as a cap layer. A specific region is then defined through photo resistor mask, and the stress of the region is changed by ion implanting. Therefore, compressive stress and tensile stress occur on the high stress layer. According the disclosed method, the high stress layer may simultaneously improve the characteristics of the transistors formed on the same wafer. Further, the mobility of the carriers of the device is enhanced.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: April 25, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Cha-Hsin Lin, Zing-Way Pei, Shing-Chii Lu, Wen-Yi Hsieh
  • Patent number: 7001806
    Abstract: A semiconductor structure comprises a buried first semiconductor layer of a first doping type, a second semiconductor layer of the first doping type on the buried semiconductor layer, which is less doped than the buried first semiconductor layer, a semiconductor area of a second doping type on the second semiconductor layer, so that a pn junction is formed between the semiconductor area and the second semiconductor layer, and a recess present below the semiconductor area in the buried first semiconductor layer, which comprises a semiconductor material of the first doping type, which can be less doped than the buried first semiconductor layer and has a larger distance to the semiconductor area of the second doping type on the second semiconductor layer, such that the breakdown voltage across the pn junction is higher than if the recess were not provided.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: February 21, 2006
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Wolfgang Klein
  • Patent number: 6987039
    Abstract: A method of forming a lateral bipolar transistor without added mask in CMOS flow including a p-substrate; patterning and n-well implants; pattern and implant pocket implants for core nMOS and MOS; pattern and implants pocket implants I/O nMOS and pMOS; sidewall deposit and etch and then source/drain pattern and implant for nMOS and pMOS. The method includes the steps of forming emitter and collector contacts by implants used in source/drain regions; forming an emitter that includes implants done in core pMOS during core pMOS LDD extender and pocket implant steps and while the collector omits the core pMOS LDD extender and pocket implants; forming a base region below the emitter and collector contacts by the n-well region with said base region going laterally from emitter to collector being the n-well and including pocket implants; and forming base contact by said n-well region and by implants used in nMOS source/drain regions.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: January 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee
  • Patent number: 6972237
    Abstract: A method for manufacturing a heterojunction bipolar transistor is provided. An intrinsic collector structure is formed on a substrate. An extrinsic base structure partially overlaps the intrinsic collector structure. An intrinsic base structure is formed adjacent the intrinsic collector structure and under the extrinsic base structure. An emitter structure is formed adjacent the intrinsic base structure. An extrinsic collector structure is formed adjacent the intrinsic collector structure. A plurality of contacts is formed through an interlevel dielectric layer to the extrinsic collector structure, the extrinsic base structure, and the emitter structure.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 6, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-fu Sanford Chu, Lap Chan, Jia Zhen Zheng, Jian Xun Li
  • Patent number: 6972472
    Abstract: An emitter stack for a quasi-self-aligned bipolar (NPN or PNP) transistor is formed where two layers over the emitter of a silicon substrate are windowed in a manner to under cut the top layer thereby exposing the substrate material. The emitter polysilicon structure is then formed over the window and conformally extends into the undercut region thereby widening the emitter region and so reducing the distance between the edge of the emitter and the extrinsic base (the base link distance) and therefore reducing the total base resistance of the transistor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: December 6, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven M. Leibiger, Daniel J. Hahn, Laurence M. Szendrei
  • Patent number: 6962842
    Abstract: A method of removing a sacrificial emitter feature in a bipolar complementary metal oxide semiconductor (BICMOS) process with a super self-aligned bipolar junction transistor (BJT) is disclosed. According to the new method, a mask layer, such as an oxide deposited using high density plasma (HDP) techniques, is deposited over an extrinsic base layer and over a sacrificial emitter structure. Because of the particular characteristic of the HDP oxide, the deposition of HDP oxide forms a triangular-like structure over the sacrificial emitter structure having a maximum thickness less than the thickness of the HDP oxide over the extrinsic base layer. This facilitates the complete removal of the HDP oxide above the sacrificial emitter layer without the complete removal of the HDP oxide above the extrinsic base layer. This allows the removal of the sacrificial emitter structure while the remaining HDP oxide, serving as a mask, protects the underlying extrinsic base layer.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 8, 2005
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Sang H. Park, Viktor Zekeriya, Larry Wang
  • Patent number: 6933202
    Abstract: According to one exemplary embodiment, a method for forming an NPN and a vertical PNP device on a substrate comprises forming an insulating layer over an NPN region and a PNP region of the substrate. The method further comprises forming a buffer layer on the insulating layer and forming an opening in the buffer layer and the insulating layer in the NPN region, where the opening exposes the substrate. The method further comprises forming a semiconductor layer on the buffer layer and in the opening in the NPN region, where the semiconductor layer has a first portion situated in the opening and a second portion situated on the buffer layer in the PNP region. The first portion of the semiconductor layer forms a single crystal base of the NPN device and the second portion of the semiconductor layer forms a polycrystalline emitter of the vertical PNP device.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: August 23, 2005
    Assignee: Newport Fab, LLC
    Inventors: Paul D. Hurwitz, Kenneth M. Ring, Chun Hu, Amol Kalburge
  • Patent number: 6930008
    Abstract: A method of fabricating a complementary bipolar junction transistor includes forming a polycrystalline silicon layer on an NPN bipolar junction transistor region and a PNP bipolar junction transistor region, respectively implanting an N-type impurity and a P-type impurity into the polycrystalline silicon layer, and then diffusing to respectively form an N-type emitter region and a P-type emitter region within a P-type base region and an N-type base region. By patterning the polycrystalline silicon layer, an N-type emitter electrode and a P-type emitter electrode are simultaneously formed. The polycrystalline silicon layer is used for simultaneously forming the N-type emitter electrode of the NPN bipolar junction transistor and the P-type emitter electrode of the PNP bipolar junction transistor by a single depositing and etching process.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: August 16, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-kyun Nam, Sung-ryoul Bae
  • Patent number: 6917061
    Abstract: A heterojunction bipolar transistor is provided that has a reduced turn-on voltage threshold. A base spacer layer is provided and alternately an emitter layer is provided that has a lowered energy gap. The lowered energy gap of the base spacer or the emitter spacer allow the heterojunction bipolar transistor to realize a lower turn-on voltage threshold. The thickness of the emitter layer if utilized is kept to a minimum to reduce the associated space charge recombination current in the heterojunction bipolar transistor.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 12, 2005
    Assignee: Microlink Devices, Inc.
    Inventors: Noren Pan, Byung-Kwon Han
  • Patent number: 6914308
    Abstract: A semiconductor device in which a vertical pnp-bipolar transistor is formed in a prescribed element region on a semiconductor substrate includes: a buried n+-layer of a high concentration formed in the prescribed element region; and a p-type collector layer formed on the buried n+-layer. By introducing impurities that has a larger diffusion coefficient than the buried n+-layer, the collector layer can be formed on the buried n+-layer formed in common with other element regions, without any special masking.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: July 5, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Hidenori Fujii
  • Patent number: 6855611
    Abstract: A fabrication method of an electrostatic discharge protection circuit is described, in which a buried layer is formed in the substrate of the electrostatic discharge protection circuit, and a sinker layer electrically connected to the buried layer and a drain is also formed therein. Thereby, when the electrostatic discharge protection circuit is activated, the current flows from a source through the buried layer and the sinker layer to the drain. The current flow path is remote from the gate dielectric layer to avoid damaging the gate dielectric by a large current, so as to improve the dielectric strength of the electrostatic discharge protection circuit.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: February 15, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Shiao-Shien Chen, Tsun-Lai Hsu, Tien-Hao Tang, Hua-Chou Tseng
  • Patent number: 6838350
    Abstract: A method for fabricating a bipolar transistor includes forming a first region of a first conductivity type in a semiconductor structure to form a collector region and forming a second region of a second conductivity type in the first region to form a base region. A first mask is applied including an opening defining an emitter region of the bipolar transistor. The method further includes a triple implantation process using the first mask. Thus, a third region of the first conductivity type is formed in the first region and overlaid the second region. A fourth region of the second conductivity type is formed in the second region and is more heavily doped than the second region. A fifth region of the first conductivity type is formed in the second region and above the fourth region. The fifth region forms the emitter region of the bipolar transistor.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: January 4, 2005
    Assignee: Micrel, Inc.
    Inventors: Martin E. Garnett, Peter Zhang, Steve McCormack, Ji-hyoung Yoo
  • Patent number: 6828205
    Abstract: A method for using an isotropic wet etching process chemical process for trimming semiconductor feature sizes with improved critical dimension control including providing a hard mask overlying a substrate included in a semiconductor wafer said hard mask patterned for masking a portion of the substrate for forming a semiconductor feature according to an anisotropic plasma etching process; isotropically wet etching the hard mask to reduce a dimension of the hard mask prior to carrying out the anisotropic plasma etching process; and, anisotropically plasma etching a portion of the substrate not covered by the hard mask to form the semiconductor feature.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Ming-Huan Tsai, Ming-Jie Huang, Huan-Just Lin, Hun-Jan Tao
  • Patent number: 6797577
    Abstract: A method is disclosed for the improvement of BiCMOS or CMOS manufactured device performance, specifically bipolar junction transistor performance, in a cost effective manner. The method provides for fewer masking operations during bipolar junction transistor formation, in a CMOS flow process, yet also provides for the bipolar junction transistor to be optimized.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: September 28, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Frank Scott Johnson, Jerold A. Seitchik, John Soji
  • Patent number: 6787386
    Abstract: The present invention relates to a pinned photodiode used in a CMOS image sensor. The pinned photodiode according to the present invention has an uneven surface for increasing an area of a PN junction of the photodiode. So, the increased PN junction area improves a light sensitivity of the photodiode. That is, the epitaxial layer, in which the photodiode is formed, has a trench or a protrusion. Also, in the pinned photodiode, since the P0 diffusion layer is directly in contact with the P-epi layer, the two P-type layers have the same potential and then it may operate in a low voltage.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: September 7, 2004
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Sang Hoon Park
  • Patent number: 6780724
    Abstract: The invention relates to a method of manufacturing implanted-base, double polysilicon bipolar transistors whose emitter, base and collector are all situated in a single active area. In accordance with the method, first the island isolation (3) defining the active area (4) in the silicon body (1) is provided, which active area forms the collector (5). A first polysilicon layer (6) is deposited on the surface. A first part (6a) of poly I is p-type doped, a second part is n-type doped. By etching, two separate parts are formed from the first poly layer, one part being p-type doped and forming a base terminal (8), the other part being n-type doped and forming a collector terminal (9), said two parts being separated by an intermediate region (16) where the surface of the active area is exposed. The edges of these poly terminals and the exposed parts of the active area are provided with spacers (13, 15) and spacers (14, 16), respectively.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: August 24, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Doede Terpstra, Catharina Huberta Henrica Emons
  • Patent number: 6782526
    Abstract: A photomask designing method and apparatus, a computer readable storing medium, a photomask, a photoresist, a photosensitive resin, a base plate, a microlens, and an optical element. In the method, even though a desired depth of a photoresist pattern and a type of the photoresist are changed, the photomask can be easily designed. In a method of designing a photomask in which intensity of light radiated onto the photoresist is controlled with a fine pattern, that is, a congregation of fine areas respectively having predetermined light transmission factor, the resist sensitivity curve showing resist depth for the exposing amount of the employed photoresist and fine areas data corresponding to plural light transmission factors per predetermined halftone are previously set, and then, the depth of the resist respectively set per each of the fine areas is converted to the light exposing amount by use of the resist sensitivity curve.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: August 24, 2004
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasuhiro Satoh
  • Patent number: 6773973
    Abstract: A polysilicon-emitter-type transistor has a substrate with a collector region, a base region on the collector region, and an oxide layer on the base region with an emitter window therein exposing part of the base region. The polysilicon emitter is formed by forming a first polysilicon layer of approximately 30 to 100 Angstroms at least within the emitter window and at least on the exposed base region. Then, an interfacial oxide layer being approximately 5 to 50 Angstroms thick is formed in an upper portion of the first polysilicon layer, for example, by exposing the first polysilicon layer to oxygen and annealing. Then, a second polysilicon layer is formed on the interfacial oxide layer. The thickness of the second polysilicon layer may be approximately 500 to 5000 Angstroms thick. Subsequent annealing diffuses dopants in the emitter more uniformly into the base region.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: August 10, 2004
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Sudarsan Uppili, Sang Park
  • Patent number: 6767797
    Abstract: Complementary bipolar transistors are fabricated on a semiconductor wafer by forming, first and second electrodes corresponding to first and second complementary transistors, respectively. A first impurity is selectively introduced into the first and second electrodes. A third electrode corresponding to the first transistor is formed, the third electrode being self-aligned with and electrically isolated from the first electrode, and a fourth electrode is formed corresponding to the second transistor, the fourth electrode being self-aligned with and electrically isolated from the second electrode. A second impurity is selectively introduced into the third and fourth electrodes. First active regions of the first and second transistors are formed, whereby the first impurity diffuses into the first active regions. Likewise, second active regions of the first and second transistors are formed, whereby the second impurity diffuses into the second active regions.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: July 27, 2004
    Assignee: Agere Systems Inc.
    Inventor: Thomas J. Krutsick
  • Patent number: 6767785
    Abstract: Disclosed are methods of forming resistors and diodes from semiconductive material, and static random access memory (SRAM) cells incorporating resistors, and to integrated circuitry incorporating resistors and diodes. A node to which electrical connection is to be made is provided. An electrically insulative layer is provided outwardly of the node. An opening is provided in the electrically insulative layer over the node. The opening is filed with semiconductive material which depending on configuration serves as one or both of a vertically elongated diode and resistor.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: July 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: J. Brett Rolfson, Monte Manning
  • Patent number: 6764918
    Abstract: A structure and method of making an NPN heterojunction bipolar transistor (100) includes a semiconductor substrate (11) with a first region (82) containing a dopant (86) for forming a base region of the transistor. A second region (84) adjacent to the first region is used to form an emitter region of the transistor. An interstitial trapping material (81) reduces diffusion of dopants in the base region during subsequent thermal processing.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: July 20, 2004
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Gary H. Loechelt
  • Publication number: 20040137690
    Abstract: IGBTs and circuits can be designed to improve the ability of circuits and systems to withstand ESD events. In addition pads can be designed to take advantage of the circuits and IGBTs to withstand and dissipate ESD events.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 15, 2004
    Inventors: Shekar Mallikarjunaswamy, Sohel Imtiaz
  • Patent number: 6759303
    Abstract: A method for fabricating complementary vertical bipolar junction transistors of silicon-on-sapphire in fewer steps than required for true complimentary vertical bipolar junction transistors is disclosed. Initially a thin layer of silicon is grown on a sapphire substrate. The silicon is improved using double solid phase epitaxy. The silicon is then patterned and implanted with P+-type and N+-type dopants. Subsequently a micrometer scale N-type layer is grown that acts as the intrinsic base for both an PNP transistor and as the collector for an NPN transistor. The extrinsic base for the NPN is then formed and the emitter, collector and ohmic contact regions are next selectively masked and implanted. Conductive metal is then formed between protecting oxide to complete the complementary vertical bipolar junction transistors.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Eric N. Cartagena
  • Patent number: 6756279
    Abstract: A method for manufacturing a contact between a semiconductor substrate and a doped polysilicon layer deposited on the substrate with an interposed insulating layer, wherein elements adapted to making the insulating layer permeable to the migration of dopants from the polysilicon layer to the substrate are implanted.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: June 29, 2004
    Assignee: STMicroelectronics S.A.
    Inventors: Olivier Menut, Hervé Jaouen, Guillaume Bouche
  • Patent number: 6720622
    Abstract: A novel device structure and process are described for an SCR ESD protection device used with shallow trench isolation structures. The invention incorporates an SCR device with all SCR elements essentially contained within the sane active area without STI elements being interposed between the device anode and cathode elements. This enhances ESD performance by eliminating thermal degradation effects caused by interposing STI structures, and enhances the parasitic bipolar characteristics essential to ESD event turn on. Enabling this unique design is the use of an insulation oxide surface feature which prevents the formation of contact salicides in unwanted areas. This design is especially suited to silicon-on-insulator design, as well as conventional SCR and LVTSCR designs.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: April 13, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Ta-Lee Yu
  • Publication number: 20040018680
    Abstract: In a method of preparing a DRAM wherein doped poly-Si is used as a CB contact as well as a source of doping in the contact region, and where
    Type: Application
    Filed: July 29, 2002
    Publication date: January 29, 2004
    Inventors: Yun Yu Wang, Johnathan Faltermeier, Colleen M. Snavely, Michael Maldei, Michael M. Iwatake, David M. Dobuzinsky, Ravikumar Ramachandran, Viraj Y. Sardesai, Philip L. Flaitz, Lisa Y. Ninomiya
  • Patent number: 6673703
    Abstract: A method of fabricating an integrated circuit including a monocrystalline silicon substrate, a layer of polycrystalline silicon on the top surface of the substrate and doped with at least two dopants with different rates of diffusion, in which method annealing is performed at a temperature and for a time such that a first dopant diffuses into a first zone and a second dopant diffuses into a second zone larger than the first zone.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: January 6, 2004
    Assignee: STMicroelectronics S.A.
    Inventors: Olivier Menut, Herve Jaouen
  • Patent number: 6667202
    Abstract: A semiconductor device which has: a bipolar transistor having a collector region of a second conductivity type formed from the surface of a semiconductor substrate of a first conductivity type, a base region of a first conductivity type formed from the surface of the collector region, and an emitter region of a second conductivity type formed from the surface of the base region; a collector extraction region that is separated by an insulating layer and is formed in the collector region except the base region; a concave portion in the collector extraction region that is formed up to a depth where the collector region has a peak concentration in impurity distribution; and a collector extraction electrode that is connected with the collector region to extract ohmic-connecting to the bottom of the concave portion.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: December 23, 2003
    Assignee: NEC Electronics Corporation
    Inventor: Hisamitsu Suzuki
  • Publication number: 20030219952
    Abstract: A method of manufacturing a semiconductor device in which a vertical NPN transistor and a vertical PNP transistor are formed on the same substrate including a first step of forming a first oxide film, a P-polycrystal silicon film, and a second oxide film in succession on an N-silicon epitaxial film formed on a substrate, a second step of making an opening in the first oxide film through which a surface of the N-silicon epitaxial film and a part of a bottom of the P-polycrystal silicon film are exposed by anaisotropically etching the second oxide film and the P-polycrystal silicon film, and then isotropically etching the first oxide film that has been exposed, a third step of plugging at least a part of the opening by growing a selective epitaxial layer including a P-monocrystal layer from the surface of the N-silicon epitaxial film, and growing a polycrystal layer from the part of the bottom of the P-polycrystal silicon film, and a fourth step of adjusting, within a PNP transistor section, a P-N junction's po
    Type: Application
    Filed: November 21, 2002
    Publication date: November 27, 2003
    Inventor: Hirokazu Fujimaki
  • Publication number: 20030162360
    Abstract: An N type buried layer is formed, in one embodiment, by a non selective implant on the surface of a wafer and later diffusion. Subsequently, the wafer is masked and a selective P type buried layer is formed by implant and diffusion. The coefficient of diffusion of the P type buried layer dopant is greater than the N type buried layer dopant so that connections can be made to the P type buried layer by P wells which have a lower dopant concentration than the N buried layer.
    Type: Application
    Filed: February 25, 2002
    Publication date: August 28, 2003
    Inventor: James D. Beasom
  • Patent number: 6607960
    Abstract: A method of manufacturing a bipolar transistor in a P-type substrate, including the steps of forming in the substrate a first N-type area; forming by epitaxy a first silicon layer; forming in this first layer, and substantially above the first area a second heavily-doped P-type area separate from the second area; forming at the periphery of this second area a third N-type area; forming by epitaxy a second silicon layer; forming a deep trench crossing the first and second silicon layers, penetrating into the substrate and laterally separating the second area from the third area; and performing an anneal such that the dopant of the third area is in continuity with that of the first area.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: August 19, 2003
    Assignee: STMicroelectronics S.A.
    Inventors: Yvon Gris, Thierry Schwartzmann
  • Patent number: 6602755
    Abstract: A bipolar transistor structure that includes a semiconductor material substrate that has a bottom substrate and base region of a first conductivity type and a buried layer, collector region and sink region of a second conductivity type. The substrate has an extrinsic base region of the first conductivity type and an emitter region of the second conductivity type, both of which extend from the substrate's upper surface into the base region. The bipolar transistor structure also includes a single patterned polysilicon layer with a first polysilicon portion of the first conductivity type in contact with the extrinsic base region and a second polysilicon portion of the second conductivity type in contact with the emitter region. The bipolar transistor structure is compact since contact to the extrinsic base region is made by the first polysilicon portion, which can be formed to a minimum dimension and self-aligned to the extrinsic base region.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: August 5, 2003
    Assignee: National Semiconductor Corporation
    Inventor: Vassili Kitch
  • Patent number: 6593628
    Abstract: The invention relates to an essentially discrete semiconductor device comprising a semiconductor body (10) having a first, preferably bipolar, transistor (T1) with a first region (1) forming a collector (1) of T1, and a second, preferably also bipolar, transistor (T2) with a second region (2) forming a collector (2) of T2, which transistors (T1, T2) are in a cascode configuration wherein the collector (1) of T1is connected to the emitter (4) of T2. Such a device cannot suitably be used in a base station for mobile communication. According to the invention, the first region (1) and the second region (2) are positioned next to each other within a semiconductor region (5), a part of which situated below the first region (1) is provided with a higher doping concentration at the location of T1. In this way, T1 has a low collector-emitter breakdown voltage and a high cutoff frequency, whereas for T2 said voltage and frequency are, respectively, high(er) and low(er).
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: July 15, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ronald Dekker, Henricus Godefridus Rafael Maas, Jan Willem Slotboom, Freerk Van Rijs
  • Patent number: 6579771
    Abstract: The invention relates to a process of forming a bipolar junction transistor (BJT) that includes forming a topology over a substrate. Thereafter, a spacer is formed at the topology. A base layer is formed from epitaxial silicon above the spacer and at the topology. A leakage block structure is formed in the substrate by out-diffusion from the spacer. Thereafter a BJT is completed with the base layer and the spacer.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: June 17, 2003
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green, Anand Murthy
  • Publication number: 20030109108
    Abstract: The invention relates to a process of forming a bipolar junction transistor (BJT) that includes forming a topology over a substrate. Thereafter, a spacer is formed at the topology. A base layer is formed from epitaxial silicon above the spacer and at the topology. A leakage block structure is formed in the substrate by out-diffusion from the spacer. Thereafter a BJT is completed with the base layer and the spacer.
    Type: Application
    Filed: December 10, 2001
    Publication date: June 12, 2003
    Applicant: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green, Anand Murthy
  • Patent number: 6576535
    Abstract: A method for fabricating a high speed complementary bipolar/CMOS device is disclosed which enables the forming of a silicon epitaxial layer in a PNP transistor having carbon incorporated therein to suppress boron up-diffusion from lower heavily boron-doped buried layers into upper PNP structures. According to an embodiment of the invention, an epitaxial layer is formed on a P type silicon substrate in which a plurality of P+ buried layer regions, a plurality of N+ buried layer regions, and a P+ field layer region occupying most of the substrate surface are diffused. The substrate is loaded in a reactor with a carrier gas and pre-baked at a temperature of approximately 850° C. for a time. The temperature is then increased to approximately 1050° C. and subjected to a high temperature bake cycle. A thin carbon-doped epitaxial cap layer is deposited on the substrate, which then is subjected to a high temperature gas purge cycle at approximately 1080° C.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: June 10, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Vladimir F. Drobny, Dennis D. Liu
  • Patent number: 6569730
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 27, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Publication number: 20030080394
    Abstract: An integrated circuit and a method of fabricating the same are disclosed. Complementary bipolar transistors (20p, 20n) are fabricated as vertical bipolar transistors. The emitter polysilicon (35), which is in contact with the underlying single-crystal base material, is doped with a dopant for the appropriate device conductivity type, and also with a diffusion retardant, such as elemental carbon, SiGeC, nitrogen, and the like. The diffusion retardant prevents the dopant from diffusing too fast from the emitter polysilicon (35). Device matching and balance is facilitated, especially for complementary technologies.
    Type: Application
    Filed: October 30, 2002
    Publication date: May 1, 2003
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Leland Swanson, Scott G. Balster, Gregory E. Howard, Alfred Hausler
  • Patent number: 6528379
    Abstract: A buried layer of a collector region and a buried layer of a collector taking-out region are formed at the same time at each epitaxial layer when the collector region and the collector taking-out region of the semiconductor integrated circuit device according to the invention. Each buried layer is diffused to connect, and etched in V-groove. By that, the collector region and collector taking-out region made thick in film are formed at the same time so as to realize the semiconductor integrated circuit device of high withstanding voltage.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: March 4, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tadayoshi Takada, Osamu Kitamura, Shigeaki Okawa, Hirotsugu Hata, Chikao Fujinuma
  • Patent number: 6528377
    Abstract: A silicon-on-insulator substrate and its method of formation are disclosed. In another embodiment, a method for forming a high-k gate dielectric is disclosed. The silicon-on-insulator substrate is prepared by forming a lattice matched dielectric layer (20) over a semiconductor substrate (10). A thermodynamically stable dielectric layer (22) is then formed over the lattice matched dielectric layer (20). A semiconductor layer (30) is then formed over the thermodynamically stable dielectric layer (22). Formation of the high-k gate dielectric includes the processing steps used to form the silicon-on-insulator substrate and additionally includes bonding a second semiconductor substrate (50) to the semiconductor layer (30). The first semiconductor substrate (10) is then removed to expose the lattice matched dielectric layer (20). This results in a silicon substrate that has a layer of high-k dielectric material that can be used as the gate dielectric for integrated circuits formed on the substrate.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: March 4, 2003
    Assignee: Motorola, Inc.
    Inventors: Theodoros Mihopoulos, Prasad V. Alluri, J. Vernon Cole
  • Patent number: 6518139
    Abstract: A power semiconductor device structure formed in a chip of semiconductor material includes an N-type substrate and an N-type epitaxial layer. The structure comprises a P-type insulation region which forms a pocket in which control circuitry is formed, and a plurality of fully insulated PNP power transistors. Each PNP power transistor comprises a P-type collector region including of a buried region between the substrate and the epitaxial layer and a contact region. The P region delimits a base N region within which an emitter P region is formed.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: February 11, 2003
    Assignee: CO.RI.M.ME Consorzio per la Sulla Microelectronica nel Mezzogiorno
    Inventors: Natale Aiello, Davide Patti, Salvatore Scaccianoce, Salvatore Leonardi
  • Patent number: 6492237
    Abstract: A method of forming an NPN semiconductor device includes the steps of forming a collector region within a substrate, forming a base region over the collector region, and forming an oxide-nitride-oxide stack over the base region. Once these three structures are formed, an opening is created through the oxide-nitride-oxide stack to expose the top surface of the base region. Then, a doped polysilicon material is used to fill the opening and make electrical contact to the base region. The use of the oxide-nitride-oxide stack with appropriate etching of the opening eliminates the exposure of the base region to reactive ion etch environment typical of prior art methods for forming NPN semiconductor devices. As an option, after the opening of the oxide-nitride-oxide stack is formed, a local oxidation of silicon (LOCOS) and etched can be preformed to create oxide spacers to line the opening wall above the base region.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: December 10, 2002
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Sang Hoon Park, Robert F. Scheer
  • Patent number: 6492238
    Abstract: A process for forming a bipolar transistor with a raised extrinsic base, an emitter, and a collector integrated with a CMOS circuit with a gate. An intermediate semiconductor structure is provided having CMOS and bipolar areas. An intrinsic base layer is provided in the bipolar area. A base oxide is formed across, and a sacrificial emitter stack silicon layer is deposited on, both the CMOS and bipolar areas. A photoresist is applied to protect the bipolar area and the structure is etched to remove the sacrificial layer from the CMOS area only such that the top surface of the sacrificial layer on the bipolar area is substantially flush with the top surface of the CMOS area. Finally, a polish stop layer is deposited having a substantially flat top surface across both the CMOS and bipolar areas suitable for subsequent chemical-mechanical polishing (CMP) to form the raised extrinsic base.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: December 10, 2002
    Assignee: International Business Machines Corporation
    Inventors: David C. Ahlgren, Gregory G. Freeman, Feng-Yi Huang, Adam D. Ticknor