Complementary Bipolar Transistors Patents (Class 438/322)
  • Patent number: 6489211
    Abstract: A method of manufacturing a semiconductor component includes providing a composite substrate (300) with a dielectric portion and a semiconductor portion and growing an epitaxial layer (400) over the composite substrate. The epitaxial layer has a polycrystalline portion (402) over the dielectric portion of the composite substrate and also has a monocrystalline portion (401) over the semiconductor portion of the composite substrate. A first dopant is diffused into the monocrystalline portion of the epitaxial layer to form an emitter region in the monocrystalline portion of the epitaxial layer while a second dopant is simultaneously diffused into the monocrystalline portion of the epitaxial layer to form an enhanced portion of the base region.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: December 3, 2002
    Assignee: Motorola, Inc.
    Inventors: John L. Freeman, Jr., Raymond J. Balda, Robert A. Pryor, James D. Paulsen, Robert J. Johnsen
  • Patent number: 6475849
    Abstract: According to a disclosed method, a dopant spike region is formed in a link base region, which connects an intrinsic base region to an extrinsic base region. For example, the intrinsic base region can be the region in which the base-emitter junction is formed in a silicon-germanium heterojunction bipolar transistor, and the extrinsic base region can be the external portion of the base of the same transistor to which external electrical contact is made. The dopant spike can be an increased concentration of boron dopant. A diffusion blocking segment is then fabricated on top of the link base region in order to prevent diffusion of the dopant spike out of the link base region. For example, the diffusion blocking segment can be formed from silicon-oxide. Thus, link base resistance is reduced, for example, by the higher concentration of boron dopant in the dopant spike region causing the link base resistance to be lower than the intrinsic base resistance.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 5, 2002
    Assignee: Newport Fab, LLC
    Inventor: Marco Racanelli
  • Publication number: 20020158308
    Abstract: A semiconductor component and a method for fabricating it includes a substrate and an epitaxial layer situated thereon and integrating at least a first and a second bipolar component in the layer. The first and second bipolar components have a buried layer and different collector widths. The buried layer of the second component has a larger layer thickness than that of the first component; exactly one epitaxial layer is provided. The different collector widths produced as a result thereof are influenced by the outdiffusion of the dopant of the buried layers by other substances.
    Type: Application
    Filed: May 13, 2002
    Publication date: October 31, 2002
    Inventors: Jakob Huber, Wolfgang Klein
  • Patent number: 6437421
    Abstract: A semiconductor process is disclosed which forms openings in a dielectric layer through which the base region of both high-voltage and high-gain bipolar transistors are formed. In one embodiment of the invention, the openings for the high-gain transistors are first protected by a photoresist layer that is patterned to expose the openings for the high-voltage transistors. A first base implant is performed through the exposed windows in the dielectric layer and into the exposed substrate or epitaxial layer therebelow, and then diffused to a suitable depth. The patterned photoresist is then removed to additionally expose the openings for the high-gain devices, and a second base implant is performed, this time into both base regions, and then diffused to a suitable depth. Emitter regions are then formed within the base regions of both transistor types by traditional implantation and contact techniques.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: August 20, 2002
    Assignee: Legerity, Inc.
    Inventors: Frank L. Thiel, William E. Moore, Philip S. Shiota
  • Publication number: 20020110990
    Abstract: A semiconductor device fabrication method includes the steps of forming a first insulation layer and a first semiconductor layer sequentially on a semiconductor substrate having a buried diffusion region therein. A second insulation layer is formed on the first semiconductor layer. The first insulation layer, the first semiconductor layer, and the second insulation layer are then patterned to create openings that expose the buried diffusion region. A third insulation layer is formed on respective side walls of the openings on the exposed portions of the first semiconductor layer, first insulation layer and second insulation layer that form the openings. A first epitaxial layer is formed on the semiconductor substrate exposed through the openings. A second epitaxial layer is then formed on the first epitaxial layer to be connected to the first semiconductor layer, thereby forming an active base region and a second conductive type collector region in the second epitaxial layer of the first and second openings.
    Type: Application
    Filed: April 17, 2002
    Publication date: August 15, 2002
    Applicant: Hyundai Electronics Industries Co., Ltd.
    Inventor: Yong Chan Kim
  • Patent number: 6432764
    Abstract: Disclosed are methods of forming resistors and diodes from semiconductive material, and static random access memory (SRAM) cells incorporating resistors, and to integrated circuitry incorporating resistors and diodes. A node to which electrical connection is to be made is provided. An electrically insulative layer is provided outwardly of the node. An opening is provided in the electrically insulative layer over the node. The opening is filled with semiconductive material which depending on configuration serves as one or both of a vertically elongated diode and resistor.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: August 13, 2002
    Assignee: Micron Technology, Inc.
    Inventors: J. Brett Rolfson, Monte Manning
  • Patent number: 6423590
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 23, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Lin, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6410395
    Abstract: A method of manufacturing a semiconductor device comprising heterojunction bipolar transistors (HBTs), in which method a first semiconductor layer of monocrystalline silicon (5), a second semiconductor layer of monocrystalline silicon comprising 5 to 25 at. % germanium (6) and a third semiconductor layer of monocrystalline silicon (7) are successively provided on a surface (2) of a silicon wafer (1) by means of epitaxial deposition. Base zones of the transistors are formed in the second semiconductor layer. In this method, the second semiconductor layer is deposited without a base doping, said doping being formed at a later stage. Said doping can be formed by means of an ion implantation process or a VPD (Vapor Phase Doping) process. This method enables integrated circuits comprising npn-transistors as well as pnp-transistors to be manufactured.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: June 25, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Doede Terpstra, Jan Willem Slotboom, Youri Ponomarev, Petrus Hubertus Cornelis Magnee, Freerk Van Rijs
  • Patent number: 6403436
    Abstract: Subcollector layers or emitter layers constituting a bipolar transistor having different thicknesses form a two-layered structure. A resistor layer is formed at the same as one of the subcollector layers or one of the emitter layers, from the same material as that of the subcollector layer or emitter layer. A resistor is formed by the resistor layer made of the same material as that of the subcollector layer or emitter layer. A resistor with a desired resistance can be integrally built into a semiconductor device without adversely affecting the characteristics of a bipolar transistor.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: June 11, 2002
    Assignee: NEC Corporation
    Inventor: Masahiro Tanomura
  • Patent number: 6395610
    Abstract: A bipolar transistor includes an oxide layer having graded portions with greatly reduced stress on a silicon substrate. The method of making the oxide preferably includes growing a first oxide portion by upwardly ramping the silicon substrate to a first temperature lower than a glass transition temperature, and exposing the silicon substrate to an oxidizing ambient at the first temperature and for a first time period. Also, the method includes growing a second oxide portion between the first oxide portion and the silicon substrate by exposing the silicon substrate to an oxidizing ambient at a second temperature higher than the glass transition temperature for a second time period. The second oxide portion may have a thickness in a range of about 2 to 75% of a total thickness of the graded, grown, oxide layer. The step of upwardly ramping preferably includes upwardly ramping the temperature at a relatively high ramping rate to reduce any oxide formed during the upward ramping.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: May 28, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Kumar Pradip Roy, Ranbir Singh
  • Publication number: 20020039815
    Abstract: According to one embodiment of the invention, a method for manufacturing bipolar junction transistors includes disposing a first oxide layer between a semiconductor substrate and a base polysilicon layer, forming a dielectric layer outwardly from the base polysilicon layer, and forming an emitter region by removing a portion of the dielectric layer and a portion of the base polysilicon layer. The method further includes removing a portion of the first oxide layer to form undercut regions adjacent the emitter region and to enlarge the emitter region, and forming an oxide pad outwardly from the semiconductor substrate in the emitter region.
    Type: Application
    Filed: September 14, 2001
    Publication date: April 4, 2002
    Inventors: Samuel Z. Nawaz, Jeffrey E. Brighton
  • Patent number: 6365447
    Abstract: A method of making high voltage complementary bipolar and BiCMOS devices on a common substrate. The bipolar devices are vertical NPN and PNP transistors having the same structure. The fabrication process utilizes trench isolation and thus is scalable. The process uses two epitaxial silicon layers to form the high voltage NPN collector, with the PNP collector formed from a p-well diffused into the two epitaxial layers. The collector contact resistance is minimized by the use of sinker up/down structures formed at the interface of the two epitaxial layers. The process minimizes the thermal budget and therefore the up diffusion of the NPN and PNP buried layers. This maximizes the breakdown voltage at the collector-emitter junction for a given epitaxial thickness. The epitaxial layers may be doped as required depending upon the specifications for the high voltage NPN device.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: April 2, 2002
    Assignee: National Semiconductor Corporation
    Inventors: Francois Hèbert, Datong Chen, Reda Razouk
  • Patent number: 6333237
    Abstract: A method for manufacturing a semiconductor device separately forms two collector regions, two base extension regions, two base regions, and two collector extension regions on a first bipolar transistor forming region and a second bipolar transistor forming region that are formed on a semiconductor substrate, and includes a step of forming an emitter region on the first bipolar transistor region and forming, in the same process step, a base contact layer for an emitter electrode in the second bipolar transistor region as well, after which an emitter electrode is formed on the base contact layer.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: December 25, 2001
    Assignee: NEC Corporation
    Inventor: Hiroshi Yoshida
  • Patent number: 6297119
    Abstract: The present invention discloses a semiconductor device having a PNP bipolar transistor and an NPN bipolar transistor having excellent transistor characteristics formed on the same semiconductor substrate, and a method of manufacturing the semiconductor device. This semiconductor device is provided with a first n-type well and a second n-type well formed at substantially the same depths in a semiconductor substrate, an NPN bipolar transistor formed within the first n-type well which uses the n-type well as its collector, a p-type well formed within the second n-type well, and a PNP bipolar transistor formed within the p-type well which uses the p-type well as its collector.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: October 2, 2001
    Assignee: NEC Corporation
    Inventors: Yutaka Tsutsui, Masaru Wakabayashi
  • Patent number: 6265276
    Abstract: A complementary bipolar transistor device, made of two separate conductive films such as two highly doped polysilicon films of opposite conductivity types. The doped polysilicon film is used for a base of NPN transistor and an emitter of a PNP transistor whereas the other doped polysilicon film is used for emitter of the NPN and a base of the PNP. The resulting base and emitter isolating structure is easy to fabricate, and self-aligned to the advantage of size reduction of individual devices.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: July 24, 2001
    Assignee: Sony Corporation
    Inventor: Hiroyuki Miwa
  • Patent number: 6232193
    Abstract: An integrated injection logic device is provided in which each collector of an I2L gate is isolated by a field oxide (“FOX”), or by other suitable isolation such as, for example, an isolation trench. The connection of the base to the collectors, between the base contact region and the bottom of the collectors, is made underneath the field oxide using a buried p type layer (TN3 in the Figures illustrating the invention). Because both silicide and heavy implant p+ implant is present at the base contact point only, the recombination current is reduced. This reduces the current loss when compared to the current loss of the known device. Additionally, current gain is also improved by placing a deep base implant close to the emitter of the upside own NPN transistor in the integrated logic device. The area of the base and the area of the collectors is decoupled, i.e.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 15, 2001
    Assignee: Philips Electronics North America Corporaiton
    Inventors: Chun-Yu Chen, Gilles Marcel Ferru, Serge Bardy
  • Patent number: 6165860
    Abstract: There is provided a method of fabricating a semiconductor device, including the steps of, in sequence, (a) partially forming a buried layer in a semiconductor substrate and also forming an epitaxial layer on the buried layer, (b) forming a collector region in the epitaxial layer by selectively introducing impurities into the epitaxial layer so that the collector region reaches the buried layer, (c) forming an insulating film on the epitaxial layer, (d) forming a polysilicon film on the insulating film, (e) patterning the polysilicon film to form a base electrode, (f) forming an interlayer insulating film over the base electrode and the insulating film, (g) patterning both the interlayer insulating film and the base electrode to form a base opening at a region at which a base region is to be formed and a collector opening above the collector region, (h) side-etching portions of the insulating film located below the base electrode to form undercut hollow portions in the insulating film, (i) filling the undercut
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: December 26, 2000
    Assignee: NEC Corporation
    Inventor: Takeshi Watanabe
  • Patent number: 6140170
    Abstract: Complementary vertical bipolar and DMOS devices are formed in a single substrate with fully isolated wells and retrograde well doping. The retrograde well doping results from a process in which the complementary wells are formed in a silicon substrate and heavily doped collector regions formed at the surface. The wafer is then inverted and the backside of the wafer ground away exposing the retrograde doped wells. With appropriate well doping complementary IGBT devices can be integrated with bipolar and/or DMOS devices in the same substrate. Trench technology is used for isolation.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: October 31, 2000
    Assignee: Lucent Technologies Inc.
    Inventor: Muhammed Ayman Shibib
  • Patent number: 6077753
    Abstract: The present invention relates to a vertical bipolar power transistor primarily intended for radio frequency applications and to a method for manufacturing the bipolar power transistor. The power transistor comprises a substrate (13), a collector layer (15) of a first conductivity type on the substrate, a base (19) of a second conductivity type electrically connected to the collector layer, an emitter (21) of the first conductivity type electrically connected to the base, the base and the emitter each being electrically connected to a metallic interconnecting layer (31,33), the interconnecting layers (31,33) being at least in parts separated from the collector layer (15) by an insulation oxide (17). According to the invention the power transistor substantially comprises a field shield (25) electrically connected to the emitter, and located between the metallic interconnecting layer of the base and the insulation oxide.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: June 20, 2000
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: Ted Johansson, Larry Clifford Leighton
  • Patent number: 5976940
    Abstract: In a semiconductor device comprising a first bipolar transistor and a second bipolar transistor having different voltages formed on a semiconductor substrate made by forming an epitaxial layer on a silicon substrate, in an upper part of the silicon substrate the first bipolar transistor has an N.sup.+ -type first embedded diffusion layer having an impurity concentration higher than that of the epitaxial layer and the second bipolar transistor has an N-type second embedded diffusion layer having a lower impurity concentration and a deeper diffusion layer depth than the first embedded diffusion layer, whereby a high speed bipolar transistor and a high voltage bipolar transistor are formed on the same substrate.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: November 2, 1999
    Assignee: Sony Corporation
    Inventors: Takayuki Gomi, Hiroaki Ammo
  • Patent number: 5915186
    Abstract: In a semiconductor device manufacturing method for forming first and second bipolar transistors on a semiconductor substrate 1, a link base layer 5 for connecting a graft base layer (graft base layer 8) of the first bipolar transistor and an intrinsic base layer 12 to each other, and at least a part of a base layer 6 of the second bipolar transistor are formed simultaneously with each other, and then the link base layer 5 in a region where the intrinsic base layer 12 will be formed is removed by an etching treatment, and then by a selective epitaxial growth method, the intrinsic base layer 12 is formed in the region where the link base layer 5 is removed.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: June 22, 1999
    Assignee: Sony Corporation
    Inventor: Takayuki Gomi
  • Patent number: 5893743
    Abstract: A process for forming a first bipolar transistor having a single polysilicon structure and a second bipolar transistor having a single polysilicon structure and being of a conducting type opposite to that of the first bipolar transistor on the same substrate. In the process of fabricating a semiconductor device in which a first bipolar transistor having a single polysilicon structure, a second bipolar transistor having a single polysilicon structure and being of a conducting type opposite to that of the first bipolar transistor, and a third bipolar transistor having a double polysilicon structure are provided on the same semiconductor substrate, a base contact portion of the first bipolar transistor and an emitter of the second bipolar transistor are formed in the same step, and an emitter of the first bipolar transistor and base contact portions of the second and third bipolar transistors are formed in the same step.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: April 13, 1999
    Assignee: Sony Corporation
    Inventors: Takayuki Gomi, Hiroaki Ammo
  • Patent number: 5885880
    Abstract: A semiconductor device is provided in which a vertical NPN transistor and a vertical PNP transistor electrically isolated from each other are formed on a p-type semiconductor substrate. An n-type buried separating region of the vertical PNP transistor is formed by high-energy ion implantation after formation of the n.sup.+ type buried collector region of the vertical NPN transistor, and a p.sup.+ type buried collector region of the vertical PNP transistor is formed subsequently to formation of an n-type epitaxial layer and a device separating region whereby the thickness of the n-type epitaxial layer is optimized to a required minimum value. A method for producing a semiconductor device is also provided in which a first vertical bipolar transistor of a first conductivity type and a second vertical bipolar transistor of a second conductivity type, electrically isolated from each other, are formed on a semiconductor substrate having a pre-set conductivity type.
    Type: Grant
    Filed: September 15, 1995
    Date of Patent: March 23, 1999
    Assignee: Sony Corporation
    Inventor: Takayuki Gomi
  • Patent number: 5886395
    Abstract: To obtain both the highest possible maximum operating frequency f.sub.max and early voltage V.sub.A, a semiconductor device provided with a bipolar transistor including a collector region, a base region formed on the collector region, an emitter region formed in contact with the base region, a base leading electrode connected to the base region, and an emitter electrode connected to the emitter region, is characterized in that a ratio Q.sub.B /N.sub.c of base Gunmel number Q.sub.B to impurity concentration N.sub.C of the collector region of the bipolar transistor lies within a range from 0.2.times.10.sup.-3 cm to 2.5.times..sup.-3 cm.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: March 23, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Katsumata, Chihiro Yoshino, Kazumi Inoh
  • Patent number: 5830799
    Abstract: To form NPN and PNP transistors on the same base for example to obtain a complementary bipolar transistor it has been necessary to make an epitaxial layer a thick film, and this has resulted in deterioration of the characteristics of the NPN transistor. Also, because a step of forming an alignment mark has been necessary this has increased the number of manufacturing steps needed to make a complementary bipolar transistor. This invention provides a semiconductor device manufacturing method which solves this problem as follows: After a first opening 13 (alignment mark 16) and a second opening 14 are formed in an insulating film 12 formed on a semiconductor base 11 and a doping mask 15 is then formed on the semiconductor base 11, a third opening 17 is formed thereon with the alignment mark 16 as a reference.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: November 3, 1998
    Assignee: Sony Corporation
    Inventors: Hiroaki Ammo, Shigeru Kanematsu, Takayuki Gomi
  • Patent number: 5807780
    Abstract: A fabrication process for dielectrically isolated high frequency complementary analog bipolar and CMOS transistors. Polysilicon extrinsic bases, polysilicon emitters with sidewall spacers formed after intrinsic base formation provides high current gain, large emitter-to-base breakdown voltage, large Early voltage, and high cutoff frequency.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 15, 1998
    Assignee: Harris Corporation
    Inventors: Christopher K. Davis, George Bajor, James D. Beasom, Thomas L. Crandell, Taewon Jung, Anthony L. Rivoli
  • Patent number: 5759902
    Abstract: Process for making an integrated-circuit (IC) chip with junction-isolated complementary bipolar transistors, and novel chip made by such process. P-type dopant is implanted and diffused in an N-type substrate to form a sub-collector for a pnp transistor and also is implanted and diffused in the substrate to form a P-well for the sub-collector of an npn transistor. N-type material is then implanted and diffused into the P-well to form the npn sub-collector, and also is implanted in the substrate to form part of an isolation wall for the pnp transistor. A P-type epitaxial (epi) layer is grown over the N-type substrate. N-type material is implanted and diffused in the epi layer to complete the isolation wall for the pnp transistor, and to form the collector for the npn transistor. P-type and N-type material is implanted and diffused in the P-type epi layer to form the bases and emitters for the npn and pnp transistors.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: June 2, 1998
    Assignee: Analog Devices, Incorporated
    Inventors: Jerome F. Lapham, Brad W. Scharf
  • Patent number: 5641691
    Abstract: A method is described for fabricating a complementary, vertical bipolar semiconducting structure. An N+ silicon island and a P+ silicon island separated by a first oxide layer are formed on a sapphire substrate. An NPN junction device is formed on the N+ silicon island by epitaxially growing an N-type silicon layer on the N+ silicon island. Then, a P region is created in the N-type silicon layer. An N+ region created in the P region completes the NPN junction device. Similarly, a PNP junction device is formed by epitaxially growing a P-type silicon layer on the P+ silicon island. Then, an N region is created in the P-type silicon layer. A P+ region created in the N region completes the PNP junction device.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: June 24, 1997
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eric N. Cartagena, Howard W. Walker
  • Patent number: 5629219
    Abstract: A hole in the site for the emitter layer of the npn transistor of a complementary bipolar transistor is made in a step independent from a step of making a hole in the site for the emitter layer of the pnp transistor, and an n.sup.+ -type polycrystalline Si film doped with an n-type impurity upon being made is used to make the emitter electrode of the npn transistor. Independently from this step, a p.sup.+ -type polycrystalline Si film doped with a p-type impurity upon being made is used to make the emitter electrode of the pnp transistor. The n-type impurity diffusing from the emitter electrode makes an n.sup.+ -type emitter layer of the npn transistor, whereas the p-type impurity diffusing from the emitter electrode makes a p.sup.+ -type emitter layer of the pnp transistor. Thus the method can produce complementary bipolar transistors with a higher performance, and is suitable for combination with a process for fabricating sub-half-micron bipolar CMOSs.
    Type: Grant
    Filed: August 29, 1995
    Date of Patent: May 13, 1997
    Assignee: Sony Corporation
    Inventor: Hiroyuki Miwa