Having Noble Group Metal (i.e., Silver (ag), Gold (au), Platinum (pt), Palladium (pd), Rhodium (rh), Ruthenium (ru), Iridium (ir), Osmium (os), Or Alloy Thereof) Patents (Class 438/650)
  • Patent number: 8133812
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: March 13, 2012
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Patent number: 8119518
    Abstract: A film forming method includes the steps of forming a F-doped carbon film by using a source gas containing C and F, and modifying the F-doped carbon film by radicals, the source gas having a F/C ratio larger than 1 and smaller than 2, the F/C ratio being defined as a ratio of a number of F atoms to a number of C atoms in a source gas molecule.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: February 21, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kenichi Nishizawa, Yasuhiro Terai, Akira Asano
  • Patent number: 8114770
    Abstract: A method for producing on-chip interconnect structures on a substrate is provided, comprising at least the steps of providing a substrate and depositing a ruthenium-comprising layer on top of said substrate, and then performing a pre-treatment of the Ru-comprising layer electrochemically with an HBF4-based electrolyte, and then performing electrochemical deposition of copper onto the pre-treated Ru-comprising layer.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: February 14, 2012
    Assignee: IMEC
    Inventors: Philippe M. Vereecken, Aleksandar Radisic
  • Patent number: 8110411
    Abstract: The present invention provides a semiconductor device which is characterized as follows. The semiconductor device includes: an interlayer insulating film formed above a semiconductor substrate and provided with a hole above an impurity diffusion region; a conductive plug formed in the hole and electrically connected to the impurity diffusion region; a conductive oxygen barrier film formed on the conductive plug and the interlayer insulating film around the conductive plug; a conductive anti-diffusion film formed on the conductive oxygen barrier film; and a capacitor that has a lower electrode which is formed on the conductive anti-diffusion film and which exposes platinum or palladium on the upper surface, a capacitor dielectric film made of a ferroelectric material, and an upper electrode. The conductive anti-diffusion film is made of a non-oxide conductive material for preventing the diffusion of the constituent element of the capacitor dielectric film.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: February 7, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 8084348
    Abstract: A method for manufacturing a silicon chip package for a circuit board assembly provides a package with a silicon chip and an array of first contact pads that are provided by a first conductive material. A plurality of second contact pads are provided from a gold material having a hardness different than that of the first contact pads. The second contact pads are soldered to the first contact pads of the package. A circuit board assembly is assembled by providing a circuit board substrate with at least one socket with contact pads. The second contact pads of the package are assembled to the circuit board substrate contact pads.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 27, 2011
    Assignee: Oracle America, Inc.
    Inventor: Ashur S. Bet-Shliemoun
  • Patent number: 8062950
    Abstract: A semiconductor device has a semiconductor substrate, and a capacitor which is provided on the upper side of the semiconductor substrate and composed of a lower electrode, an upper electrode and a dielectric film, the dielectric film being placed in between the lower electrode and the upper electrode, the lower electrode including a noble metal film, and a plurality of conductive oxide films formed in an islands arrangement on the noble metal film.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Yamakawa, Soichi Yamazaki
  • Patent number: 8058164
    Abstract: The present invention relates to methods and structures for the metallization of semiconductor devices. One aspect of the present invention is a method of forming a semiconductor device having copper metallization. In one embodiment, the method includes providing a patterned wafer having a diffusion barrier for copper; depositing a copperless seed layer on the diffusion barrier effective for electrochemical deposition of gapfill copper. The seed layer is formed by a conformal deposition process and by a nonconformal deposition process. The method further includes electroplating copper gapfill onto the seed layer. Another aspect of the invention includes electronic devices made using methods and structures according to embodiments of the present invention.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: November 15, 2011
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Fritz Redecker
  • Publication number: 20110260317
    Abstract: A copper pillar bump has a sidewall protection layer formed of an electrolytic metal layer. The electrolytic metal layer is an electrolytic nickel layer, an electrolytic gold layer, and electrolytic copper layer, or an electrolytic silver layer.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Hsiung LU, Ming-Da CHENG, Chih-Wei LIN, Jacky CHANG, Chung-Shi LIU, Chen-Hua YU
  • Patent number: 8039378
    Abstract: To provide a technique capable of improving the reliability of a semiconductor element and its product yield by reducing the variations in the electrical characteristic of a metal silicide layer. After forming a nickel-platinum alloy film over a semiconductor substrate 1, by carrying out a first thermal treatment at a thermal treatment temperature of 210 to 310° C. using a heater heating device, the technique causes the nickel-platinum alloy film and silicon to react with each other to form a platinum-added nickel silicide layer in a (PtNi)2Si phase. Subsequently, after removing the unreacted nickel-platinum alloy film, the technique carries out a second thermal treatment having the thermal treatment temperature higher than that of the first thermal treatment to form the platinum-added nickel silicide layer in a PtNiSi phase. The temperature rise rate of the first thermal treatment is set to 10° C./s or more (for example, 30 to 250° C.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 18, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shigenari Okada, Takuya Futase, Yutaka Inaba
  • Patent number: 8008193
    Abstract: Provided is a manufacturing method for improving the reliability of a semiconductor device having a back electrode. After formation of semiconductor elements on the surface of a silicon substrate, the backside surface thereof, which is opposite to the element formation surface, is subjected to the following steps in a processing apparatus. After deposition of a first metal film over the backside surface of the silicon substrate in a first chamber, it is heat treated to form a metal silicide film. Then, a nickel film is deposited in a third chamber, followed by deposition of an antioxidant conductor film in a second chamber. Heat treatment for alloying the first metal film and the silicon substrate is performed at least prior to the deposition of the nickel film. The first chamber has therefore a mechanism for depositing the first metal film and a lamp heating mechanism.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshihiro Kainuma, Tatsuhiko Miura, Takashi Sato, Katsuhiro Mitsui, Daisuke Ono
  • Patent number: 7998864
    Abstract: An interconnect structure that includes a dielectric material having a dielectric constant of about 3.0 or less is provided. This low k dielectric material has at least one conductive material having an upper surface embedded therein. The dielectric material also has a surface layer that is made hydrophobic prior to the formation of the noble metal cap. The noble metal cap is located directly on the upper surface of the at least one conductive material. Because of the presence of the hydrophobic surface layer on the dielectric material, the noble metal cap does not substantially extend onto the hydrophobic surface layer of the dielectric material that is adjacent to the at least one conductive material and no metal residues from the noble metal cap deposition form on this hydrophobic dielectric surface.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Fenton R. McFeely
  • Patent number: 7977235
    Abstract: A method for integrating metal-containing cap layers into copper (Cu) metallization of semiconductor devices. In one embodiment, the method includes providing a patterned substrate containing Cu metal surfaces and dielectric layer surfaces, forming a patterned mask layer on the patterned substrate, where the patterned mask layer contains openings that expose the Cu metal surfaces. The method further includes depositing a metal-containing layer on the Cu metal surfaces, depositing an additional metal-containing layer on the patterned mask layer, and removing the patterned mask layer and the additional metal-containing layer from the patterned substrate to selectively form metal-containing cap layers on the Cu metal surfaces.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: July 12, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Tadahiro Ishizaka
  • Patent number: 7956469
    Abstract: Provided is a light emitting device with high extraction efficiency, in which absorption of light by a conductive wire is prevented effectively. The light emitting device includes a conductive wire electrically connecting an electrode of a light emitting element and an electrically conductive member. The surface of the bonding portion of the conductive wire between the conductive wire and at least one of the electrode of the light emitting element and the electrically conductive member is covered with a metal film. The reflectivity of the metal film is higher than that of the conductive wire at the emission peak wavelength of the light emitting element.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: June 7, 2011
    Assignee: Nichia Corporation
    Inventors: Masaki Hayashi, Yuji Okada, Koji Kuroda
  • Patent number: 7943506
    Abstract: A semiconductor device provided with: a first interconnection layer provided on a semiconductor substrate; an interlevel insulation film provided over the first interconnection layer; a second interconnection layer of gold provided as an uppermost interconnection layer on the interlevel insulation film; and a barrier layer provided between the first interconnection layer and the second interconnection layer in an interlevel connection opening formed in the interlevel insulation film. The barrier layer includes a first sublayer provided in contact with the first interconnection layer to reduce a contact resistance, a second sublayer provided in contact with the second interconnection layer to improve a bonding strength, and a third sublayer provided between the first sublayer and the second sublayer. The first sublayer, the second sublayer and the third sublayer are, for example, a first tantalum sublayer, a second tantalum sublayer and a tantalum nitride sublayer, respectively.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 17, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Publication number: 20110108990
    Abstract: A method for capping lines includes forming a metal film layer on a copper line by a selective deposition process, the copper line disposed in a dielectric substrate, wherein the depositing also results in the deposition of stray metal material on the surface of the dielectric substrate, and etching with an isotropic etching process to remove a portion of the metal film layer and the stray metal material on the surface of the dielectric substrate, wherein the metal film layer is deposited at an initial thickness sufficient to leave a metal film layer cap remaining on the copper line following the removal of the stray metal material.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Kaushik Chanda, Ronald G. Filippi, Stephan Grunow, David L. Rath, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert, Chih-Chao Yang
  • Patent number: 7884012
    Abstract: A method is provided for void-free copper (Cu) filling of recessed features in a semiconductor device. The method includes providing a patterned substrate containing a recessed feature, depositing a barrier film on the patterned substrate, including in the recessed feature, depositing a Ru metal film on the barrier film, and depositing a discontinuous Cu seed layer on the Ru metal film, where the Cu seed layer partially covers the Ru metal film in the recessed feature. The method further includes exposing the substrate to an oxidation source gas that oxidizes the Cu seed layer and the portion of the Ru metal film not covered by the Cu seed layer, heat-treating the oxidized Cu seed layer and the oxidized Ru metal film under high vacuum conditions or in the presence of an inert gas to activate the oxidized Ru metal film for Cu plating, and filling the recessed feature with bulk Cu metal.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 8, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Kenji Suzuki, Tadahiro Ishizaka, Miho Jomen, Jonathan Rullan
  • Patent number: 7875525
    Abstract: A stack-type capacitor includes a lower electrode, a dielectric layer formed on the lower electrode, and an upper electrode formed on the dielectric layer, wherein the lower electrode includes a first metal layer having a cylindrical shape and a second metal layer filled in the first metal layer. In the capacitor, an amount of oxygen included in the lower electrode is decreased to suppress oxidation of a TiN layer. Thus, a stable stack-type capacitor may be formed, which increases greatly the performance of highly integrated DRAMs.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hyun Lee, Hion-suck Baik, Soon-ho Kim, Jae-young Choi
  • Patent number: 7855141
    Abstract: A method of producing a semiconductor device having a plurality of wiring layers forms a first interlayer-insulating film, forms a plurality of grooves for wiring in the first interlayer-insulating film, fills metallic films in the grooves to form wirings, etches the first interlayer-insulating film with the wirings as a mask and removes the interlayer-insulating film between the wirings to provide grooves to be filled, and fills a second interlayer-insulating film made of a material of low dielectric constant in the grooves to be filled.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: December 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Shimooka, Hideki Shibata, Hideshi Miyajima, Kazuhiro Tomioka
  • Patent number: 7851360
    Abstract: Organometallic precursors and methods for deposition on a substrate in seed/barrier applications are herein disclosed. In some embodiments, the organometallic precursor is a ruthenium-containing, tantalum-containing precursor or combination thereof and may be deposited by atomic layer deposition, chemical vapor deposition and/or physical vapor deposition.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Juan Dominguez, Adrien Lavoie, John Plombon, Joseph Han, Harsono Simka, David Thompson, John Peck
  • Publication number: 20100285660
    Abstract: A method for plating copper onto a semiconductor integrated circuit device substrate by forming an initial metal deposit in the feature which has a profile comprising metal on the bottom of the feature and a segment of the sidewalls having essentially no metal thereon, electrolessly depositing copper onto the initial metal deposit to fill the feature with copper. A method for plating copper onto a semiconductor integrated circuit device substrate by forming a deposit comprising a copper wettable metal in the feature, forming a copper-based deposit on the top-field surface, and depositing copper onto the deposit comprising the copper wettable metal to fill the feature with copper.
    Type: Application
    Filed: October 17, 2007
    Publication date: November 11, 2010
    Applicant: ENTHONE INC.
    Inventors: Xuan Lin, Richard Hurtubise, Vincent Paneccasio, JR., Qingyun Chen
  • Patent number: 7829427
    Abstract: A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Panayotis C. Andricacos, John M. Cotte, Hariklia Deligianni, John H. Magerlein, Kevin S. Petrarca, Kenneth J. Stein, Richard P. Volant
  • Patent number: 7830010
    Abstract: Interconnect structures in which a noble metal-containing cap layer is present directly on a non-recessed surface of a conductive material which is embedded within a low k dielectric material are provided. It has been determined that by forming a hydrophobic surface on a low k dielectric material prior to metal cap formation provides a means for controlling the selective formation of the metal cap directly on the non-recessed surface of a conductive material. That is, the selective formation of the metal cap directly on the non-recessed surface of a conductive material is enhanced since the formation rate of the metal cap on the non-recessed surface of a conductive material is greater than on the hydrophobic surface of the low k dielectric material.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: November 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Satya V. Nitta, Sampath Purushothaman, Muthumanickam Sankarapandian
  • Patent number: 7816202
    Abstract: A method for fabricating a capacitor includes providing a substrate having a capacitor region is employed, forming a first Ru1?xOx layer over the substrate, forming a Ru layer for a lower electrode over the first Ru1?xOx layer and deoxidizing the first Ru1?xOx layer, forming a dielectric layer over the Ru layer for a lower electrode, and forming a conductive layer for an upper electrode over the dielectric layer, wherein the first Ru1?xOx layer contains oxygen in an amount less than an oxygen amount of a RuO2 layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 19, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kwan-Woo Do, Jae-Sung Roh, Kee-Jeung Lee, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim, Kyung-Woong Park
  • Patent number: 7799674
    Abstract: A method for forming interconnect wiring, includes: (i) covering a surface of a connection hole penetrating through interconnect dielectric layers formed on a substrate for interconnect wiring, with an underlying alloy layer selected from the group consisting of an alloy film containing ruthenium (Ru) and at least one other metal atom (M), a nitride film thereof, a carbide film thereof, and an nitride-carbide film thereof, and (ii) filling copper or a copper compound in the connection hole covered with the underlying layer.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: September 21, 2010
    Assignee: ASM Japan K.K.
    Inventors: Hiroshi Shinriki, Hiroaki Inoue
  • Patent number: 7759187
    Abstract: A seed film and methods incorporating the seed film in semiconductor applications is provided. The seed film includes one or more noble metal layers, where each layer of the one or more noble metal layers is no greater than a monolayer. The seed film also includes either one or more conductive metal oxide layers or one or more silicon oxide layers, where either layer is no greater than a monolayer. The seed film can be used in plating, including electroplating, conductive layers, over at least a portion of the seed film. Conductive layers formed with the seed film can be used in fabricating an integrated circuit, including fabricating capacitor structures in the integrated circuit.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 7736984
    Abstract: In one embodiment, silicide layers are formed on two oppositely doped adjacent semiconductor regions. A conductor material is formed electrically contacting both of the two silicides.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: June 15, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, Prasad Venkatraman
  • Patent number: 7737028
    Abstract: Embodiments of the invention provide processes for selectively forming a ruthenium-containing film on a copper surface over exposed dielectric surfaces. Thereafter, a copper bulk layer may be deposited on the ruthenium-containing film. In one embodiment, a method for forming layers on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a copper-containing surface and a dielectric surface, exposing the substrate to a ruthenium precursor to selectively form a ruthenium-containing film over the copper-containing surface while leaving exposed the dielectric surface, and depositing a copper bulk layer over the ruthenium-containing film.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Rongjun Wang, Hua Chung, Jick M. Yu, Praburam Gopalraja
  • Patent number: 7704879
    Abstract: A method is provided for forming low-resistivity recessed features containing a ruthenium (Ru) film integrated with bulk copper (Cu) metal. The method includes providing a patterned substrate containing a recessed feature, depositing a barrier film in the recessed feature in a barrier film deposition chamber, transferring the patterned substrate from the barrier film deposition chamber to a Ru metal deposition chamber, heat-treating the barrier film in the presence of a H2-containing gas in the Ru metal deposition chamber, and depositing a Ru metal film on the heat-treated barrier film. The method further includes, depositing a Cu seed layer on the Ru metal film and filling the recessed feature with bulk Cu metal. In other embodiments, the method further includes heat-treating the Ru metal film and the Cu seed layer prior to the bulk Cu metal filling.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 27, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Kenji Suzuki
  • Publication number: 20100096756
    Abstract: A semiconductor device has a multilayer interconnection including a copper interconnection film formed in a predetermined area within an insulating film, a liner film, and a high-melting-point metal film. The copper interconnection film is polycrystalline, and crystal grains occupying 40% or more of an area of a unit interconnection surface among crystal grains forming the polycrystal are oriented to (111) in a substrate thickness direction. The copper interconnection film has crystal conformity with the noble metal liner film. In a case where the high-melting-point metal film is formed of Ti and the noble metal liner film is a Ru film, the high-melting-point metal of Ti dissolves into Ru in a solid state to form the noble metal liner. Thus, a copper interconnection is formed with both of Cu diffusion barrier characteristics and Cu crystal conformity.
    Type: Application
    Filed: January 8, 2008
    Publication date: April 22, 2010
    Inventors: Masayoshi Tagami, Yoshihiro Hayashi, Munehiro Tada, Takahiro Onodera, Naoya Furutake, Makoto Ueki, Mari Amano
  • Patent number: 7701062
    Abstract: Provided, is a reliable semiconductor device with a layered interconnect structure that may develop no trouble of voids and interconnect breakdowns, in which the layered interconnect structure comprises a conductor film and a neighboring film as so layered on a semiconductor substrate that the neighboring film is contacted with the conductor film.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: April 20, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tomio Iwasaki, Hideo Miura
  • Patent number: 7666781
    Abstract: Interconnect structures including liner layers that are non-planar with at least the adjacent insulating layer and at least one capping layer on conductive features embedded in the insulating layer. The interconnect structure includes an insulating layer of a dielectric material having a top surface and a bottom surface between the top surface and a substrate. An opening, such as a trench, has sidewalls extending from the top surface of the insulating layer toward the bottom surface and is at least partially filled by a conductive feature. A capping layer is disposed on at least a top surface of the conductive feature. A conductive liner layer is disposed between the insulating layer and the conductive feature along at least the sidewalls of the opening. The conductive liner layer has sidewall portions projecting above the top surface of the insulating layer adjacent to the sidewalls of the opening.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Patent number: 7662713
    Abstract: A semiconductor device provided with: a first interconnection layer provided on a semiconductor substrate; an interlevel insulation film provided over the first interconnection layer; a barrier layer provided between the first interconnection layer and the interlevel insulation film; and a second interconnection layer of gold provided as an uppermost interconnection layer on the interlevel insulation film. The barrier layer is formed in a region of the first interconnection layer including an interlevel connection opening region of the interlevel insulation, and the region is greater than the interlevel connection opening region. The second interconnection layer is electrically connected to the first interconnection layer via the barrier layer in the interlevel connection opening.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: February 16, 2010
    Assignee: Rohm Co., Ltd.
    Inventors: Goro Nakatani, Hitoshi Tamura
  • Patent number: 7656045
    Abstract: A bond pad for an electronic device such as an integrated circuit makes electrical connection to an underlying device via an interconnect layer. The bond pad has a first layer of a material that is aluminum and copper and a second layer, over the first layer, of a second material that is aluminum and is essentially free of copper. The second layer functions as a cap to the first layer for preventing copper in the first layer from being corroded by residual chemical elements. A wire such as a gold wire may be bonded to the second layer of the bond pad.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: February 2, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chu-Chung Lee, Kevin J. Hess
  • Patent number: 7638406
    Abstract: A method of forming an inductor. The method includes: forming a dielectric layer on a substrate; forming a lower trench in the dielectric layer; forming a liner in the lower trench and on the dielectric layer; forming a Cu seed layer over the liner; forming a resist layer on the Cu seed layer; forming an upper trench in the resist layer; electroplating Cu to completely fill the lower trench and at least partially fill the upper trench; removing the resist layer; selectively forming a passivation layer on all exposed Cu surfaces; selectively removing the Cu seed layer from regions of the liner; and removing the thus exposed regions of the liner from the dielectric layer, wherein a top surface of the inductor extends above a top surface of the dielectric layer, the passivation layer remaining on regions of sidewalls of the inductor above the top surface of the dielectric layer.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: December 29, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Panayotis C. Andricacos, John M. Cotte, Hariklia Deligianni, John H. Magerlein, Kevin S. Petrarca, Kenneth J. Stein, Richard P. Volant
  • Patent number: 7638428
    Abstract: A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a layer of a dielectric material. A recess is provided in the layer of dielectric material. The recess is filled with a material comprising silver.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: December 29, 2009
    Assignee: GlobalFoundries, Inc.
    Inventors: Christof Streck, Volker Kahlert
  • Patent number: 7618890
    Abstract: A method for forming a metal/metal oxide structure that includes forming metal oxide regions, e.g. ruthenium oxide regions, at grain boundaries of a metal layer, e.g., platinum. Preferably, the metal oxide regions are formed by diffusion of oxygen through grain boundaries of the metal layer, e.g., platinum, to oxidize a metal layer thereon, e.g, ruthenium layer. The structure is particularly advantageous for use in capacitor structures and memory devices, such as dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: November 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej Sandhu
  • Patent number: 7592259
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: September 22, 2009
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Patent number: 7588667
    Abstract: An iPVD system is programmed to deposit a barrier and/or seed layer using a Ru-containing material into high aspect ratio nano-size features on semiconductor substrates using a process which enhances the sidewall coverage compared to the field and bottom coverage(s) while minimizing or eliminating overhang within an IPVD processing chamber. In the preferred embodiment, an IPVD apparatus having a frusto-conical ruthenium target equipped with a high density ICP source is provided.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: September 15, 2009
    Assignee: Tokyo Electron Limited
    Inventor: Frank M. Cerio, Jr.
  • Patent number: 7589014
    Abstract: A method of producing a semiconductor device having a plurality of wiring layers forms a first interlayer-insulating film, forms a plurality of grooves for wiring in the first interlayer-insulating film, fills metallic films in the grooves to form wirings, etches the first interlayer-insulating film with the wirings as a mask and removes the interlayer-insulating film between the wirings to provide grooves to be filled, and fills a second interlayer-insulating film made of a material of low dielectric constant in the grooves to be filled.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: September 15, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Shimooka, Hideki Shibata, Hideshi Miyajima, Kazuhiro Tomioka
  • Patent number: 7569482
    Abstract: An integrated circuit is silicided by depositing at least one metal on a silicon-containing region and forming a metal silicide. Residue metal that has not been silicided during the formation of the metal silicide is then removed. The removal of the residue metal involves the conversion of the residue metal to an alloy containing the germanide of said metal with minimal if any adverse affect on the silicide. Next, the alloy is removed, in a manner selective to the silicide, by dissolving the alloy in a chemical solution.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: August 4, 2009
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Aomar Halimaoui
  • Patent number: 7566661
    Abstract: A method of forming an EL-Cu enhanced noble metal layer begins with providing a semiconductor substrate in a reaction chamber, wherein the semiconductor substrate includes a trench etched into a dielectric layer. Next, an organometallic precursor containing a noble metal and a reactive gas are pulsed into the reaction chamber proximate to the semiconductor substrate where they react to form a noble metal layer directly on the dielectric layer within the trench. The substrate is then moved into an electroless plating bath and an electroless plating process deposits a copper seed layer onto the noble metal layer. The substrate is then removed from the plating bath.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: July 28, 2009
    Inventor: Adrien R. Lavoie
  • Publication number: 20090170307
    Abstract: A metal layer is formed on an upper surface of a resin layer provided to cover a plurality of semiconductor chips at a side on which an internal connecting terminal is disposed and the internal connecting terminal, and the metal layer is pressed to cause the metal layer in a corresponding portion to a wiring pattern to come in contact with the internal connecting terminal, and to then bond the metal layer in a portion provided in contact with the internal connecting terminal to the internal connecting terminal in a portion provided in contact with the metal layer.
    Type: Application
    Filed: December 17, 2008
    Publication date: July 2, 2009
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: Takaharu Yamano
  • Patent number: 7541284
    Abstract: A ruthenium film deposition method is disclosed. In one embodiment of the method, a first ruthenium film is deposited by using a PEALD process until a substrate is substantially entirely covered with the first ruthenium film. Then, a second ruthenium film is deposited on the first ruthenium film by using a thermal ALD process having a higher deposition speed than that of the PEALD process. In the method, a ruthenium metal film having a high density is formed in a short time by combining a PEALD process of depositing a ruthenium film at a low deposition speed and a deposition process of depositing a ruthenium film at a higher deposition speed. Accordingly, it is possible to form a ruthenium film having high density, a smooth surface, good adhesiveness, and a short incubation period.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: June 2, 2009
    Assignee: ASM Genitech Korea Ltd.
    Inventor: Hyung-Sang Park
  • Patent number: 7528493
    Abstract: A damascene wire and method of forming the wire. The method including: forming a mask layer on a top surface of a dielectric layer; forming an opening in the mask layer; forming a trench in the dielectric layer where the dielectric layer is not protected by the mask layer; recessing the sidewalls of the trench under the mask layer; forming a conformal conductive liner on all exposed surface of the trench and the mask layer; filling the trench with a core electrical conductor; removing portions of the conductive liner extending above the top surface of the dielectric layer and removing the mask layer; and forming a conductive cap on a top surface of the core conductor. The structure includes a core conductor clad in a conductive liner and a conductive capping layer in contact with the top surface of the core conductor that is not covered by the conductive liner.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Meeyoung H. Yoon
  • Patent number: 7507665
    Abstract: A method of manufacturing electrical parts is provided, which method comprises the steps of: forming a photoresist on a part of the surface of a substrate; forming a metal layer on the surface of the substrate after the photoresist has been formed; removing a part of the metal layer; removing a metal oxide film formed on the: surface of the metal layer as a result of removing a part of the metal layer; and removing the photoresist. With this method the contact resistance on the surfaces of the electrical parts can be decreased.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: March 24, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Koji Nitta, Shinji Inazawa, Yoshihiro Hirata, Kazunori Okada
  • Patent number: 7498179
    Abstract: The present invention relates to the field of a semiconductor device having a ferroelectric material capacitor and method of making the same. The semiconductor device includes a capacitor having a triple-level oxygen barrier layer pattern formed by an oxygen barrier metal layer, a material layer formed of a conductive solid solution by compounding the oxygen barrier metal layer and oxygen, and an oxygen barrier metal on an interlayer dielectric with a contact plug. The capacitor also has an electrode and a ferroelectric film electrically contacting to the oxygen barrier layer. Further, a wetting layer is formed between the oxygen barrier layer and the contact plug, and an iridium oxygen layer is formed between the oxygen barrier layer and a capacitor electrode.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: March 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yoon-Jong Song
  • Patent number: 7482269
    Abstract: A method for forming a Ru layer for an integrated circuit by providing a patterned substrate in a process chamber, and exposing the substrate to a process gas comprising a ruthenium carbonyl precursor and a CO gas to form a Ru layer over a feature of the patterned substrate. In one embodiment, the CO partial pressure in the process chamber is varied during the exposing to control the step coverage of the Ru layer over the feature. In an alternative or further embodiment, the step coverage can be controlled by varying the substrate temperature during the exposure.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: January 27, 2009
    Assignee: Tokyo Electron Limited
    Inventor: Kenji Suzuki
  • Patent number: 7476618
    Abstract: A method for enhancing the reliability of copper interconnects and/or contacts, such as the bottom of vias exposing top surfaces of buried copper, or at the top of copper lines just after CMP. The method comprises contacting the exposed copper surface with a vapor phase compound of a noble metal and selectively forming a layer of the noble metal on the exposed copper surface, either by a copper replacement reaction or selective deposition (e.g., ALD or CVD) of the noble metal.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: January 13, 2009
    Assignee: ASM Japan K.K.
    Inventors: Olli V. Kilpelä, Wonyong Koh, Hannu A. Huotari, Marko Tuominen, Miika Leinikka
  • Patent number: 7476615
    Abstract: An iodine-doped ruthenium barrier layer for use with copper interconnects within integrated circuits is formed using novel, iodine-containing ruthenium precursors in an ALD or CVD process. Ruthenium precursors that may be used include ruthenium containing carbonyls, arenes, cyclopentadienyls, and certain other ruthenium containing compounds. The ruthenium precursors include iodine to catalyze a subsequent copper metal deposition and to smooth the surface of the ruthenium layer. The iodine concentration across the thickness of the ruthenium barrier layer may be constant or may be graded.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: January 13, 2009
    Assignee: Intel Corporation
    Inventors: Joseph H. Han, Harsono S. Simka, Adrien R. Lavoie, Juan E. Dominguez, John J. Plombon
  • Publication number: 20090008777
    Abstract: An interconnecting structure for a semiconductor die assembly, comprising: a substrate with pre-formed wiring circuit formed therein; a die having contact pads on an active surface; an adhesive material formed over the substrate to adhere the die over the substrate, wherein the substrate includes a via through the substrate and the adhesive material; and conductive material refilled into the via to couple the contact pads of the die to the wiring circuit of the substrate.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 8, 2009
    Inventors: Diann-Fang Lin, Wen-Kun Yang