Contacting Multiple Semiconductive Regions (i.e., Interconnects) Patents (Class 438/618)
  • Publication number: 20150014859
    Abstract: An electronics interconnection system is provided with reduced capacitance between a signal line and the surrounding dielectric material. By using a non-homogenous dielectric, the effective dielectric loss of the material is reduced. This reduction results in less power loss from the signal line to the dielectric material, which reduces the number of buffers needed on the signal line. This increases the speed of the signal, and reduces the power consumed by the interconnection system. The fabrication techniques provided are advantageous because they can be fabricated using today's standard IC fabrication techniques.
    Type: Application
    Filed: May 3, 2014
    Publication date: January 15, 2015
    Applicant: BANPIL PHOTONICS, INC.
    Inventor: ACHYUT KUMAR DUTTA
  • Patent number: 8927416
    Abstract: A first insulating film is formed on a semiconductor substrate, an interconnect groove is formed in the first insulating film, the inside of the interconnect groove is filled with a metal film, thereby forming a first interconnect. Then, a protective film is formed on the first insulating film and the first interconnect, and the surface of the protective film is exposed to reactive gas, thereby forming a reaction layer on an interface between the first interconnect and the protective film.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 6, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takeshi Harada, Junichi Shibata, Akira Ueki
  • Patent number: 8927345
    Abstract: A method comprises fabricating an interconnect structure comprising a plurality of conductive interconnects encased in a dielectric structure and coupling each of the conductive interconnects to a corresponding bond pad of a package substrate and bond pad of a die. A device package comprises a substrate having a first plurality of bond pads disposed at a first surface of the substrate and a die having a first surface facing the first surface of the substrate and a second surface opposite the first surface, the die comprising a second plurality of bond pads disposed at the second surface. The device package further comprises an interconnect structure comprising a plurality of conductive interconnects encased in a dielectric structure, each of the conductive interconnects coupled to a corresponding bond pad of the first plurality of bond pads and to a corresponding bond pad of the second plurality of bond pads.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weng Foong Yap, Lai Cheng Law, Boh Kid Wong
  • Patent number: 8927420
    Abstract: Among other things, one or more support structures and techniques for forming such support structures within semiconductor devices are provided. The support structure comprises an oxide infused silicon layer that is formed within a trench of a dielectric layer on a substrate of a semiconductor device. The oxide infused silicon layer results from a silicon layer that is exposed to oxide during an ultraviolet (UV) curing process. The oxide infused silicon layer is configured to support a barrier layer against a conductive structure formed on the barrier layer within the trench. In this way, the support structure provides pressure against the barrier layer so that the barrier layer substantially maintains contact with the conductive structure, to promote improved performance and reliability of the conductive structure.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Joung-Wei Liou, Keng-Chu Lin
  • Publication number: 20150001728
    Abstract: A method of forming a semiconductor device, the method includes performing, in a first module, a remote plasma treatment on a wafer to remove an oxide layer from the wafer by a reduction reaction. The method further includes transferring the pre-treated wafer from the first module to a second module under a vacuum. The method further includes forming, in the second module, an etch stop layer over the wafer.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Inventors: Li CHEN, Jyh-Nan LIN, Chin-Feng SUN, Po-Hsiung LEU, Ding-I LIU
  • Publication number: 20140375341
    Abstract: An electronic apparatus includes a semiconductor substrate, outer and inner guard rings disposed along a periphery of the semiconductor substrate, and first and second contact pads electrically coupled to the outer and inner guard rings, respectively. The outer and inner guard rings are electrically coupled to one another to define a conduction path between the first and second contact pads. Each of the outer and inner guard rings includes an Ohmic metal layer having a plurality of gaps and further includes conductive bridges across the gaps. The gaps of the outer guard ring are laterally offset from the gaps of the inner guard ring such that the Ohmic metal layers of the outer and inner guard rings laterally overlap.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jason R. Fender, Ngai Ming Lau
  • Publication number: 20140374915
    Abstract: Methodologies enabling integration of optical components in ICs and a resulting device are disclosed. Embodiments include: providing a first substrate layer of an IC separated from a second substrate level by an insulator layer; providing a transistor on the second substrate layer; and providing an optical component on the first substrate layer, the optical component being connected to the transistor.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventor: Errol T. RYAN
  • Publication number: 20140374832
    Abstract: The present disclosure relates to an integrated chip having one or more back-end-of-the-line (BEOL) selectivity stress films that apply a stress that improves the performance of semiconductor devices underlying the BEOL selectivity stress films, and an associated method of formation. In some embodiments, the integrated chip has a semiconductor substrate with one or more semiconductor devices having a first device type. A stress transfer element is located within a back-end-of-the-line stack at a position over the one or more semiconductor devices. A selectivity stress film is located over the stress transfer element. The selectivity stress film induces a stress upon the stress transfer element, wherein the stress has a compressive or tensile state depending on the first device type of the one or more semiconductor devices. The stress acts upon the one or more semiconductor devices to improve their performance.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Gwo-Chyuan Kuoh, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien, Yen-Ming Peng
  • Publication number: 20140367835
    Abstract: A die seal ring is provided. The die seal ring includes a substrate and a first layer extruding from the substrate. The first layer has a first fin ring structure and a layout of the first fin ring structure has a stamp-like shape. In addition, a method for forming a die seal ring is provided. A substrate having an active region is provided. A patterned sacrificial layer is formed on the substrate. A spacer is formed on the sidewall of the patterned sacrificial layer. The patterned sacrificial layer is removed. The substrate is patterned by using the spacer as a mask, thereby simultaneously forming at least a fin structure of a Fin-FET and a first layer of the die seal ring.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Ming-Te Wei, Po-Chao Tsao, Ching-Li Yang, Chien-Yang Chen, Hui-Ling Chen, Guan-Kai Huang
  • Publication number: 20140371110
    Abstract: A system, method and apparatus for executing a sequence analysis pipeline on genetic sequence data includes a structured ASIC formed of a set of hardwired digital logic circuits that are interconnected by physical electrical interconnects. One of the physical electrical interconnects forms an input to the structured ASIC connected with an electronic data source for receiving reads of genomic data. The hardwired digital logic circuits are arranged as a set of processing engines, each processing engine being formed of a subset of the hardwired digital logic circuits to perform one or more steps in the sequence analysis pipeline on the reads of genomic data. Each subset of the hardwired digital logic circuits is formed in a wired configuration to perform the one or more steps in the sequence analysis pipeline.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 18, 2014
    Inventors: Pieter Van Rooyen, Robert J. McMillen, Michael Ruehle
  • Patent number: 8912088
    Abstract: The present invention provides a transfer substrate for transferring a metal wiring material to a transfer-receiving object, the transfer substrate comprising a substrate, at least one metal wiring material formed on the substrate and an underlying metal film formed between the substrate and the metal wiring material, wherein the metal wiring material is a molded article prepared by sintering, e.g., gold powder having a purity of 99.9% by weight or more and an average particle size of 0.01 ?m to 1.0 ?m and the underlying metal film is composed of a metal such as gold or an alloy. The transfer substrate is capable of transferring a metal wiring material to the transfer-receiving object even at a temperature for heating the transfer-receiving object of 80 to 300° C.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: December 16, 2014
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Toshinori Ogashiwa, Masaaki Kurita, Takashi Nishimori, Yukio Kanehira
  • Patent number: 8912540
    Abstract: Provided is a semiconductor device having a pad on a semiconductor chip, a first passivation film formed over the semiconductor chip and having an opening portion on the pad of a probe region and a coupling region, a second passivation film formed over the pad and the first passivation film and having an opening portion on the pad of the coupling region, and a rewiring layer formed over the coupling region and the second passivation film and electrically coupled to the pad. The pad of the probe region placed on the periphery side of the semiconductor chip relative to the coupling region has a probe mark and the rewiring layer extends from the coupling region to the center side of the semiconductor chip. The present invention provides a technology capable of achieving size reduction, particularly pitch narrowing, of a semiconductor device.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 16, 2014
    Assignee: Renesas Electronics Corporations
    Inventors: Toshihiko Akiba, Bunji Yasumura, Masanao Sato, Hiromi Abe
  • Patent number: 8912060
    Abstract: A method for manufacturing a semiconductor device includes: forming a first layer on a substrate; forming a first contact hole in the first layer; burying a sacrificial film in the first contact hole; forming a second layer on the first layer and the first contact hole after burying; forming a second contact hole reaching the sacrificial film in the second layer; removing the sacrificial film from the first contact hole via the second contact hole; and providing a contact electrode in the first contact hole and the second contact hole.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuneo Uenaka, Kazuyuki Higashi
  • Publication number: 20140361399
    Abstract: A method is provided for fabricating stripe structures. The method includes providing a substrate; and forming a to-be-etched layer on the substrate. The method also includes forming a hard mask pattern having a first stripe on the to-be-etched layer; and forming a photoresist pattern having a stripe opening on the to-be-etched layer and the hard mask pattern having the first stripe. Further, the method includes forming a polymer layer on a top surface and side surfaces of the photoresist pattern to reduce a width of the stripe opening; forming hard mask patterns having a second stripe by etching the hard mask pattern having the first stripe using the photoresist pattern having the polymer layer as an etching mask; and forming the stripe structures by etching the to-be-etching layer using the hard mask pattern having the second stripe as an etching mask until the substrate is exposed.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Inventors: XIAOYING MENG, QIUHUA HAN
  • Publication number: 20140363970
    Abstract: A method of making a pillar structure includes forming a first under-bump-metallurgy (UBM) layer formed on a pad region of a substrate, wherein the first UBM layer includes sidewalls. The method further includes forming a second UBM layer on the first UBM layer, wherein the second UBM layer includes a sidewall surface, an area of the first UBM layer is greater than an area of the second UBM layer. The method further includes forming a copper-containing pillar on the second UBM layer, wherein the copper-containing pillar includes a sidewall surface and a top surface. The method further includes forming a protection structure on the sidewall surface of the copper-containing pillar and on an entirety of the sidewall surface of the second UBM layer, wherein the protection structure does not cover the sidewalls of the first UBM layer, and the protection structure is a non-metal material.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Inventors: Chien Ling HWANG, Yi-Wen WU, Chun-Chieh WANG, Chung-Shi LIU
  • Patent number: 8906800
    Abstract: An apparatus includes a device package, a first Integrated Circuit (IC) that is packaged in the device package, and a second IC, which is packaged in the device package and is fabricated on a multi-layer interconnection circuit including a plurality of interconnection layers for interconnecting components of the second IC, wherein a selected layer in the plurality is configured to serve as a conductive shield for reducing interference between the first and second ICs.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 9, 2014
    Assignee: Siano Mobile Silicon Ltd.
    Inventor: Neil David Feldman
  • Patent number: 8906757
    Abstract: Methods of forming patterns of a semiconductor device are provided. The methods may include forming a hard mask film on a semiconductor substrate. The methods may include forming first and second sacrificial film patterns that are spaced apart from each other on the hard mask film. The methods may include forming a first spacer on opposing sidewalls of the first sacrificial film pattern and a second spacer on opposing sidewalls of the second sacrificial film pattern. The methods may include removing the first and second sacrificial film patterns. The methods may include trimming the second spacer such that a line width of the second spacer becomes smaller than a line width of the first spacer. The methods may include forming first and second hard mask film patterns by etching the hard mask film using the first spacer and the trimmed second spacer as an etch mask.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: December 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myeong-Cheol Kim, Il-Sup Kim, Cheol Kim, Jong-Chan Shin, Jong-Wook Lee, Choong-Ho Lee, Si-Young Choi, Jong-Seo Hong
  • Patent number: 8906799
    Abstract: A method and structure for preventing integrated circuit failure due to electromigration and time dependent dielectric breakdown is disclosed. A randomly patterned metal cap layer is selectively formed on the metal interconnect lines (typically copper (Cu)) with an interspace distance between metal cap segments that is less than the critical length (for short-length effects). Since the diffusivity is lower for the Cu/metal cap interface than for the Cu/dielectric cap interface, the region with a metal cap serves as a diffusion barrier.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Wai-Kin Li, Ping-Chuan Wang, Lijuan Zhang
  • Patent number: 8901744
    Abstract: A hybrid interconnect structure containing copper regions that have different impurities levels within a same opening is provided. In one embodiment, the interconnect structure includes a patterned dielectric material having at least one opening located therein. A dual material liner is located at least on sidewalls of the patterned dielectric material within the at least one opening. The structure further includes a first copper region having a first impurity level located within a bottom region of the at least one opening and a second copper region having a second impurity level located within a top region of the at least one opening and atop the first copper region. In accordance with the present disclosure, the first impurity level of the first copper region is different from the second impurity level of the second copper region.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, David V. Horak, Charles W. Koburger, III, Shom Ponoth
  • Patent number: 8900996
    Abstract: A method of fabricating a through silicon via (TSV) structure is provided, in which, a first dielectric layer is formed on the substrate, the first dielectric layer is patterned to have at least one first opening, a via hole is formed in the first dielectric layer and the substrate, a second dielectric layer is conformally formed on the first dielectric layer, the second dielectric layer has at least one second opening corresponding to the at least one first opening, and the second dielectric layer covers a sidewall of the via hole. A conductive material layer is formed to fill the via hole and the second opening. The conductive material layer is planarized to form a TSV within the via hole. A TSV structure is also provided, in which, the second dielectric layer is disposed within the first opening and on the sidewall of the via hole.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 2, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Publication number: 20140346662
    Abstract: Methods for accommodating a non-integer multiple of the M2 pitch for the cell height of a semiconductor cell and the resulting devices are disclosed. Embodiments may include forming a cell within an integrated circuit (IC) with a height of a first integer and a remainder times a track pitch of a metal track layer, and forming power rails within the metal track layer at boundaries of the cell accommodating for the remainder.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Mahbub RASHED, Lei YUAN
  • Patent number: 8896120
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps of different depths are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Publication number: 20140342548
    Abstract: Semiconductor devices and methods of fabricating the same are provided. The semiconductor device may include interconnections extending in a first direction on a substrate and spaced apart from each other in a second direction perpendicular to the first direction, barrier dielectric patterns disposed on top surfaces of the interconnections, respectively, and an upper interlayer dielectric layer disposed on the interconnection. Respective air gaps are disposed between adjacent ones of the interconnections.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: Jeeyong Kim, Hyunchul Back, Jung-Hwan Lee, Hyunmin Lee
  • Patent number: 8889541
    Abstract: In one embodiment, a method of forming a semiconductor device is provided that may include forming a semiconductor device including a gate structure on a channel portion of III-V semiconductor substrate. The III-V semiconductor substrate including a III-V base substrate layer, an aluminum containing III-V semiconductor layer that is present on the III-V base substrate layer, and a III-V channel layer. Oxidizing a portion of the aluminum containing III-V semiconductor layer on opposing sides of the gate structure. Forming a raised source region and a raised drain region over the portion of the aluminum containing III-V semiconductor layer that has been oxidized. Forming interconnects to the raised source region and the raised drain region.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Shu-Jen Han, Masaharu Kobayashi, Ko-Tao Lee, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 8889542
    Abstract: A method for fabricating through-silicon vias (TSVs) for semiconductor devices is provided. Specifically, the method involves utilizing copper contact pads in a back-end-of-line wiring level, wherein the copper contact pads act as cathodes for performing an electroplating technique to fill TSVs with plated-conductive material (e.g., copper) from an electroplating solution. Moreover, the method provides a way to fill high aspect ratio TSVs with minimal additional semiconductor fabrication process steps, which can increase the silicon area that is available for forming additional electronic components on integrated circuits.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Troy L. Graves-Abe
  • Patent number: 8890240
    Abstract: A MOS transistor comprises a substrate, a first region formed over the substrate, a second region grown from the first region, a third region of formed in the second region, a first drain/source region formed in the third region, a first gate electrode formed in a first trench, a second drain/source region formed in the second region and on an opposite side of the first trench from the first drain/source region and a second trench coupled between the second drain/source region and the second region, wherein the second trench is of a same depth as the first trench.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 8888916
    Abstract: Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Ming-Kuei (Michael) Tseng, Norman L. Tam, Yoshitaka Yokota, Agus S. Tjandra, Robert Navasca, Mehran Behdjat, Sundar Ramamurthy, Kedarnath Sangam, Alexander N. Lerner
  • Publication number: 20140332964
    Abstract: A metal cap is formed on an exposed upper surface of a conductive structure that is embedded within an interconnect dielectric material. During the formation of the metal cap, metallic residues simultaneously form on an exposed upper surface of the interconnect dielectric material. A thermal nitridization process or plasma nitridation process is then performed which partially or completely converts the metallic residues into nitrided metallic residues. During the nitridization process, a surface region of the interconnect dielectric material and a surface region of the metal cap also become nitrided.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen
  • Publication number: 20140335688
    Abstract: A mask assembly and a thin film deposition method using the same are provided. The mask assembly includes a mask frame including first to fourth sides. The first to fourth sides form a rectangle. Inner sides of the rectangle define a window. The mask frame has a plurality of substrate seating portions provided to project toward the window from at least two corners. The two corners face each other in a diagonal direction. The mask assembly includes four corners positioned where the first to fourth sides of the mask assembly meet each other. A mask includes a plurality of openings for deposition. The plurality of openings are arranged to correspond to the window.
    Type: Application
    Filed: September 18, 2013
    Publication date: November 13, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: Jung Woo Ko
  • Patent number: 8883629
    Abstract: A method of placing a dummy fill layer on a substrate is disclosed (FIG. 2). The method includes identifying a sub-region of the substrate (210). A density of a layer in the sub-region is determined (212). A pattern of the dummy fill layer is selected to produce a predetermined density (216). The selected pattern is placed in the sub-region (208).
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Robert G. Fleck
  • Publication number: 20140329383
    Abstract: A semiconductor device includes a semiconductor substrate and a plurality of clock drivers, wherein the plurality of clock drivers comprises substantially all clock drivers of the semiconductor device, and an interconnect region over the semiconductor substrate, wherein the interconnect region comprises a plurality of heat spreaders, wherein at least 25% of the plurality of clock drivers have a corresponding heat spreader of the plurality of heat spreaders. Each corresponding heat spreader of the plurality of heat spreaders covers at least 50% of a transistor within a corresponding clock driver of the plurality of clock drivers and extends across at least 70% of a perimeter of the transistor within the corresponding clock driver.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: EDWARD O. TRAVIS, DOUGLAS M. REBER, MEHUL D. SHROFF
  • Patent number: 8878364
    Abstract: A method for fabricating a semiconductor device according to an embodiment, includes forming a dielectric film above a substrate; forming an opening in the dielectric film; forming a high melting metal film on a side wall and a bottom surface of the opening; forming a seed film of copper (Cu) on the high melting metal film; performing nitriding process after the seed film is formed; and performing electroplating process, in which a Cu film is buried in the opening while energizing the seed film after performing nitriding process.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiyuki Morita, Akitsugu Hatazaki, Kazumasa Ito, Hiroshi Toyoda
  • Publication number: 20140319661
    Abstract: A semiconductor device has a plurality of conductive vias formed partially through a substrate. A conductive layer is formed over the substrate and electrically connected to the conductive vias. A semiconductor die is mounted over the substrate. An encapsulant is deposited over the semiconductor die and substrate. A trench is formed through the encapsulant around the semiconductor die. A shielding layer is formed over the encapsulant. The trench is formed partially through the substrate and the shielding layer is formed in the trench partially through the substrate. An insulating layer can be formed in the trench prior to forming the shielding layer. A portion of the substrate is removed to expose the conductive vias. An interconnect structure is formed over the substrate opposite the semiconductor die. The interconnect structure is electrically connected to the conductive vias. The shielding layer is electrically connected to the interconnect structure.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventor: Reza A. Pagaila
  • Patent number: 8872345
    Abstract: A method of forming an interposer includes providing a semiconductor substrate, the semiconductor substrate having a front surface and a back surface opposite the front surface; forming one or more through-silicon vias (TSVs) extending from the front surface into the semiconductor substrate; forming an inter-layer dielectric (ILD) layer overlying the front surface of the semiconductor substrate and the one or more TSVs; and forming an interconnect structure in the ILD layer, the interconnect structure electrically connecting the one or more TSVs to the semiconductor substrate.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Chun Hsieh, Wei-Cheng Wu, Hsiao-Tsung Yen, Hsien-Pin Hu, Shang-Yun Hou, Shin-Puu Jeng
  • Patent number: 8871632
    Abstract: In one embodiment, a program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, includes operations comprising: providing a structure comprising a first layer overlying a substrate, where the first layer comprises a dielectric material having a plurality of pores; applying a filling material to a surface of the first layer, where the filling material comprises a polymer and at least one additive, where the at least one additive comprises at least one of a surfactant, a high molecular weight polymer and a solvent (e.g., a high boiling point solvent); and after applying the filling material, heating the structure to enable the filling material to at least partially fill the plurality of pores uniformly across an area of the first layer, where heating the structure results in residual filling material being uniformly left on the surface of the first layer.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, Theo J. Frot, Teddie P. Magbitang, Willi Volksen
  • Publication number: 20140315381
    Abstract: A stand-alone processing station of a semiconductor manufacturing system may be configured to fabricate interconnects on a semiconductor wafer. The stand-alone processing station may include a chemical mechanical polishing (CMP) module and an electro-chemical deposition (ECD) module. The CMP module may be configured to receive a semiconductor wafer from another processing station and selectively remove a first top layer from the received semiconductor wafer. The ECD module may be configured to receive a semiconductor wafer from the CMP module and fill interconnect features with metal. The CMP module may also be configured to receive a semiconductor wafer from the ECD module and selectively remove excess metal and a second top layer from the semiconductor wafer. Methods of forming an interconnect on a semiconductor wafer are also provided, as are other aspects.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Inventors: You Wang, Wen-chiang Tu, Zhihong Wang
  • Publication number: 20140315380
    Abstract: A method including forming a tetra-layer hardmask above a substrate, the tetra-layer hardmask including a second hardmask layer above a first hardmask layer; removing a portion of the second hardmask layer of the tetra-layer hardmask within a pattern region of a structure comprising the substrate and the tetra-layer hardmask; forming a set of sidewall spacers above the tetra-layer hardmask to define a device pattern; and transferring a portion of the device pattern into the substrate and within the pattern region of the structure.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Inventors: Sivananda K. Kanakasabapathy, Chiahsun Tseng, Yongan Xu, Yunpeng Yin
  • Patent number: 8865587
    Abstract: Some exemplary embodiments of a multi-chip semiconductor package utilizing a semiconductor substrate and related method for making such a semiconductor package have been disclosed. One exemplary embodiment comprises a first semiconductor device including, on a surface thereof, a first patterned dielectric layer, a conductive redistribution layer, a second patterned dielectric layer, and a second semiconductor device. The conductive redistribution layer connects to a first and a second patterned conductive attach material for connecting the first and second semiconductor devices to provide coplanar electrical connections for mounting on a printed circuit board. In one embodiment, the first semiconductor device is a diode having anode and cathode contacts on an upper surface thereof, and the second semiconductor device is an IGBT.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 21, 2014
    Assignee: International Rectifier Corporation
    Inventor: Stuart Cardwell
  • Patent number: 8865588
    Abstract: A method of manufacturing a semiconductor device includes forming a first interconnection and a second interconnection above a semiconductor substrate, forming a first sidewall insulating film on a side wall of the first interconnection, and a second sidewall insulating film on a side wall of the second interconnection, forming a conductive film above the semiconductor substrate with the first interconnection, the first sidewall insulating film, the second interconnection and the second sidewall insulating film formed on, and selectively removing the conductive film above the first interconnection and the second interconnection to form in a region between the first interconnection and the second interconnection a third interconnection formed of the conductive film and spaced from the first interconnection and the second interconnection by the first sidewall insulating film and the second sidewall insulating film.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: October 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takeshi Kagawa
  • Patent number: 8865586
    Abstract: A method includes forming a polymer layer over a metal pad, forming an opening in the polymer layer to expose a portion of the metal pad, and forming an under-bump-metallurgy (UBM). The UBM includes a portion extending into the opening to electrically couple to the metal pad.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Wen Wu, Zheng-Yi Lim, Ming-Che Ho, Chung-Shi Liu
  • Patent number: 8859415
    Abstract: A method of forming wiring of a semiconductor device includes: forming an insulating resin on a main surface of a substrate such that an opening portion defining a wiring pattern is provided in the insulating resin; forming a first wiring layer made of a first metal on a bottom surface and side surfaces of the opening portion surrounding and a surface of the insulating resin opposite to the main surface of the substrate, the first wiring layer having a bottom portion formed on the bottom surface of the opening portion and side portions formed on the side surfaces, the bottom portion having a thickness greater than a thickness of at least one of the side portions; and cutting the insulating resin and the first wiring layer such that the insulating resin and the first wiring layer are exposed.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Tajima, Akira Tojo
  • Patent number: 8859362
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao Liu, Eric Freeman, Russell Nielsen
  • Publication number: 20140301001
    Abstract: A source driving integrated circuit is provided. The source driving integrated circuit includes a source driver area, an electrostatic discharge (ESD) circuit area and a fan-out area. The source driver area includes a plurality of source driver units. The ESD circuit area includes a plurality of ESD units. The fan-out area includes conduction lines for electrically connecting respective ones of the source driver units of the source driver area to ones of the plurality of the ESD units of the ESD circuit area. In a horizontal structure of a semiconductor integrated circuit, the fan-out area at least partially overlaps the ESD circuit area.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 9, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Jin Cho, Hong-Yeon Kim, Youn-Ho Hwang
  • Patent number: 8853072
    Abstract: Some embodiments include methods of forming interconnects through semiconductor substrates. An opening may be formed to extend partway through a semiconductor substrate, and part of an interconnect may be formed within the opening. Another opening may be formed to extend from a second side of the substrate to the first part of the interconnect, and another part of the interconnect may be formed within such opening. Some embodiments include semiconductor constructions having a first part of a through-substrate interconnect extending partially through a semiconductor substrate from a first side of the substrate; and having a second part of the through-substrate interconnect extending from a second side of the substrate and having multiple separate electrically conductive fingers that all extend to the first part of the interconnect.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, Philip J. Ireland
  • Patent number: 8847396
    Abstract: A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes receiving a precursor. A decomposable polymer layer (DPL) is deposited between the conductive features of the precursor. The DPL is annealed to form an ordered periodic pattern of different types of polymer nanostructures. One type of polymer nanostructure is decomposed by a first selectively to form a trench. The trench is filled by a dielectric layer to form a dielectric block. The remaining types of polymer nanostructures are decomposed by a second selectively etching to form nano-air-gaps.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yen Huang, Yu-Sheng Chang, Hai-Ching Chen, Tien-I Bao
  • Publication number: 20140289440
    Abstract: Systems, methods and fabrication processes relating to memory devices involving data bus inversion are disclosed. According to one illustrative implementation, a memory device may comprise a memory core, circuitry that receives a data bus inversion (DBI) bit associated with a data signal as input directly, without transmission through DBI logic associated with an input buffer, and circuitry that stores the DBI bit into the memory core, reads the DBI bit from the memory core, and provides the DBI bit as output. In further implementations, memory devices herein may store and process the DBI bit on an internal data bus as a regular data bit.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: GSI TECHNOLOGY, INC.
    Inventor: Lee-Lean SHU
  • Publication number: 20140287577
    Abstract: A method for producing interconnects on a workpiece includes obtaining a workpiece substrate having a feature, depositing a conductive layer in the feature, to partially or fully fill the feature, depositing a copper fill to completely fill the feature if the feature is partially filled by the conductive layer, applying a copper overburden, thermally treating the workpiece, and removing the overburden to expose the substrate and the metalized feature.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Inventors: Ismail T. Emesh, Roey Shaviv, Mehul Naik
  • Publication number: 20140287578
    Abstract: Provided are methods of fabricating a semiconductor device and semiconductor devices fabricated thereby. In the methods, dummy recess regions may be formed between cell recess regions and a peripheral circuit region. Due to the presence of the dummy recess regions, it may be possible to reduce a concentration gradient of a suppressor contained in a plating solution near the dummy pattern region, to make the concentration of the suppressor more uniform in the cell pattern region, and to supply an electric current more effectively to the cell pattern region. As a result, a plating layer can be more uniformly formed in the cell pattern region, without void formation therein.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: Jongwon Hong, Insun Park, Hei Seung Kim, Jongmin Baek
  • Patent number: 8841209
    Abstract: A method for forming coreless flip chip ball grid array (FCBGA) substrates comprising the steps of sequentially depositing a pair of laminates, each having a plurality of insulated metallization layers simultaneously respectively on each side of a temporary carrier substrate, and then removing the temporary carrier to separate the pair of laminates, so that each laminate has an outer ball grid metal pad array, and during the depositing of the pair of laminates on the carrier substrate, further depositing a supporting layer of dielectric material enclosing the metal pad array, wherein said supporting layers of dielectric material provides structural support for each of the laminates after the separation.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sylvie Allard, Jean Audet, Kevin Arthur Dore, Sylvain Pharand, David John Russell
  • Publication number: 20140273431
    Abstract: Embodiments of the present disclosure are directed to laser removal of resist material from integrated circuit (IC) packaging components, as well as package assemblies and systems incorporating such material and removal methods. A resist layer may be applied to one or more components of a package assembly. The resist layer may be subsequently removed by applying laser radiation and a flow of fluid to the resist layer. The laser radiation may cause cracking, delamination, and/or polymer chain scission, and the flow of fluid may enhance mechanical separation of the resist material from the package assembly components.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventor: Motohiko Sasagawa