Having Stacked Capacitor Structure (e.g., Stacked Trench, Buried Stacked Capacitor, Etc.) Patents (Class 438/387)
  • Patent number: 7947553
    Abstract: A method for fabricating a semiconductor device includes forming a first recess in a substrate, forming a plasma oxide layer over the substrate including first recess, etching the plasma oxide layer to have a portion of the plasma oxide layer remain on sidewalls of the first recess, and forming a second recess by isotropically etching a bottom portion of the first recess, wherein the second recess has a width greater than a width of the first recess.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 24, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Myung-Ok Kim
  • Publication number: 20110117718
    Abstract: A method of forming a semiconductor device includes forming a hole in an insulating film, forming a first conductive film in the hole, removing at least a portion of the insulating film around the first conductive film, and reducing a thickness of the first conductive film to produce a second conductive film.
    Type: Application
    Filed: November 30, 2009
    Publication date: May 19, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Yoshitaka Nakamura, Takahiro Suzuki, Kazuo Nomura, Keisuke Otsuka
  • Patent number: 7943474
    Abstract: A method for forming a memory device is provided by first forming at least one trench in a semiconductor substrate. Next, a lower electrode is formed in the at least one trench, and thereafter a conformal dielectric layer is formed on the lower electrode. An upper electrode is then formed on the conformal dielectric layer. The forming of the upper electrode may include a conformal deposition of metal nitride layer, and a non-conformal deposition of an electrically conductive material atop the metal nitride layer, in which the electrically conductive material encloses the at least one trench.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Keith Kwong Hon Wong, Mahender Kumar
  • Patent number: 7939872
    Abstract: A multi-dielectric film including at least one first dielectric film that is a composite film made of zirconium-hafnium-oxide and at least one second dielectric film that is a metal oxide film made of amorphous metal oxide. Adjacent ones of the dielectric films are made of different materials.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Cheol Lee, Sang-Yeol Kang, Ki-Vin Lim, Hoon-Sang Choi, Eun-Ae Chung
  • Publication number: 20110092044
    Abstract: A method for manufacturing capacitor lower electrodes includes a dielectric layer, a first silicon nitride layer and a hard mask layer; partially etching the hard mask layer, the first silicon nitride layer and the dielectric layer to form a plurality of concave portions; depositing a second silicon nitride layer onto the hard mask layer and into the concave portions; partially etching the second silicon nitride layer, the hard mask layer and the dielectric layer to form a plurality of trenches; forming a capacitor lower electrode within each trench and partially etching the first silicon nitride layer, the second silicon nitride layer, the dielectric layer and the capacitor lower electrodes to form an etching area; and etching and removing the dielectric layer from the etching area, thereby a periphery of each capacitor lower electrode is surrounded and attached to by the second silicon nitride layer.
    Type: Application
    Filed: February 3, 2010
    Publication date: April 21, 2011
    Applicant: INOTERA MEMORIES, INC.
    Inventors: SHIN-BIN HUANG, TZUNG-HAN LEE, CHUNG-LIN HUANG
  • Patent number: 7927959
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 19, 2011
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Patent number: 7919385
    Abstract: A semiconductor device includes a first insulating layer, a capacitor, an adhesive layer, and an intermediate layer. The first insulating layer may include a first insulating film. The first insulating layered structure has a first hole. The capacitor is disposed in the first hole. The capacitor may include bottom and top electrodes and a capacitive insulating film. The capacitive insulating film is sandwiched between the bottom and top electrodes. The adhesive layer contacts with the bottom electrode. The adhesive layer has adhesiveness to the bottom electrode. The intermediate layer is interposed between the adhesive layer and the first insulating film. The intermediate layer contacts with the adhesive layer and with the first insulating film. The intermediate layer has adhesiveness to the adhesive layer and to the first insulating film.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: April 5, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Yoshitaka Nakamura
  • Patent number: 7915133
    Abstract: A method of forming a ring-type capacitor is provided. The method includes providing a substrate; forming a patterned mask layer on the substrate, the patterned mask layer defining a ring pattern; removing the substrate by using the patterned mask layer as a mask to form a ring-type trench in the substrate; the ring-type trench including an inner wall and an outer wall; and forming a capacitor structure on the inner wall and the outer wall of the ring-type trench.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 29, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Kuo-Yao Cho, Wen-Bin Wu, Chiang-Lin Shih, Jen-Jui Huang
  • Patent number: 7906832
    Abstract: The semiconductor device according to the present invention includes a plurality of capacitance elements. Each capacitance element has a structure obtained by holding a capacitance film made of an insulating material between first and second electrodes made of a metallic material. The first and second electrodes are so arranged as to partially overlap each other while relatively positionally deviating from each other in a direction orthogonal to the opposed direction thereof. The plurality of capacitance elements are stacked in the opposed direction.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 15, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Publication number: 20110057240
    Abstract: A semiconductor device includes a plurality of conduction plugs disposed on an active region, a bit line connected to a conduction plug of the plurality of conduction plugs which is disposed in a central portion of the active region, and storage nodes connected with conduction plugs of the plurality of conduction plugs which are disposed at both peripherals of the active region and passing over the active region.
    Type: Application
    Filed: June 25, 2010
    Publication date: March 10, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hyung Jin Park
  • Patent number: 7883906
    Abstract: The use of a conductive bidimensional perovskite as an interface between a silicon, metal, or amorphous oxide substrate and an insulating perovskite deposited by epitaxy, as well as an integrated circuit and its manufacturing process comprising a layer of an insulating perovskite deposited by epitaxy to form the dielectric of capacitive elements having at least an electrode formed of a conductive bidimensional perovskite forming an interface between said dielectric and an underlying silicon, metal, or amorphous oxide substrate.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 8, 2011
    Assignees: STMicroelectronics S.A., Universite Francois Rabelais
    Inventors: Ludovic Goux, Monique Gervais
  • Patent number: 7880268
    Abstract: A method for forming a MIM-type capacitor by filling of trenches by conformal depositions of insulating materials and of conductive materials, two successive electrodes of the capacitor including on either side of a thin vertical insulating layer at least one conductive layer of same nature, including the step of lowering the level of the conductive layers with respect to the level of the insulating layer separating them.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: February 1, 2011
    Assignee: STMicroelectronics S.A.
    Inventors: Sébastien Cremer, Cédric Perrot, Claire Richard
  • Patent number: 7880241
    Abstract: A gate electrode structure is provided, which includes, from bottom to top, an optional, yet preferred metallic layer, a Ge rich-containing layer and a Si rich-containing layer. The sidewalls of the Ge rich-containing layer include a surface passivation layer. The inventive gate electrode structure serves as a low-temperature electrically activated gate electrode of a MOSFET in which the materials thereof as well as the method of fabricating the same are compatible with existing MOSFET fabrication techniques. The inventive gate electrode structure is electrically activated at low processing temperatures (on the order of less than 750° C.). Additionally, the inventive gate electrode structure also minimizes gate-depletion effects, does not contaminate a standard MOS fabrication facility and has sufficiently low reactivity of the exposed surfaces that renders such a gate electrode structure compatible with conventional MOSFET processing steps.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Stephen W. Bedell, Keith E. Fogel, Devendra K. Sadana
  • Patent number: 7871892
    Abstract: A method for fabricating a buried capacitor structure includes: laminating a first dielectric layer having a capacitor embedded therein with a second dielectric layer to bury the capacitor therebetween; forming a first circuit pattern on a first metal layer of the first dielectric layer and a second circuit pattern on a second metal layer of the second dielectric layer; depositing a first insulating layer and a second insulating layer on the first metal layer and the second metal layer, respectively; electrically connecting a positive electrode end and a negative electrode end of the capacitor to the second metal layer by a positive through-hole and a negative through-hole, thereby manufacturing the buried capacitor structure.
    Type: Grant
    Filed: June 7, 2009
    Date of Patent: January 18, 2011
    Assignee: Kinsus Interconnect Technology Corp.
    Inventors: Chien-Wei Chang, Ting-Hao Lin, Ya-Hsiang Chen, Yu-Te Lu
  • Patent number: 7871889
    Abstract: A capacitor includes a lower electrode, a first dielectric layer formed over the lower electrode, a second dielectric layer formed over the first dielectric layer, wherein the second dielectric layer includes an amorphous high-k dielectric material, a third dielectric layer formed over the second dielectric layer, and an upper electrode formed over the third dielectric layer.
    Type: Grant
    Filed: December 30, 2007
    Date of Patent: January 18, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong-Bum Park
  • Patent number: 7863128
    Abstract: A memory device may include a substrate, a first dielectric layer formed over the substrate and a charge storage element formed over the first dielectric layer. The memory device may also include a second dielectric layer formed over the charge storage element and a third dielectric layer formed over the second dielectric layer. The third dielectric layer may have a high dielectric constant and may be deposited at a relatively high temperature. A control gate may be formed over the third dielectric layer.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: January 4, 2011
    Assignees: Spansion LLC, GLOBALFOUNDRIES, Inc.
    Inventors: Joong Jeon, Takashi Whitney Orimoto, Robert B. Ogle, Harpreet Sachar, Wei Zheng
  • Patent number: 7863130
    Abstract: System and method for creating stressed polycrystalline silicon in an integrated circuit. A preferred embodiment includes manufacturing an integrated circuit, including forming a trench in an integrated circuit substrate, forming a cavity within the integrated circuit substrate, wherein the cavity is linked to the trench, depositing a dielectric layer within the cavity, and depositing polycrystalline silicon over the dielectric layer, wherein an inherent stress is induced in the polycrystalline silicon that grows on the dielectric layer. The dielectric layer may be, for example, silicon aluminum oxynitride (SiAlON), mullite (3Al2O3.2SiO2), and alumina (Al2O3).
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: January 4, 2011
    Assignee: Infineon Technologies AG
    Inventors: Matthias Hierlemann, Chandrasekhar Sarma
  • Publication number: 20100330771
    Abstract: Structures and methods of forming moisture barrier capacitor on a semiconductor component are disclosed. The capacitor is located on the periphery of a semiconductor chip and includes an inner plate electrically connected to a voltage node, an outer plate with fins for electrically connecting to a different voltage node.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Inventors: Hans-Joachim Barth, Helmut Horst Tews
  • Patent number: 7838333
    Abstract: The present invention discloses an electronic device package and a method of the package. In particular, an electronic device package and a method of the package suitable for a bumpless electronic device package with enhanced electrical performance and heat-dissipation efficiency are disclosed. The method comprises: providing a substrate having a plurality of vias and a plurality of electronic devices; forming a gluing layer on a surface of the substrate and fixing the electronic devices on the gluing layer, wherein the electronic devices have I/O units aligned with the vias respectively; forming a plurality of fixing layers in the gaps between the electronic devices; trenching a plurality of openings aligned with the vias respectively in the fixing layer; forming a plurality of metallic conductive units in the vias, the openings and part of the surface of the substrate; and forming a passivation layer over the other surface of the substrate.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 23, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Shou-Lung Chen, Ching-Wen Hsiao, Yu-Hua Chen, Jeng-Dar Ko, Jyh-Rong Lin
  • Patent number: 7838381
    Abstract: The present teachings relate to a method of forming a container capacitor structure on a substrate. In one embodiment, the method comprises etching a recess in the substrate, depositing a first conductive layer on the substrate so as to overlie the substrate and the recess, depositing a filler layer so as to overlie the first conductive layer and fill the recess, and etching the first and second conductive layers so as to define a lower electrode within the recess. The method further comprises forming a cap layer on the lower electrode so as to overlie the first conductive layer and the filler layer and etching at least a portion of the substrate away from the lower electrode to thereby at least partially isolate the lower electrode. Subsequently, the remainder of the capacitor structure may be formed by depositing a dielectric layer on the lower electrode and depositing a second conductive layer on the dielectric layer so as to form an upper electrode.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Scott Meikle
  • Patent number: 7829410
    Abstract: Some embodiments include methods of forming capacitors. A first section of a capacitor may be formed to include a first storage node, a first dielectric material, and a first plate material. A second section of the capacitor may be formed to include a second storage node, a second dielectric material, and a second plate material. The first and second sections may be formed over a memory array region, and the first and second plate materials may be electrically connected to first and second interconnects, respectively, that extend to over a region peripheral to the memory array region. The first and second interconnects may be electrically connected to one another to couple the first and second plate materials to one another. Some embodiments include capacitor structures, and some embodiments include methods of forming DRAM arrays.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: November 9, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Todd Jackson Plum
  • Patent number: 7825043
    Abstract: A method for fabricating a capacitor in a semiconductor device includes: forming a bottom electrode; forming a ZrxAlyOz dielectric layer on the bottom electrode using an atomic layer deposition (ALD) method, wherein the ZrxAlyOz dielectric layer comprises a zirconium (Zr) component, an aluminum (Al) component and an oxygen (O) component mixed in predetermined mole fractions of x, y and z, respectively; and forming a top electrode on the ZrxAlyOz dielectric layer.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kee-Jeung Lee
  • Publication number: 20100264456
    Abstract: A capacitor structure in trench structures of a semiconductor device includes conductive regions made of metallic and/or semiconducting materials. The conducting regions are surrounded by a dielectric and form stacked layers in the trench structure of the semiconductor device.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Helmut Strack
  • Patent number: 7816202
    Abstract: A method for fabricating a capacitor includes providing a substrate having a capacitor region is employed, forming a first Ru1?xOx layer over the substrate, forming a Ru layer for a lower electrode over the first Ru1?xOx layer and deoxidizing the first Ru1?xOx layer, forming a dielectric layer over the Ru layer for a lower electrode, and forming a conductive layer for an upper electrode over the dielectric layer, wherein the first Ru1?xOx layer contains oxygen in an amount less than an oxygen amount of a RuO2 layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 19, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kwan-Woo Do, Jae-Sung Roh, Kee-Jeung Lee, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim, Kyung-Woong Park
  • Patent number: 7811895
    Abstract: A stacked capacitor in a memory cell has a bottom electrode made of a metal or metal compound, a capacitor insulation film and a top electrode made of a metal or a metal compound. The capacitor insulation film includes an aluminum oxide film having a thickness of 2 to 4 nm and in contact with the bottom electrode, and an overlying hafnium oxide film having a thickness of 3 to 6 nm. The stacked capacitor has a higher resistance against a biased temperature test.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: October 12, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Shinpei Iijima
  • Patent number: 7807541
    Abstract: Disclosed are embodiments for a container capacitor structure in which at least two container capacitors, e.g., an inner and outer container capacitor, are made concentric and nested with respect to one another. The nested capacitors are formed in one embodiment by defining a hole in a dielectric layer for the nested container capacitors in the vicinity of two capacitor contact plugs. An outer capacitor plate is formed by etching back poly 1 to leave it substantially on the vertical edges of the hole and in contact with one of the plugs. At least one sacrificial sidewall is formed on the poly 1, and poly 2 is deposited over the sidewalls to form an inner capacitor plate in contact with the other plug. The structure is planarized, the sacrificial sidewalls are removed, a capacitor dielectric is formed, and is topped with poly 3. Additional structures such as a protective layer (to prevent poly 1-to-poly 2 shorting) and a conductive layer (to strap the plugs to their respective poly layers) can also be used.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7781297
    Abstract: The present invention discloses a semiconductor device and a method of manufacture thereof. The present invention prevents from leaning or collapsing in the subsequent dip-out process by making the bottom plate of adjacent capacitors to be connected each other and supported each other in patterning the conductive layer for the bottom plate of capacitor.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: August 24, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Publication number: 20100207246
    Abstract: A method of forming an MIM capacitor having interdigitated capacitor plates. Metal and dielectric layers are alternately deposited in an opening in a layer of insulator material. After each deposition of the metal layer, the metal layer is removed at an angle from the side to form the capacitor plate. The side from which the metal layer is removed is alternated with every metal layer that is deposited. When all the capacitor plates have been formed, the remaining opening in the layer of insulator material is filled with dielectric material then planarized, followed by the formation of contacts with the capacitor plates. There is also an MIM capacitor structure having interdigitated capacitor plates.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 19, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger Allen Booth, JR., Kangguo Cheng
  • Patent number: 7776707
    Abstract: A method includes the steps of: forming a first insulation film on a substrate; forming a hole in the first insulation film; forming a lower electrode on a bottom surface and a sidewall surface of the hole; forming a capacitor insulation film on the lower electrode; forming a second conductive layer on the capacitor insulation film; forming a second insulation film on the second conductive layer so that the second insulation film fills a recess corresponding to the hole; forming a resist mask on the second insulation film so that the resist mask covers the recess; patterning the second insulation film by using the resist mask; and patterning the second conductive layer and the capacitor insulation film by using the patterned second insulation film as a hard mask. By dry etching using a hard mask, a dielectric capacitor having a three-dimensionally stacked structure can be formed with a high yield.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: August 17, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Yoshida, Toyoji Ito, Yoshihisa Nagano
  • Patent number: 7763519
    Abstract: A method for fabricating an interconnect arrangement with increased capacitive coupling is described. A trench structure is formed in a first dielectric having a capacitor region with a first aspect ratio and an interconnect region with a second aspect ratio connected thereto. The trench structure of the interconnect region is completely filled by a first interconnect. The trench structure of the capacitor region is only partially filled by a first capacitor electrode and is completely filled by a capacitor dielectric and a second capacitor electrode. In a second dielectric formed thereon, a second interconnect with a contact via is formed, which is connected to the second capacitor electrode.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: July 27, 2010
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Jürgen Holz
  • Patent number: 7763520
    Abstract: A capacitor device includes a substrate, a first conductive structure, a second conductive structure, a dielectric layer structure, and a recess in the substrate. The first and second conductive structures are disposed on opposite sides of the dielectric layer structure, and the dielectric layer structure extends in a meander-shaped manner in a cross-section through the recess.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: July 27, 2010
    Assignee: Infineon Technologies AG
    Inventors: Carsten Ahrens, Raimund Foerg, Klaus Koller, Kai-Olaf Subke
  • Publication number: 20100176486
    Abstract: A semiconductor device includes a memory cell region and a peripheral circuit region. The memory cell region includes a first region and a second region surrounding the first region. The first region includes a plurality of first electrodes, a plurality of first support portions, and a second support portion. The plurality of first electrodes upwardly extends. The plurality of first support portions upwardly extends along the plurality of first electrodes. Each of the plurality of first support portions mechanically supports corresponding one of the plurality of first electrodes. The second support portion contacts with the plurality of the first support portions. The second support portion connects between each of the plurality of first electrodes.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Takashi Miyajima, Shigeru Sugioka, Kazushi Komeda, Takashi Miyamura, Kohei Inoue
  • Patent number: 7755125
    Abstract: A semiconductor device includes a ferroelectric capacitor formed above the lower interlevel insulating film covering a MOS transistor formed on a semiconductor substrate, including lamination of a lower electrode, an oxide ferroelectric film, a first upper electrode made of conductive oxide having a stoichiometric composition AOx1 and an actual composition AOx2, a second upper electrode made of conductive oxide having a stoichiometric composition BOy1 and an actual composition BOy2, where y2/y1>x2/x1, and a third upper electrode having a composition containing metal of the platinum group; and a multilayer wiring structure formed above the lower ferroelectric capacitor, and including interlevel insulating films and wirings. Abnormal growth and oxygen vacancies can be prevented which may occur when the upper electrode of the ferroelectric capacitor is made of a conductive oxide film having a low oxidation degree and a conductive oxide film having a high oxidation degree.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 13, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Wensheng Wang
  • Patent number: 7749854
    Abstract: A self-converged memory material element is created during the manufacture of a memory cell comprising a base layer, with a bottom electrode, and an upper layer having a third, planarization stop layer over the base layer, a second layer over the third layer, and the first layer over the second layer. A keyhole opening is formed through the upper layer to expose the bottom electrode. The first layer has an overhanging portion extending into the opening. A dielectric material is deposited into the keyhole opening so to create a self-converged void within the keyhole opening. An anisotropic etch forms a sidewall of the dielectric material in the keyhole opening with an electrode hole aligned with the void and exposing the bottom electrode. A memory material is deposited into the electrode hole in contact with the bottom electrode and is planarized down to the third layer to create the memory material element.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: July 6, 2010
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang Lan Lung
  • Publication number: 20100151653
    Abstract: A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Covering material is formed over an elevationally outer lateral interface of the conductive material within the trench and the insulative material of the circuitry area. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area and to expose the conductive material within the trench. The conductive material within the array area is incorporated into a plurality of capacitors.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 17, 2010
    Applicant: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Kevin R. Shea, Farrell Good
  • Patent number: 7736527
    Abstract: Siloxane polymer compositions and methods of manufacturing a capacitor are described. In some embodiments, a mold layer pattern is formed on a substrate having a conductive structure, and the mold layer pattern has an opening to expose the conductive structure. A conductive layer is formed on the substrate. A buffer layer pattern is formed on the conductive layer formed in the opening. The buffer layer pattern includes a siloxane polymer represented by the following Chemical Formula 1. The conductive layer is selectively removed to form a lower electrode. The mold layer pattern and the buffer layer pattern are removed. A dielectric layer and an upper electrode are formed on the substrate to form a capacitor. The methods may simplify manufacturing processes for a capacitor and a semiconductor device, and may improve their efficiencies.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: June 15, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Mi Kim, Myung-Sun Kim, Young-Ho Kim
  • Publication number: 20100133654
    Abstract: The present invention relates to a method of producing a semiconductor capacitor, and more particularly, to a method of producing a semiconductor capacitor, in which an electroless plating is performed during the production of a lower electrode to form a lower electrode.
    Type: Application
    Filed: June 23, 2008
    Publication date: June 3, 2010
    Inventors: Hee Han, Kyung-Jun Kim, Byung-Kyu Choi
  • Publication number: 20100117132
    Abstract: A memory device is disclosed, comprising a substrate, and a capacitor with a specific shape along an orientation parallel to a surface of the substrate, wherein the specific shape includes a curved outer edge, a curved inner edge having a positive curvature, a first line and a second line connecting the curved outer edge with the curved inner edge. A word line is coupled to the capacitor. In an embodiment of the invention, the capacitor is a deep trench capacitor with a vertical transistor. In another embodiment of the invention, the capacitor is a stacked capacitor.
    Type: Application
    Filed: April 24, 2009
    Publication date: May 13, 2010
    Applicant: INOTERA MEMORIES, INC.
    Inventors: Hou-Hong Chou, Chien-Sung Chu
  • Patent number: 7713885
    Abstract: The invention includes methods in which one or more components of a carboxylic acid having an aqueous acidic dissociation constant of at least 1×10?6 are utilized during the etch of oxide (such as silicon dioxide or doped silicon dioxide). Two or more carboxylic acids can be utilized. Exemplary carboxylic acids include trichloroacetic acid, maleic acid, and citric acid.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: May 11, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Niraj B. Rana, Kevin R. Shea, Janos Fucsko
  • Patent number: 7713815
    Abstract: A vertical or three-dimensional non-planar configuration for a decoupling capacitor is provided, which significantly reduces the required die area for capacitors of high charge carrier storage capacity. The non-planar configuration of the decoupling capacitors also provides enhanced pattern uniformity during the highly critical gate patterning process.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 11, 2010
    Assignee: GlobalFoundries Inc.
    Inventors: Matthias Lehr, Kai Frohberg, Christoph Schwan
  • Patent number: 7709342
    Abstract: A capacitor and method of manufacturing the same include an insulating interlayer, a lower electrode, a protection structure, a dielectric layer and an upper electrode. The insulating interlayer may include a conductive pattern formed on a substrate. The lower electrode may be electrically connected to the conductive pattern. The protection structure may be formed on an outer sidewall of the cylindrical lower electrode and on the insulating interlayer.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Young Kim, Rak-Hwan Kim, Young-Joo Cho, Won-sik Shin
  • Patent number: 7701002
    Abstract: A semiconductor device includes an isolation layer disposed in a semiconductor device to define an active region. A gate trench is disposed across the active region and extends to the isolation layer. An insulated gate electrode fills a portion of the gate trench and covers at least one sidewall of the active region. A portion of the gate electrode, that covers at least one sidewall of the active region, extends under a portion of the gate electrode that crosses the active region. An insulating pattern is disposed on the gate electrode.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeong-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Young-Woong Son
  • Patent number: 7700433
    Abstract: A method of fabricating an MIM type capacitor includes at least one of: Forming a first trench within an insulating interlayer formed on a semiconductor substrate. Forming a lower electrode layer of a metal nitride layer substance to fill an inside of the first trench. Forming a second trench on a surface of the lower electrode layer to have a depth less than the first trench. Forming a capacitor dielectric layer conformal along a surface of the lower electrode layer including the second trench. Forming an upper electrode layer of a metal nitride layer substance on the capacitor dielectric layer. Sequentially patterning the upper electrode layer and the capacitor dielectric layer by photolithography.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 20, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang-Il Hwang
  • Patent number: 7696041
    Abstract: In a method for fabricating a semiconductor component, a semiconductor substrate comprising a first surface is provided and a shaping matrix is applied to the first surface. The shaping matrix comprises at least one continuous depression arranged in such a way that contact regions in a region of the first surface are at least partly uncovered. A sacrificial layer is applied to sidewalls of the continuous depression in an upper section of the depression, a first electrode is produced by applying a first conductive layer in a lower section of the depression and to the sacrificial layer, and the sacrificial layer is removed in order to uncover the sidewalls of the shaping matrix in the upper section. A dielectric layer is applied to the first conductive layer and a second electrode is formed by applying a second conductive layer to the dielectric layer.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 13, 2010
    Assignee: Qimonda AG
    Inventor: Ulrike Gruening-Von Schwerin
  • Patent number: 7682923
    Abstract: A method of forming a metal trench pattern in a thin-film device includes a step of depositing an electrode film on a substrate or on a base layer, a step of forming a resist pattern layer having a trench forming portion used to make a trench pattern, on the deposited electrode film, a step of forming a metal layer for filling spaces in the trench forming portion and for covering the trench forming portion, by performing plating through the formed resist pattern layer using the deposited electrode film as an electrode, a step of planarizing at least a top surface of the formed metal layer until the trench forming portion of the resist pattern layer is at least exposed, and a step of removing the exposed trench forming portion of the resist pattern layer.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 23, 2010
    Assignee: TDK Corporation
    Inventors: Akifumi Kamijima, Hideyuki Yatsu
  • Patent number: 7682924
    Abstract: A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Covering material is formed over an elevationally outer lateral interface of the conductive material within the trench and the insulative material of the circuitry area. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area and to expose the conductive material within the trench. The conductive material within the array area is incorporated into a plurality of capacitors.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Kevin R. Shea, Farrell Good
  • Patent number: 7678660
    Abstract: A method of manufacturing a capacitor device of the present invention, includes the steps of, forming an insulating layer on a substrate, forming a recess portion in the insulating layer by an imprinting process, forming a lower electrode by filling a metal layer in the recess portion in the insulating layer, forming a photosensitive dielectric layer on the lower electrode, forming an upper electrode on the dielectric layer, and forming a dielectric layer pattern under the upper electrode by exposing/developing the dielectric layer while using the upper electrode as a mask.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: March 16, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Koichi Tanaka
  • Patent number: 7678659
    Abstract: A method for reducing leakage current in a semiconductor capacitor. The method includes providing a top plate for collecting charge, providing a bottom plate for collecting an opposing charge to the top plate, providing a dielectric layer for insulation between the top plate and the bottom plate, providing a top contact, providing a bottom contact, providing a plurality of vias including top level vias for connecting the top plate to the top contact, and bottom level vias for connecting the bottom plate to the bottom contact; and separating a via and an adjacent structure such that their distance is greater than a minimum via spacing requirement of a foundry design rule for a semiconductor process producing the semiconductor capacitor.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 16, 2010
    Assignee: MediaTek Inc.
    Inventors: Chao-Chun Tu, Ming-Chieh Lin
  • Patent number: 7666752
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal compound. After providing a substrate, a first pre-cursor comprising a transition metal compound and a second pre-cursor predominantly comprising at least one of water vapour, ammonia and hydrazine are successively applied on the substrate for forming a first layer of transition metal containing material. In a next step the first pre-cursor and a third pre-cursor comprising at least one of ozone and oxygen are successively applied on the first layer for forming a second layer of the transition metal containing material.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 23, 2010
    Assignee: Qimonda AG
    Inventors: Stephan Kudelka, Lars Oberbeck, Uwe Schroeder, Tim Boescke, Johannes Heitmann, Annette Saenger, Joerg Schumann, Elke Erben
  • Patent number: 7667258
    Abstract: Double-sided container capacitors are formed using sacrificial layers. A sacrificial layer is formed within a recess in a structural layer. A lower electrode is formed within the recess. The sacrificial layer is removed to create a space to allow access to the sides of the structural layer. The structural layer is removed, creating an isolated lower electrode. The lower electrode can be covered with a capacitor dielectric and upper electrode to form a double-sided container capacitor.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Kevin R. Shea, Chris W. Hill, Kevin J. Torek