And Patterning Of Conductive Layer Patents (Class 438/669)
  • Patent number: 8658526
    Abstract: A method is provided that includes forming completely distinct first features above a substrate, forming sidewall spacers on the first features, filling spaces between adjacent sidewall spacers with filler features, and removing the sidewall spacers. Numerous other aspects are provided.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: February 25, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, Yung-Tin Chen, Steven J. Radigan
  • Patent number: 8652964
    Abstract: A process of forming an electronic device, by forming the source and drain contacts using photolithography, incorporating a self-assembled monolayer (SAM) over the electrical contacts to form an increased work function of the source and drain electrodes and further forming more favorable charge injection properties or within the channel region to improve film morphology and therefore improve charge transport. The SAM material is added to the photoresist stripper during a step of the photolithography process of forming electrical contacts.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: February 18, 2014
    Assignee: Plastic Logic Limited
    Inventors: Dean Bradley Baker, Catherine Ramsdale, Martin Lewis, Rashmi Sachin Bhintade
  • Patent number: 8652900
    Abstract: A trench MOSFET structure with ultra high cell density is disclosed, wherein the source regions and the body regions are located in different regions to save the mesa area between every two adjacent gate trenches in the active area. Furthermore, the inventive trench MOSFET is composed of stripe cells to further increase cell packing density and decrease on resistance Rds between the drain region and the source region.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: February 18, 2014
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20140027917
    Abstract: A metal layer is deposited over an underlying material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation and/or nitridation. A hard mask portion is formed over the metal layer. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. The sequence of a surface pull back of the hard mask portion, trench etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a line pattern having a spacing that is not limited by lithographic minimum dimensions.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chiahsun Tseng, David V. Horak, Chun-chen Yeh, Yunpeng Yin
  • Patent number: 8637399
    Abstract: An etching composition for a copper-containing layer includes about 0.1% to about 30% by weight of ammonium persulfate, about 0.1% to about 10% by weight of a sulfate, about 0.01% to about 5% by weight of an acetate and about 55% to about 99.79% by weight of water. The etching composition having improved stability during storage and an increased capacity for etching.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 28, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hong-Sick Park, Bong-Kyun Kim, Wang-Woo Lee, Ki-Beom Lee, Sam-Young Cho, Won-Guk Seo, Gyu-Po Kim
  • Publication number: 20140021982
    Abstract: Nanoelectromechanical logic devices can include a plurality of flexible bridges having control and logic electrodes. Voltages applied to control electrodes can be used to control flexing of the bridges. The logic electrodes can provide logical functions of the applied voltages.
    Type: Application
    Filed: January 10, 2011
    Publication date: January 23, 2014
    Applicant: UNIVERSITY OF UTAH
    Inventor: Massood Tabib-Azar
  • Patent number: 8629052
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided in which a plurality of patterns are simultaneously formed to have different widths and the pattern densities of some regions are increased using double patterning.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: January 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-ju Park, Jae-ho Min, Myeong-cheol Kim, Dong-chan Kim, Jae-hwang Sim
  • Publication number: 20140011351
    Abstract: A method of patterning a metal layer is disclosed. The method includes providing a substrate and forming a material layer over the substrate. The method includes forming a second material layer over the first material layer. The method includes performing a first patterning process to the second material layer to form a trench in the second material layer. The first patterning process defines a width size of the trench, the width size being measured in a first direction. The method includes performing a second patterning process to the trench to transform the trench. The second patterning process defines a length size of the transformed trench. The length size is measured in a second direction different from the first direction. The method also includes filling the transformed trench with a conductive material.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 9, 2014
    Inventor: Cheng-Hao Yeh
  • Publication number: 20140011356
    Abstract: A chuck, a system including a chuck and a method for making a semiconductor device are disclosed. In one embodiment the chuck includes a first conductive region configured to be capacitively coupled to a first RF power generator, a second conductive region configured to be capacitively coupled to a second RF power generator and an insulation region that electrically insulates the first conductive region from the second conductive region.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 9, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Manfred Engelhardt
  • Publication number: 20140001638
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a workpiece and a plurality of first conductive lines disposed over the workpiece in a metallization layer. A plurality of second conductive lines is disposed over the workpiece in the metallization layer. The plurality of second conductive lines comprises a greater vertical height in a cross-sectional view of the workpiece than a vertical height of the plurality of first conductive lines.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Min Fu, Wen-Hao Chen, Dian-Hau Chen
  • Publication number: 20130341795
    Abstract: Some embodiments include a semiconductor construction having a pair of lines extending primarily along a first direction, and having a pair of contacts between the lines. The contacts are spaced from one another by a lithographic dimension, and are spaced from the lines by sub-lithographic dimensions. Some embodiments include a method of forming a semiconductor construction. Features are formed over a base. Each feature has a first type sidewall and a second type sidewall. The features are spaced from one another by gaps. Some of the gaps are first type gaps between first type sidewalls, and others of the gaps are second type gaps between second type sidewalls. Masking material is formed to selectively fill the first type gaps relative to the second type gaps. Excess masking material is removed to leave a patterned mask. A pattern is transferred from the patterned mask into the base.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Justin B. Dorhout, Ranjan Khurana, David Swindler, Jianming Zhou
  • Patent number: 8609539
    Abstract: An embedded semiconductor device substrate having a semiconductor device integrated therein is formed by disposing a semiconductor device in an opening provided on an insulating resin, and sandwiching the semiconductor device and the insulating resin with a front surface wiring layer and a rear surface wiring layer and performing heat pressing. Connection between bumps of the semiconductor device and the front surface wiring layer is made with a connection wiring pattern. The connection wiring pattern is formed by patterning a resist film by direct exposure thereof with a light beam, and then performing etching. Thereby, it becomes possible to absorb a mounting error of a semiconductor device to a printed wiring board and a positional error of electrodes between semiconductor devices accompanying the tendency of reduction of the pitch of a semiconductor device, and to perform electric connection with a wiring pattern securely.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: December 17, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hiroshi Kondo
  • Publication number: 20130330866
    Abstract: The present invention relates to a method of fabricating a patterned substrate for fabricating a light emitting diode (LED), the method including forming an aluminum layer on a substrate, forming an anodic aluminum oxide (AAO) layer having a large number of holes formed therein by performing an anodizing treatment of the aluminum layer, partially etching a surface of the substrate using the aluminum layer with the large number of the holes as a shadow mask, thereby forming patterns, and removing the aluminum layer from the substrate.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Yeo Jin YOON, Chang Yeon Kim
  • Patent number: 8603884
    Abstract: A method of fabricating a substrate includes forming first and second spaced features over a substrate. The first spaced features have elevationally outermost regions which are different in composition from elevationally outermost regions of the second spaced features. The first and second spaced features alternate with one another. Every other first feature is removed from the substrate and pairs of immediately adjacent second features are formed which alternate with individual of remaining of the first features. After such act of removing, the substrate is processed through a mask pattern comprising the pairs of immediately adjacent second features which alternate with individual of the remaining of the first features. Other embodiments are disclosed.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Gurtej S. Sandhu, Anton deVilliers
  • Patent number: 8598035
    Abstract: Disclosed are semiconductor dice with backside trenches filled with elastic conductive material. The trenches reduce the on-state resistances of the devices incorporated on the dice. The elastic conductive material provides a conductive path to the backsides of the die with little induced stress on the semiconductor die caused by thermal cycling. Also disclosed are packages using the dice, and methods of making the dice.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: December 3, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Michael D. Gruenhagen, Suku Kim, James J. Murphy, Eddy Tjhia, Chung-Lin Wu, Mark Larsen, Douglas E. Dolan
  • Patent number: 8586469
    Abstract: A method of patterning a metal layer is disclosed. The method includes providing a substrate and forming a material layer over the substrate. The method includes forming a second material layer over the first material layer. The method includes performing a first patterning process to the second material layer to form a trench in the second material layer. The first patterning process defines a width size of the trench, the width size being measured in a first direction. The method includes performing a second patterning process to the trench to transform the trench. The second patterning process defines a length size of the transformed trench. The length size is measured in a second direction different from the first direction. The method also includes filling the transformed trench with a conductive material.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chen-Hao Yeh
  • Patent number: 8575022
    Abstract: A structure and method for fabricating the structure that provides a metal wire having a first height at an upper surface. An insulating material surrounding said metal wire is etched to a second height below said first height of said upper surface. The metal wire from said upper surface, after etching said insulating material, is planarized to remove sufficient material from a lateral edge portion of said metal wire such that a height of said lateral edge portion is equivalent to said second height of said insulating material surrounding said metal wire.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gregory S. Chrisman, Edward C. Cooney, III, Jeffrey P. Gambino, Zhong-Xiang He, Thomas L. McDevitt, Eva A. Shah
  • Publication number: 20130285263
    Abstract: A sensor array package can include a sensor disposed on a first side of a substrate. Signal trenches can be formed along the edges of the substrate and a conductive layer can be deposited in the signal trench and can couple to sensor signal pads. Bond wires can be attached to the conductive layers and can be arranged to be below a surface plane of the sensor. The sensor array package can be embedded in a printed circuit board enabling the bond wires to terminate at other conductors within the printed circuit board.
    Type: Application
    Filed: September 30, 2012
    Publication date: October 31, 2013
    Applicant: APPLE INC.
    Inventors: Shawn X. ARNOLD, Terry L. GILTON, Matthew LAST
  • Patent number: 8569168
    Abstract: Method of forming a semiconductor structure which includes forming first conductive spacers on a semiconductor substrate; forming second conductive spacers with respect to the first conductive spacers, at least one of the second conductive spacers adjacent to and in contact with each of the first conductive spacers to form combined conductive spacers; recessing the second conductive spacers with respect to the first conductive spacers so that the first conductive spacers extend beyond the second conductive spacers; depositing an ILD to cover the first and second spacers except for an exposed edge of the first conductive spacers; patterning the exposed edges of the first conductive spacers to recess the edges of the first conductive spacers in predetermined locations to form recesses with respect to the ILD; and filling the recesses with an insulating material to leave unrecessed edges of the first conductive spacers as vias to subsequent wiring features.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8569185
    Abstract: A method for fabricating an integrated device is disclosed. In an embodiment, a hard mask layer with a limited thickness is formed over a gate electrode layer. A treatment is provided to the hard mask layer to make the hard mask layer more resistant to a wet etch solution. Then, a patterning is provided on the treated hard mask layer and the gate electrode to from a gate structure.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: October 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Matt Yeh, Hui Ouyang, Han-Pin Chung, Shiang-Bau Wang
  • Publication number: 20130260557
    Abstract: A semiconductor process for forming specific pattern features comprising the steps of forming a target layer, a hard mask layer and a plurality of equally spaced-apart core bodies on a substrate, forming spacers on sidewalls of the core bodies, removing the core bodies so that the spacers are spaced-apart on the hard mask layer, using spacers as a mask to pattern the hard mask layer, removing the hard mask bodies outside of a predetermined region, forming photoresists on several outermost hard mask bodies of the predetermined region, and using the photoresists and remaining hard mask bodies as a mask to pattern the target layer.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 3, 2013
    Inventors: Zih-Song Wang, Shu-Cheng Lin, Yoshikazu Miyawaki
  • Publication number: 20130256899
    Abstract: At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line.
    Type: Application
    Filed: November 4, 2011
    Publication date: October 3, 2013
    Inventors: Boyan Boyanov, Kanwal Jit Singh
  • Patent number: 8546253
    Abstract: The invention provides a semiconductor chip structure having at least one aluminum pad structure and a polyimide buffering layer under the aluminum pad structure, wherein the polyimide buffering layer is self-aligned to the aluminum pad structure, and a method of forming the same. The method includes forming a polyimide buffering layer on a substrate, forming an aluminum pad structure on the buffering layer, and, using the aluminum pad structure as a mask, etching the substrate to remove the polyimide buffering layer from the substrate everywhere except under the aluminum pad structure.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8546227
    Abstract: A method of making an integrated circuit includes providing a substrate with a high-k dielectric and providing a polysilicon gate structure over the high-k dielectric. A doping process is performed on the substrate adjacent to the polysilicon gate structure, after which the polysilicon gate structure is removed and replaced with a metal gate structure. An interlayer dielectric (ILD) is deposited over the metal gate structure and the doped substrate, and a dry etch process forms a trench in the ILD to a top surface of the metal gate structure. After the dry etch process, a wet etch process forms an undercut near the top surface of the metal gate structure. The trench and undercut are then filled with a conductive material.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hak-Lay Chuang, Sheng-Chen Chung, Wei Cheng Wu, Bao-Ru Young, Huan-Just Lin, Tsai-Chun Li
  • Patent number: 8546255
    Abstract: The present invention relates to a method for forming vias in a semiconductor substrate, including the following steps: (a) providing a semiconductor substrate having a first surface and a second surface; (b) forming a groove on the semiconductor substrate; (c) filling the groove with a conductive metal; (d) removing part of the semiconductor substrate which surrounds the conductive metal, wherein the conductive metal is maintained so as to form an accommodating space between the conductive metal and the semiconductor substrate; and (e) forming an insulating material in the accommodating space. In this way, thicker insulating material can be formed in the accommodating space, and the thickness of the insulating material in the accommodating space is even.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: October 1, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Meng-Jen Wang
  • Patent number: 8541306
    Abstract: A semiconductor device and a method of forming patterns on a semiconductor device are disclosed. The semiconductor device may include high-density patterns with a minimum size that may be less the resolution limit of a photolithography process, and may have a substrate including a memory cell region and an adjacent connection region, a plurality of first conductive lines extending from the memory cell region to the connection region in a first direction, a plurality of second conductive lines connected from respective first conductive lines to a plurality of pads having a width equal to twice the width of each of the first conductive lines. The method may include two levels of spacer formation to provide sub resolution line widths and spaces as well as selected multiples of the minimum line widths and spaces.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Song-yi Yang, Seung-pil Chung, Dong-hyun Kim, O-ik Kwon, Hong Cho
  • Patent number: 8536048
    Abstract: According to one embodiment, a lower wiring layer is formed by using a sidewall transfer process for forming a sidewall film having a closed loop along a sidewall of a sacrificed or dummy pattern and, after removing the sacrificed pattern to leave the sidewall film, selectively removing the base material with the sidewall film as a mask. One or more upper wiring layers are formed in an upper layer of the lower wiring layer via another layer using the sidewall transfer process. Etching for cutting each of the lower wiring layer and the upper wiring layers is collectively performed, whereby closed-loop cut is applied to the lower wiring layer and the upper wiring layers.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Nansei
  • Publication number: 20130234303
    Abstract: A metal shield structure is provided for an integrated circuit (IC) having at least a first metal contact coupled to a fixed potential and a second metal contact. A first passivation layer is located between the first and second metal contacts and on a first portion of the first metal contact and a first portion of the second metal contact, leaving a second portion of the first metal contact and a second portion of the second metal contact uncovered by the first passivation layer. A metal shield layer is provided on the second portion of the first metal contact and on the first passivation layer, and a second passivation layer is formed on the metal shield layer.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: POLAR SEMICONDUCTOR, INC.
    Inventors: Roger Carroll, Greg Nelson
  • Patent number: 8530352
    Abstract: Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Baosuo Zhou, Ming-Chuan Yang
  • Publication number: 20130221355
    Abstract: A substrate includes an anchor area (30) physically secured to a surface of the substrate (10) and at least one printable electronic component (20). The at least one printable electronic component includes an active layer (14) having one or more active elements thereon, and is suspended over the surface of the substrate by electrically conductive breakable tethers (40). The electrically conductive breakable tethers include an insulating layer and a conductive layer thereon that physically secure and electrically connect the at least one printable electronic component to the anchor area, and are configured to be preferentially fractured responsive to pressure applied thereto. Related methods of fabrication and testing are also discussed.
    Type: Application
    Filed: August 24, 2011
    Publication date: August 29, 2013
    Inventors: Christopher Bower, Etienne Menard, Matthew Meitl
  • Patent number: 8518824
    Abstract: A method for patterning self-aligned vias in a dielectric. The method includes forming a first trench partially through a hard mask, where the trench corresponds to a desired wiring path in the dielectric. The trench should be formed on a sub-lithographic scale. Then, form a second trench, also of a sub-lithographic scale, that intersects the first trench. The intersection forms a pattern extending through the depth of the hard mask, and corresponds to a via hole in the dielectric. The via hole is etched into the dielectric through the hard mask. Then the first trench is extended through the hard mask and the exposed area is etched to form the wiring path, which intersects the via hole. Conductive material is deposited to form a sub-lithographic via and wiring. This method may be used to form multiple vias of sub-lithographic proportions and with a sub-lithographic pitch.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: John Christopher Arnold, Sean D. Burns, Sivananda K. Kanakasabapathy, Yunpeng Yin
  • Publication number: 20130214413
    Abstract: Conductive line structures, and methods of forming the same, include first and second pattern structures, insulation layer patterns and an insulating interlayer. The first pattern structure includes a conductive line pattern and a hard mask stacked, and extends in a first direction. The second pattern structure includes a second conductive line pattern and another hard mask stacked, and at least a portion of the pattern structure extends in the first direction. The insulation layer patterns contact end portions of the pattern structures. The first pattern structure and an insulation layer pattern form a closed curve shape in plan view, and the second pattern structure and another insulation layer pattern form another closed curve shape in plan view. The insulating interlayer covers upper portions of the pattern structures and the insulation layer patterns, an air gap between the pattern structures, and another air gap between the insulation layer patterns.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 22, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130210202
    Abstract: A method of planarizing a substrate includes forming a conductive pattern on a first surface of a base substrate, forming a positive photoresist layer on the base substrate and the conductive pattern, exposing the positive photoresist layer to light by irradiating a second surface of the base substrate opposite to the first surface with light, developing the positive photoresist layer to form a protruded portion on the conductive pattern, forming a planarizing layer on the base substrate and the protruded portion and eliminating the protruded portion.
    Type: Application
    Filed: November 14, 2012
    Publication date: August 15, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: Samsung Display Co., LTD.
  • Patent number: 8507778
    Abstract: Self-assembling multimeric physical models of closed polyhedral structures made of structurally symmetric units, and which mimic the structure and self-assembly characteristics of naturally occurring systems such as viral capsids, are provided. Also provided are methods of creating structurally symmetric units, kits for forming self-assembling physical models of polyhedral structures, and methods of forming the same.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 13, 2013
    Inventor: Arthur J. Olson
  • Patent number: 8500952
    Abstract: Plasma confinement ring assemblies are provided that include confinement rings adapted to reach sufficiently high temperatures on plasma-exposed surfaces of the rings to avoid polymer deposition on those surfaces. The plasma confinement rings include thermal chokes adapted to localize heating at selected portions of the rings that include the plasma exposed surfaces. The thermal chokes reduce heat conduction from those portions to other portions of the rings, which causes selected portions of the rings to reach desired temperatures during plasma processing.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 6, 2013
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, James H. Rogers, David Trussell
  • Patent number: 8497186
    Abstract: Several embodiments for semiconductor devices and methods for forming semiconductor devices are disclosed herein. One embodiment is directed to a method for manufacturing a microelectronic imager having a die including an image sensor, an integrated circuit electrically coupled to the image sensor, and electrical connectors electrically coupled to the integrated circuit. The method can comprise covering the electrical connectors with a radiation blocking layer and forming apertures aligned with the electrical connectors through a layer of photo-resist on the radiation blocking layer. The radiation blocking layer is not photoreactive such that it cannot be patterned using radiation. The method further includes etching openings in the radiation blocking layer through the apertures of the photo-resist layer.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: July 30, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Swarnal Borthakur, Marc Sulfridge
  • Patent number: 8492278
    Abstract: A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Farrell Good, Baosuo Zhou, Xiaolong Fang, Fatma Arzum Simsek-Ege
  • Patent number: 8492249
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Nano-Electronic And Photonic Devices And Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8486831
    Abstract: A miniaturized semiconductor device is provided by reducing the design thickness of a wiring line protecting film covering the surface of a wiring layer, and reducing the distance between the wiring layer and via plugs formed by a self-aligning process. Dummy mask layers extending in the same layout pattern as the wiring layer is formed above the wiring layer covered with a protecting film composed of a cap layer and side wall layers. In the self-aligning process for forming via plugs in a self-aligned manner with the wiring layer and its protecting film, the thickness of the cap layer is reduced and the design interval between the via plugs is reduced, whereby the miniaturization of the semiconductor device is achieved.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 16, 2013
    Assignee: Elpida Memory, Inc
    Inventor: Hirotaka Kobayashi
  • Publication number: 20130171806
    Abstract: Provided is a three-dimensional semiconductor memory device. The three-dimensional semiconductor memory device includes a substrate that has a cell array region including a pair of sub-cell regions and a strapping region interposed between the pair of sub-cell regions. A Plurality of sub-gates are sequentially stacked on the substrate in each of the sub-cell regions, and interconnections are electrically connected to extensions of the stacked sub-gates, respectively, which extend into the strapping region. Each of the interconnections is electrically connected to the extensions of the sub-gate which are disposed in the pair of the sub-cell regions, respectively, and which are located at the same level.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 4, 2013
    Inventors: Sunil Shim, Sunghoi Hur, Hansoo Kim, Jaehoon Jang, Hoosung Cho
  • Patent number: 8470617
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 25, 2013
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr., Peter T. Kazlas
  • Patent number: 8470710
    Abstract: A method of forming a metal pattern includes depositing a metal material over a photosensitive, insulative material and into a trench positioned over a bond pad. A photoresist material having a substantially planar surface may be formed over the metal material. A portion of the photoresist material may be etched to expose the metal material outside of the trench. The metal material may be isotropically etched to leave sidewalls of the metal protruding above surfaces of the photosensitive, insulative material outside of the trench. Some methods include removing a portion of a dielectric material to form at least one trench. Metal material and photoresist material may be deposited over the trench. A portion of the photoresist material may be etched to expose areas of the metal material. The metal material may be etched to form sidewalls of the metal material that protrude above the dielectric material.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: June 25, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Christopher J. Gambee, G. Alan VonKrosigk
  • Publication number: 20130153872
    Abstract: The invention provides a thin-film transistor substrate, including: a substrate; a metal lead structure formed on the substrate, wherein the metal lead structure includes: a main conductor layer formed on the substrate, wherein the main conductor has a sidewall; a top conductor layer having a first portion, second portion and third portion, wherein the first portion is formed on the main conductor layer, the second portion is formed on the sidewall of the main conductor layer, and the third portion is formed on the substrate, and a continuous structure is formed by the first portion, the second portion and the third portion.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 20, 2013
    Applicants: CHIMEI INNOLUX CORPORATION, INNOCOM TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventors: INNOCOM TECHNOLOGY (SHENZHEN) CO., LTD, CHIMEI INNOLUX CORPORATION
  • Patent number: 8466007
    Abstract: A power semiconductor module includes: an interconnect layer including an electrical conductor patterned on a dielectric layer, the electrical conductor including a power coupling portion having a thickness sufficient to carry power currents and a control coupling portion having a thickness thinner than that of the power coupling portion; and a semiconductor power device physically coupled to the interconnect layer and electrically coupled to the power coupling portion of the electrical conductor.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 18, 2013
    Assignee: General Electric Company
    Inventors: Eladio Clemente Delgado, Richard Alfred Beaupre, Stephen Daley Arthur, Ernest Wayne Balch, Kevin Matthew Durocher, Paul Alan McConnelee, Raymond Albert Fillion
  • Publication number: 20130149861
    Abstract: A contact for memory cells and integrated circuits having a conductive layer supported by the sidewall of a dielectric mesa, memory cells incorporating such a contact, and methods of forming such structures.
    Type: Application
    Filed: January 4, 2013
    Publication date: June 13, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: MICRON TECHNOLOGY, INC.
  • Patent number: 8450207
    Abstract: The present invention proposes the use of a silicon nitride layer on top of a second conductive layer. After a step of etching a second conductive layer, an oxide spacer is formed to define a gap. Then, another silicon nitride layer fills up the gap. After that, the oxide spacer is removed. Later, a first conductive layer is etched to separate the digit line to cell contact line.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 28, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Shyam Surthi, Lars Heineck
  • Publication number: 20130122703
    Abstract: A method for fabricating a semiconductor device includes forming an etch target layer including an insulation layer and a metal layer over a substrate, forming a hard mask layer pattern over the etch target layer, forming a protective layer pattern which includes a region having a shape of an overhang formed in an upper portion of the hard mask layer pattern, etching the insulation layer of the etch target layer by using the first region as an etch barrier, and etching the metal layer of the etch target layer by using the second region as an etch barrier.
    Type: Application
    Filed: December 29, 2011
    Publication date: May 16, 2013
    Inventor: Mi-Na KU
  • Publication number: 20130115770
    Abstract: An etching composition for a copper-containing layer includes about 0.1% to about 30% by weight of ammonium persulfate, about 0.1% to about 10% by weight of a sulfate, about 0.01% to about 5% by weight of an acetate and about 55% to about 99.79% by weight of water.
    Type: Application
    Filed: August 31, 2012
    Publication date: May 9, 2013
    Inventors: Hong-Sick Park, Bong-Kyun Kim, Wang-Woo Lee, Ki-Beom Lee, Sam-Young Cho, Won-Guk Seo, Gyu-Po Kim
  • Patent number: 8431482
    Abstract: Integrated circuits, a process for recessing an embedded copper feature within a substrate, and a process for recessing an embedded copper interconnect within an interlayer dielectric substrate of an integrated circuit are provided. In an embodiment, a process for recessing an embedded copper feature, such as an embedded copper interconnect, within a substrate, such as an interlayer dielectric substrate, includes providing a substrate having an embedded copper feature disposed therein. The embedded copper feature has an exposed surface and the substrate has a substrate surface adjacent to the exposed surface of the embedded copper feature. The exposed surface of the embedded copper feature is nitrided to form a layer of copper nitride in the embedded copper feature. Copper nitride is selectively etched from the embedded copper feature to recess the embedded copper feature within the substrate.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 30, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Errol T. Ryan, Xunyuan Zhang
  • Patent number: 8431485
    Abstract: A manufacturing method for a buried circuit structure includes providing a substrate having at least a trench formed therein, forming a firs conductive layer on the substrate blanketly, forming a patterned photoresist having a surface lower than an opening of the trench in the trench, removing the first conductive layer not covered by the patterned photoresist to form a second conductive layer having a top lower than an opening of the trench in the trench, removing the patterned photoresist, performing a dry etching process to remove the second conductive layer from the bottom of the trench to form a third conductive layer on the sidewalls of the trench, performing a selective metal chemical vapor deposition to form a metal layer having a surface lower than a surface of the substrate, and forming a protecting layer filling the trench on the metal layer.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 30, 2013
    Assignee: Taiwan Memory Company
    Inventors: Le-Tien Jung, Tai-Sheng Feng