Using Structure Alterable To Nonconductive State (i.e., Fuse) Patents (Class 438/601)
  • Publication number: 20110140234
    Abstract: A fuse of a semiconductor device comprises: a first insulating film formed over a semiconductor substrate; a conductive pattern formed over the first insulating film; a fuse metal formed over the conductive pattern; a contact plug electrically coupling the conductive pattern and the fuse metal; and an energy absorbent pattern formed in the first insulating film and located below an area where the contact plug and the conductive pattern are interconnected. The fuse of the semiconductor device includes a void and a step difference in the lower portion of the contact connected to the fuse pattern. As a result, an energy of a laser applied in the blowing process is absorbed in the void or the step difference, which does not affect peripheral patterns, thereby preventing defects.
    Type: Application
    Filed: June 15, 2010
    Publication date: June 16, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Yun Ho SHIN
  • Publication number: 20110140235
    Abstract: A semiconductor device include an insulating interlayer formed over a substrate; an electrical fuse which is composed of a first wiring formed in the insulating interlayer, and has a cutting portion; and a second wiring and a third wiring, formed respectively on both sides of the cutting portion to extend along the cutting portion in the same layer as the first wiring. Air gaps formed to extend along the cutting portion are respectively provided between the cutting portion and the second wiring and between the cutting portion and the third wiring.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Noriaki ODA
  • Publication number: 20110127637
    Abstract: Techniques for incorporating nanotechnology into electronic fuse (e-fuse) designs are provided. In one aspect, an e-fuse structure is provided. The e-fuse structure includes a first electrode; a dielectric layer on the first electrode having a plurality of nanochannels therein; an array of metal silicide nanopillars that fill the nanochannels in the dielectric layer, each nanopillar in the array serving as an e-fuse element; and a second electrode in contact with the array of metal silicide nanopillars opposite the first electrode. Methods for fabricating the e-fuse structure are also provided as are semiconductor devices incorporating the e-fuse structure.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Huiming Bu, Keith Kwong Hon Wong
  • Patent number: 7943437
    Abstract: Method of making an electronic fuse blow resistor structure. In one embodiment, the method includes forming an insulator film, depositing a conductor on the insulator film, and after the depositing, etching the conductor to form a plurality of spaced apart non-conductive regions and a plurality of spaced-apart conductive regions. In another embodiment, the method includes forming the insulator film, forming a conductive sheet, and sub-dividing the conductive sheet into the plurality of conductive regions.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Publication number: 20110108946
    Abstract: A fuse of a semiconductor device includes a fuse pattern separated by a blowing region formed on an interlayer insulating film, and a recess formed by removing a portion of the upper portion of a plurality of contacts disposed in the lower portion of the blowing region. After the fuse pattern is blown, the fuse pattern moves in the reliable environment, thereby preventing the electric short to improve yield of the semiconductor device.
    Type: Application
    Filed: June 25, 2010
    Publication date: May 12, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Jin Won PARK
  • Publication number: 20110110064
    Abstract: Integrated circuit die stacks having a first die mounted upon a substrate, the first die manufactured to be initially identical to a second die with a plurality of through silicon vias (‘TSVs’), the first die personalized by blowing fuses on the first die, converting the TSVs previously connected through the blown fuses into pass-through vias (‘PTVs’), each PTV implementing a conductive pathway through the first die with no connection to any circuitry on the first die; and the second die, manufactured to be initially identical to the first die and later personalized by blowing fuses on the second die, the second die mounted upon the first die so that the PTVs in the first die connect signal lines from the substrate through the first die to TSVs in the second die.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jimmy G. Foster, SR., Kyu-Hyoun Kim
  • Patent number: 7935621
    Abstract: Disclosed are embodiments of a circuit and method for electroplating a feature (e.g., a BEOL anti-fuse device) onto a wafer. The embodiments eliminate the use of a seed layer and, thereby, minimize subsequent processing steps (e.g., etching or chemical mechanical polishing (CMP)). Specifically, the embodiments allow for selective electroplating metal or alloy materials onto an exposed portion of a metal layer in a trench on the front side of a substrate. This is accomplished by providing a unique wafer structure that allows a current path to be established from a power supply through a back side contact and in-substrate electrical connector to the metal layer. During electrodeposition, current flow through the current path can be selectively controlled. Additionally, if the electroplated feature is an anti-fuse device, current flow through this current path can also be selectively controlled in order to program the anti-fuse device.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Patent number: 7923307
    Abstract: A method for fabricating a semiconductor with a fuse includes providing a substrate, forming an insulation layer over the substrate, forming a polysilicon hard mask over the insulation layer, forming a first mask pattern to form a fuse over the polysilicon hard mask, and removing the polysilicon hard mask exposed by the first mask pattern to form a portion of the polysilicon hard mask into a polysilicon fuse.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Buem-Suck Kim
  • Publication number: 20110073986
    Abstract: Provided is a semiconductor integrated circuit device including fuse elements for carrying out laser trimming processing, in which a space width between aluminum interconnects of the first layer to be connected to the adjacent fuse elements is set to less than twice of the thickness of the side wall of the metal interlayer insulating film of the first layer, thereby preventing exposure of the SOG layer having hygroscopic property. In addition, side spacers are provided to side surfaces of the aluminum interconnects of the first layer.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 31, 2011
    Inventors: Yukimasa Minami, Masaru Akino
  • Publication number: 20110068432
    Abstract: A semiconductor device comprises a fuse having a blowing region at a center part for selectively connecting different two terminals; and a dummy contact positioned under the blowing region for forming empty space by being removed together with the blowing region in a blowing process.
    Type: Application
    Filed: December 28, 2009
    Publication date: March 24, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventors: Kyu Tae Kim, Ki Soo Choi
  • Patent number: 7910469
    Abstract: An electrical circuit containing a substrate having thereon a receptive layer, wherein the receptive layer has a conductive polymer impregnated in the receptive layer, and a method for forming the electrical circuit.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: March 22, 2011
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Katsura Hirai
  • Publication number: 20110057290
    Abstract: A fuse of a semiconductor device comprises: a fuse pattern formed on a semiconductor substrate; an insulating film covering one side of the fuse pattern and including a trench; a conductive line disposed on the insulating film including the trench. The fuse of the semiconductor device prevents generation of cracks in a fuse box by thermal and physical stress, thereby improving reliability of the semiconductor device.
    Type: Application
    Filed: July 11, 2010
    Publication date: March 10, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Dong Hee HAN
  • Patent number: 7888771
    Abstract: An electronic fuse (“E-fuse”) has a silicide filament link extending along a gap between polysilicon structures formed on a silicon substrate. The silicide filament link extends across diffusions formed in the gap. A P-N junction between terminals of the E-fuse provides high resistivity after programming (fusing) the silicide filament link.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: February 15, 2011
    Assignee: Xilinx, Inc.
    Inventors: Lakhbeer Singh Sidhu, Srikanth Sundararajan, Michael J. Hart
  • Publication number: 20110032025
    Abstract: A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William R. Tonti, Wayne S. Berry, John A. Fifield, William H. Guthrie, Richard S. Kontra
  • Publication number: 20110024873
    Abstract: A semiconductor device having a fuse region, the fuse region includes a conductive pattern and a fuse box formed to partially expose the conductive pattern which have an inclined edge on a bottom surface.
    Type: Application
    Filed: July 6, 2010
    Publication date: February 3, 2011
    Inventor: Kyung-Jin LEE
  • Publication number: 20110024872
    Abstract: A fuse of a semiconductor device includes first fuse metals formed over an underlying structure and a second fuse metal formed between the first fuse metals. Accordingly, upon blowing, the fuse metals are not migrated under conditions, such as specific temperature and specific humidity. Thus, reliability of a semiconductor device can be improved.
    Type: Application
    Filed: December 17, 2009
    Publication date: February 3, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hyung Kyu KIM
  • Publication number: 20110018091
    Abstract: A method of forming a programmable fuse structure includes forming at least one shallow trench isolation (STI) in a substrate, forming an e-fuse over the at least one STI and depositing an interlevel dielectric (ILD) layer over the e-fuse. Additionally, the method includes removing at least a portion of the at least one STI under the e-fuse to provide an air gap below a portion of the e-fuse and removing at least a portion of the ILD layer over the e-fuse to provide the air gap above the portion of the e-fuse.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 27, 2011
    Applicant: International Business Machines Corporation
    Inventors: Karl W. Barth, Jeffrey P. Gambino, Tom C. Lee, Kevin S. Petrarca
  • Patent number: 7872327
    Abstract: A semiconductor integrated circuit device has: a layer insulating film formed on a semiconductor substrate; a fuse portion which is configured by an uppermost metal wiring layer that is formed on the layer insulating film; an inorganic insulating protective film which is formed on the metal wiring layer and the layer insulating film; and an organic insulating protective film which is formed on the inorganic insulating protective film. An opening is formed in the organic insulating protective film so that the inorganic insulating protective on the fuse portion is exposed. According to this configuration, it is not required to etch away the layer insulating film in order to form an opening above the fuse portion. Therefore, the time period required for forming the opening can be shortened and the whole production time period can be shortened.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Katsuhiko Tsuura
  • Patent number: 7867832
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Patent number: 7867886
    Abstract: A method, in a complementary metal oxide semiconductor fabrication process, of creating a layered housing containing a micro-electromechanical system device, the method comprising the steps of providing a cavity in at least one layer of the housing, the cavity being accessible through via holes in a layer of insulating material deposited thereon, and the layer of insulating material being covered by a thin film layer of conductive material. The method further comprises the step of hydrophobically treating at least a portion of the inner surface of the cavity. Finally the method comprises the steps of submerging the wafer in an electroplating solution and electroplating a conductive layer onto the thin film layer of conductive material such that the cavity remains free of electroplating solution.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 11, 2011
    Assignee: Cavendish Kinetics, Ltd
    Inventors: Charles Gordon Smith, Robertus P. Van Kampen
  • Publication number: 20110001213
    Abstract: A fuse part for a semiconductor device includes an insulation layer configured to cover a conductive pattern over a substrate, a dual fuse configured to include a first pattern and a second pattern that are positioned on the same line over the insulation layer and spaced apart from each other by a certain distance, a protective layer configured to cover the dual fuse and include a first fuse box and a second fuse box that partially expose the first pattern and the second pattern, respectively, and a plurality of plugs configured to penetrate the insulation layer and electrically connect the first and second patterns to the conductive pattern. Herein, the plugs are positioned beneath the first and second fuse boxes.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 6, 2011
    Inventor: Byoung-Hwa You
  • Publication number: 20110001211
    Abstract: Provided is a fuse of a semiconductor device that includes a Y type fuse and an insulation layer configured to expose the Y type fuse such that an exposed portion of the Y type fuse has a substantially ‘V’ shape. According to the present invention, metal crack is prevented from occurring in a Y type fuse under a high temperature and high humidity condition of a reliability test so that the reliability and competitiveness of semiconductor devices can be improved.
    Type: Application
    Filed: December 17, 2009
    Publication date: January 6, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Byung Wook BAE
  • Publication number: 20110001210
    Abstract: A fuse part in a semiconductor device includes a conductive pattern formed over a substrate, wherein the conductive pattern includes a blowing part and a pad part, making contact with both sides of the blowing part and having a larger thickness than that of the blowing part, a protection layer formed over the substrate having the conductive pattern, and a fuse box formed in the protection layer located on an upper portion of the blowing part, wherein a portion of the protection layer maintains a certain thickness over the blowing part.
    Type: Application
    Filed: December 17, 2009
    Publication date: January 6, 2011
    Inventor: Weon-Chul Jeon
  • Publication number: 20110001212
    Abstract: A fuse of a semiconductor device includes a plurality of first conductive patterns, and a plurality of second conductive patterns filling spaces between the first conductive patterns and formed of a material which has a greater specific resistance than the first conductive patterns.
    Type: Application
    Filed: June 28, 2010
    Publication date: January 6, 2011
    Inventor: Buem-Suck KIM
  • Patent number: 7863177
    Abstract: The present invention relates to a fuse in a semiconductor device and method for fabricating the same. An oxide film is formed on sidewalls of a barrier metal layer in a bottom portion of a fuse pattern, thereby preventing the barrier metal layer from being exposed. As a result, the oxidation of the barrier metal layer is inhibited to improve characteristics of the device.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 4, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jeong Soo Kim, Won Ho Shin
  • Publication number: 20100327402
    Abstract: The present invention provides a technology capable of improving an operation reliability of a semiconductor device. Particularly, a fuse material which constitutes the copper can be prevented from migrating being locked in the recesses or the grooves after a blowing process. A semiconductor device includes an insulating layer including a concave-convex-shaped upper part; and a fuse formed on the insulating layer.
    Type: Application
    Filed: December 30, 2009
    Publication date: December 30, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hyung Kyu KIM
  • Publication number: 20100327399
    Abstract: An electrically programmable fuse that includes an anode contact region and a cathode contact region are formed of a polysilicon layer having a silicide layer formed thereon, and a fuse link conductively connecting the cathode contact region with the anode contact region, which is programmable by applying a programming current, and a plurality of anisometric contacts formed on the silicide layer of the cathode contact region or on both the silicide layer of the cathode contact region and the anode contact region in a predetermined configuration, respectively.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: International Business Machines Corporation
    Inventors: CHANDRASEKHARAN KOTHANDARAMAN, DAN MOY, NORMAN W. ROBSON, JOHN M. SAFRAN
  • Publication number: 20100320561
    Abstract: According to one exemplary embodiment, a method for forming a one-time programmable metal fuse structure includes forming a metal fuse structure over a substrate, the metal fuse structure including a gate metal segment situated between a dielectric segment and a polysilicon segment, a gate metal fuse being formed in a portion of the gate metal segment. The method further includes doping the polysilicon segment so as to form first and second doped polysilicon portions separated by an undoped polysilicon portion where, in one embodiment, the gate metal fuse is substantially co-extensive with the undoped polysilicon portion. The method can further include forming a first silicide segment on the first doped polysilicon portion and a second silicide segment on the second doped polysilicon portion, where the first and second silicide segments form respective terminals of the one-time programmable metal fuse structure.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Applicant: BROADCOM CORPORATION
    Inventors: Wei Xia, Xiangdong Chen, Akira Ito
  • Patent number: 7838358
    Abstract: An upper electrode of a capacitor has a two-layer structure of first and second upper electrodes. A gate electrode of a MOS field effect transistor and a fuse are formed by patterning conductive layers used to form the lower electrode, first upper electrode and second upper electrode of the capacitor. In forming a capacitor and a fuse on a semiconductor substrate by a conventional method, at least three etching masks are selectively used to pattern respective layers to form the capacitor and fuse before wiring connection. The number of etching masks can be reduced in manufacturing a semiconductor device having capacitors, fuses and MOS field effect transistors so that the number of processes can be reduced and it becomes easy to improve the productivity and reduce the manufacture cost.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: November 23, 2010
    Assignee: Yamaha Corporation
    Inventor: Masayoshi Omura
  • Patent number: 7833844
    Abstract: A disclosed method of producing a semiconductor device includes the steps of (A) forming a gate electrode and a trimming fuse on a semiconductor substrate; (B) forming a side wall insulating film covering the gate electrode and the trimming fuse; (C) forming a conductive film on the side wall insulating film and patterning the conductive film to form an etching stop layer and a resistance element; (D) forming a side wall on the sides of the gate electrode; (E) repeating, one or more times, sub-steps of forming an interlayer insulating film and of forming an upper wiring layer, and then forming a passivation film; (F) removing the passivation film and the interlayer insulating film in the trimming opening forming area until the etching stop layer is exposed; and (G) forming the trimming opening by removing the etching stop layer in the trimming opening forming area.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 16, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasunori Hashimoto
  • Publication number: 20100279500
    Abstract: A semiconductor device having increased reliability includes a fuse region and a monitoring region. Fuses are located on an insulation film in the fuse region and are exposed through fuse windows. A monitoring pattern is located on the insulation film in the monitoring region. The monitoring pattern includes sub-patterns that are exposed through a monitoring window.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Inventor: MYOUNG-HEE HAN
  • Publication number: 20100270662
    Abstract: A polysilicon resistor fuse has an elongated bow-tie body that is wider at the opposite ends relative to a narrow central portion. The opposite ends of the body of the fuse have high concentrations of N-type dopants to make them low resistance contacts. The upper portion of the central body has a graded concentration of N-type dopants that decreases in a direction from the top surface toward the middle of the body between the opposite surfaces. The lower central portion of the body is lightly doped with P-type dopants. The central N-type region is a resistive region.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Inventors: Nickole Gagne, Paul Fournier, Daniel Gagne
  • Patent number: 7820493
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: October 26, 2010
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7816246
    Abstract: Fuses for integrated circuits and semiconductor devices and methods for using the same. The semiconductor fuse contains two conductive layers, an overlying and underlying refractory metal nitride layer, on an insulating substrate. The semiconductor fuse may be fabricated during manufacture of a local interconnect structure including the same materials. The fuse, which may be used to program redundant circuitry, may be blown by electrical current rather than laser beams, thus allowing the fuse width to be smaller than prior art fuses blown by laser beams. The fuse may also be blown by less electrical current than the current required to blow conventional polysilicon fuses having similar dimensions.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: October 19, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Zhongze Wang, Michael P. Violette, Jigish Trivedi
  • Publication number: 20100258902
    Abstract: A method for forming a fuse in a semiconductor device is disclosed. The method for forming the fuse in the semiconductor device forms an interlayer insulating layer when forming a fuse, and forms neighboring metal lines having different thicknesses using a zigzag-opened mask, thus preventing a neighboring fuse of a fuse to be blown from being damaged. A method for manufacturing the semiconductor device deposits a first interlayer insulating layer on a semiconductor substrate, patterns the first interlayer insulating layer using a zigzag-opened pad type mask such that the first interlayer insulating layer has different step heights where the same step height is arranged at every second step height location, deposits a second interlayer insulating layer, patterns the second interlayer insulating layer, and buries a metal on an entire surface, and planarizes the metal until the second interlayer insulating layer is exposed, thus forming a metal pattern.
    Type: Application
    Filed: December 22, 2009
    Publication date: October 14, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Mi Hyeon JO
  • Publication number: 20100240210
    Abstract: A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 23, 2010
    Applicant: SPANSION L.L.C.
    Inventors: Wei ZHENG, Jean YANG, Mark RANDOLPH, Ming KWAN, Yi HE, Zhizheng LIU, Meng DING
  • Patent number: 7799617
    Abstract: A semiconductor device includes an etching protection layer to protect a metal layer in a bonding pad area when a metal fuse is etched.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chear-Yeon Mun
  • Publication number: 20100230673
    Abstract: The invention relates to a semiconductor fuse structure comprising a substrate (1) having a surface, the substrate (1) having a field oxide region (3) at the surface, the fuse structure further comprising a fuse body (FB), the fuse body (FB) comprising polysilicon (PLY), the fuse body (FB) lying over the field oxide region (3) and extending into a current-flow direction (CF), wherein the fuse structure is programmable by means of leading a current through the fuse body (FB), wherein the fuse body (FB) has a tensile strain in the current-flow direction (CF) and a compressive strain in a direction (Z) perpendicular to said surface of the substrate (1). The invention further relates to methods of manufacturing such a semiconductor fuse.
    Type: Application
    Filed: June 6, 2007
    Publication date: September 16, 2010
    Applicant: NXP B.V.
    Inventors: Claire Ravit, Tobias S. Doorn
  • Publication number: 20100233874
    Abstract: A method for forming a functional element includes a first step of forming an insulating layer composed of an insulator phase of a transition metal oxide serving as a metal-to-insulator transition material, the transition metal oxide being mainly composed of vanadium dioxide, and a second step of causing part of the insulating layer to transition to a metallic phase, in which the insulator phase differs from the metallic phase in terms of electrical resistivity and/or light transmittance.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 16, 2010
    Applicant: SONY CORPORATION
    Inventor: Daisuke Ito
  • Publication number: 20100224955
    Abstract: Devices and methods are disclosed a dielectric interlayer made of materials capable of forming tensile force is formed over a semiconductor substrate, and a fuse metal having stronger tensile force than the first dielectric interlayer is formed over the first dielectric interlayer. Accordingly, formation of fuse residues when blowing a fuse can be prevented. Furthermore, energy and a spot size of a laser applied when blowing a fuse can be reduced. Moreover, damage to neighboring fuses can be prevented, and a fuse made of materials that are difficult to blow the fuse can be cut. Further, since polymer-series materials are used as a dielectric interlayer, the coupling effect between wiring lines can be reduced considerably.
    Type: Application
    Filed: December 28, 2009
    Publication date: September 9, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: CHI HWAN JANG
  • Patent number: 7791111
    Abstract: A semiconductor device has a plurality of fuse element portions each of which including a first fuse interconnect having a fuse to be portion, a second fuse interconnect connected to an internal circuit, a first impurity diffusion layer for electrically connecting the first fuse interconnect and the second fuse interconnect, and a second impurity diffusion layers. The first fuse interconnect, the second fuse interconnect, and the first impurity diffusion layer of each of the plurality of fuse element portions are arranged approximately parallel to one another at a predetermined pitch distance.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: September 7, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kazumasa Kuroyanagi, Shoji Koyama
  • Publication number: 20100221907
    Abstract: A fuse in a semiconductor device includes: first and second fuse patterns, each being in the shape of a bar, separated from each other in a blowing region; first and second contact plugs respectively coupled to the first and the second fuse patterns; and a third fuse pattern coupled to the first and the second fuse patterns through the first and the second contact plugs.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 2, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Young Jin Choi, Jin Won Park
  • Patent number: 7785934
    Abstract: A structure fabrication method. The method includes providing a structure. The structure includes (a) a substrate layer, (b) a first fuse electrode in the substrate layer, and (c) a fuse dielectric layer on the substrate layer and the first fuse electrode. The method further includes (i) forming an opening in the fuse dielectric layer such that the first fuse electrode is exposed to a surrounding ambient through the opening, (ii) forming a fuse region on side walls and bottom walls of the opening such that the fuse region is electrically coupled to the first fuse electrode, and (iii) after said forming the fuse region, filling the opening with a dielectric material.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Patent number: 7785936
    Abstract: The present invention relates to a method for repairing a semiconductor device. The method includes cutting a fuse without creation of residue by transforming the fuse into a nonconductor of high resistance by oxidizing the fuse by irradiating the fuse with an oxygen ion beam instead of a laser in a blowing process. The method includes transforming a fuse corresponding to a defective cell among a plurality of fuses formed in an upper portion of a semiconductor substrate into an oxide film.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 31, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chi Hwan Jang
  • Publication number: 20100213570
    Abstract: An antifuse (40, 80, 90?) comprises, first (22?, 24?) and second (26?) conductive regions having spaced-apart curved portions (55, 56), with a first dielectric region (44) therebetween, forming in combination with the curved portions (55, 56) a curved breakdown region (47) adapted to switch from a substantially non-conductive initial state to a substantially conductive final state in response to a predetermined programming voltage. A sense voltage less than the programming voltage is used to determine the state of the antifuse as either OFF (high impedance) or ON (low impedance). A shallow trench isolation (STI) region (42) is desirably provided adjacent the breakdown region (47) to inhibit heat loss from the breakdown region (47) during programming. Lower programming voltages and currents are observed compared to antifuses (30) using substantially planar dielectric regions (32).
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Won Gi Min, Geoffrey W. Perkins, Kyle D. Zukowski, Jiang-Kai Zuo
  • Patent number: 7781280
    Abstract: An upper electrode of a capacitor has a two-layer structure of first and second upper electrodes. A gate electrode of a MOS field effect transistor and a fuse are formed by patterning conductive layers used to form the lower electrode, first upper electrode and second upper electrode of the capacitor. In forming a capacitor and a fuse on a semiconductor substrate by a conventional method, at least three etching masks are selectively used to pattern respective layers to form the capacitor and fuse before wiring connection. The number of etching masks can be reduced in manufacturing a semiconductor device having capacitors, fuses and MOS field effect transistors so that the number of processes can be reduced and it becomes easy to improve the productivity and reduce the manufacture cost.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Yamaha Corporation
    Inventor: Masayoshi Omura
  • Patent number: 7784009
    Abstract: Electrically programmable fuses for an integrated circuit and design structures thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside over a first support and a second support, respectively, with the first support and the second support being spaced apart, and the fuse element bridging the distance between the first terminal portion over the first support and the second terminal portion over the second support. The fuse, first support and second support define a ?-shaped structure in elevational cross-section through the fuse element. The first terminal portion, second terminal portion and fuse element are coplanar, with the fuse element residing above a void. The design structure for the fuse is embodied in a machine-readable medium for designing, manufacturing or testing a design of the fuse.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Publication number: 20100203719
    Abstract: A first via opening is formed to a first conductor and a second via opening is formed to a second conductor. The first and second via openings are formed through insulative material. Then, the first conductor is masked from being exposed through the first via opening and to leave the second conductor outwardly exposed through the second via opening. An antifuse dielectric is formed within the second via opening over the exposed second conductor while the first conductor is masked. Then, the first conductor is unmasked to expose it through the first via opening. Then, conductive material is deposited to within the first via opening in conductive connection with the first conductor to form a conductive interconnect within the first via opening to the first conductor and to within the second via opening over the antifuse dielectric to form an antifuse comprising the second conductor, the antifuse dielectric within the second via opening and the conductive material deposited to within the second via opening.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jasper Gibbons, Darren Young
  • Patent number: 7772047
    Abstract: A semiconductor device having a redistribution layer, and methods of forming same, are disclosed. After fabrication of semiconductor die on a wafer, a tape assembly is applied onto a surface of the wafer, in contact with the surfaces of each semiconductor die on the wafer. The tape assembly includes a backgrind tape as a base layer, and a film assembly adhered to the backgrind tape. The film assembly in turn includes an adhesive film on which is deposited a thin layer of conductive material. The redistribution layer pattern is traced into the tape assembly, using for example a laser. Thereafter, the unheated portions of the tape assembly may be removed, leaving the heated redistribution layer pattern on each semiconductor die.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Chien-Ko Liao, Chin-Tien Chiu, Jack Chang Chien, Cheemen Yu, Hem Takiar
  • Publication number: 20100187526
    Abstract: A semiconductor device semiconductor device allowing for use of a test circuit that withstands only low voltages and has a small circuit area. A high-voltage operational circuit, which is operated at a high voltage, is connected to first and second pads. A multiplexer used to test the high-voltage operational circuit is connected to a third pad in addition to the first and second pads. Fuses are arranged on wires connecting the first and second pads to the multiplexer. An inspection board connects the third pad to ground after testing the high-voltage operational circuit, provides a breakage signal to the multiplexer, and applies voltage to the first or second pad. The multiplexer, which receives the breakage signal, connects the first or second pad with the third pad so that current flows therebetween. This breaks the corresponding fuse and insulates the multiplexer from the high-voltage operational circuit.
    Type: Application
    Filed: November 6, 2009
    Publication date: July 29, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Kanji Egawa, Akihiro Zemba