With Coupling To A Stage Of The Receiver Patents (Class 455/280)
  • Patent number: 10122327
    Abstract: A tunable amplifier includes continuous tunability for both frequency and power levels. The tunable amplifier includes a combination of a tunable series resonator and a multi-stage LC network as the output matching network. The tunable amplifier incorporates a variable diode varactor with high breakdown voltage and high tuning range into a tunable resonator. The tunable resonator is connected to a fixed output matching network to enable a wide range of operating frequencies. The tunable amplifier enables high power, high efficiency, broadband and load-modulated power amplification, which is greatly desired for next-generation wireless communication systems and other high-frequency applications.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: November 6, 2018
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Kenle Chen, Dimitrios Peroulis
  • Patent number: 9620850
    Abstract: A wireless communication device includes a circuit board, a metal frame, and a slot antenna. The circuit board includes a multiple bandpass filter, a plurality of matching circuits, and a plurality of Radio Frequency (RF) modules. The metal frame surrounds the circuit board. The slot antenna includes a feeding portion, at least one grounding portion, and a radiating portion. The feeding portion and the at least one grounding portion are connected between the circuit board and the metal frame, the radiating portion and the circuit board enclose a slot. The radiating portion is formed on a portion of the metal frame. The slot antenna, the multiple bandpass filter, the plurality of matching circuits, and the plurality of RF modules are electrically connected in that order.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 11, 2017
    Assignee: Chiun Mai Communication Systems, Inc.
    Inventors: Wei-Cheng Su, Yen-Hui Lin
  • Patent number: 9575124
    Abstract: A system for communicating high voltages for a semiconductor device is provided. One system includes a controller having an input pad and an output pad, each of the input pad and the output pad being coupled to a respective high voltage switch of the controller. The system also includes a plurality of semiconductor chips, where each of the plurality of semiconductor chips has at least one input pad coupled to a high voltage switch of a respective semiconductor chip. A high voltage that is higher than normal operation voltages of the semiconductor device is coupled from the input pad of the controller to the output pad of the controller via the coupled high voltage switches of the controller. The high voltage is further coupled from the output pad of the controller to the at least one input pad of the respective semiconductor chip via the high voltage switch coupled to the at least one input pad of the respective semiconductor chip.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: February 21, 2017
    Assignee: SanDisk Technologies LLC
    Inventors: Darmin Jin, William Chau, Brian Cheung
  • Patent number: 9088344
    Abstract: A method of providing frequency dependent signal attenuation. An RF input signal is split into a first signal portion and a second signal portion. The first signal portion is discrete time filtered and bandstop filtered to provide a filtered signal portion. The second signal portion is applied to a component and a component output signal portion is received from the component. The component output signal portion is combined with the filtered signal portion to provide an RF output signal having frequency dependent attenuation.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 21, 2015
    Assignee: RPX Clearinghouse LLC
    Inventor: Mark Wyville
  • Patent number: 8971836
    Abstract: Disclosed is a method of adjusting the receive frequency of a radio frequency (RF) receiver die (4), the RF receiver die (4) comprising a mixer (8) with an associated local oscillator (10) and a first low-noise amplifier (6) arranged to operate over a first frequency range, the method comprising affixing a second low-noise amplifier (40) arranged to operate over a second frequency range to the RF receiver die (4).
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 3, 2015
    Assignee: Telekom Malaysia Berhad
    Inventors: Syahrizal Salleh, Mohamad Faizal Hashim, Zulkalnain Mohd Yussof
  • Patent number: 8971831
    Abstract: The present disclosure relates to a front-end system for a radio device, the front-end system comprising a low-noise amplifier (LNA), arranged for receiving a radio frequency input signal (RFIN) and arranged for outputting an amplified radio frequency signal (RFOUT), wherein the low-noise amplifier comprises a first differential amplifier, and a mixer (MIX), arranged for down-converting the amplified radio signal (RFOUT) provided by the low-noise amplifier (LNA) to a baseband signal (BB), by multiplying the amplified radio signal (RFOUT) with a local oscillator (LO) frequency tone, said low-noise amplifier (LNA) and said mixer (MIX) being inductively coupled.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 3, 2015
    Assignee: IMEC
    Inventors: Vojkan Vidojkovic, Kristof Vaesen, Piet Wambacq
  • Patent number: 8909185
    Abstract: A method of providing frequency dependent signal attenuation. An RF input signal is split into a first signal portion and a second signal portion. Discrete time filtering, a negative group delay and bandstop filtering are applied to the first signal portion to provide a filtered signal portion. The second signal portion is applied to a component, and a component output signal portion is received from the component. The component output signal portion is combined with the filtered signal portion to provide an RF output signal having frequency dependent attenuation.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: December 9, 2014
    Assignee: Rockstar Consortium US LP
    Inventor: Mark Wyville
  • Patent number: 8847433
    Abstract: An apparatus for providing power to a multipole in a mass spectrometer is provided. The apparatus comprises a first resonant LC circuit; at least one inductor for forming a second resonant LC circuit with the multipole, the second resonant LC circuit connected in cascade with the first resonant LC circuit, when the at least one inductor is connected to the multipole; an RF power source for providing an RF signal; and a step-up transformer connected in parallel to the RF power source on a primary side and the first resonant LC circuit on a secondary side, the step-up transformer providing voltage gain for the RF signal thereby reducing the loaded Q of the resonant LC circuits.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 30, 2014
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: John Vandermey
  • Patent number: 8831548
    Abstract: A waveform reconstruction circuit receives an rf signal from an antenna, digitizes it, and then generates an undistorted reconstructed waveform. The reconstructed waveform can then be conventionally mixed and demodulated to extract useful signal information with enhanced receiver fidelity and sensitivity.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 9, 2014
    Assignee: American Radio LLC
    Inventor: Robert Hotto
  • Patent number: 8805314
    Abstract: To implement a filter circuit with low noise and a low cutoff frequency in a smaller area, a filter circuit has a first circuit which receives an input signal supplied to an input terminal, amplifies the signal, and outputs the amplified signal to an output terminal, a first differential amplification circuit for receiving the output signal of the first circuit through a first capacitance element, a first resistance element for forming a negative feedback path between the input and output of the first differential amplification circuit, and a second resistance element for forming a negative feedback path between the output of the first differential amplification circuit and the input of the first circuit.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuku Katsube, Takeshi Uchitomi, Yutaka Igarashi
  • Patent number: 8798560
    Abstract: A wireless device includes processing circuitry, a receiver section, a transmitter section, and an antenna. The processing circuitry determines a set of information signals of a RF Multiple Frequency Bands Multiple Standards (MFBMS) signal. The receiver section down-converts a portion of the RF MFBMS signal by one or more respective shift frequencies to produce a corresponding baseband/low Intermediate Frequency (BB/IF) information signal from which the processing circuitry extracts data. The transmitter section converts a respective BB/IF information signal received from the processing circuitry by a respective shift frequency to produce a corresponding RF information signal and a combiner that combines the RF information signals to form a RF MFBMS signal. Each of the receiver section and the transmitter section may include analog signal path elements that are adjustable based upon characteristics of the RF MFBMS signal, the BB/IF MFBMS signal, and/or based upon signals carried therein, e.g.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 5, 2014
    Assignee: Broadcom Corporation
    Inventors: John Walley, David Rosmann, Brima B. Ibrahim, Arya Reza Behzad, Jeyhan Karaoguz, Vinko Erceg
  • Patent number: 8781426
    Abstract: Techniques for controlling operation of control loops in a receiver are described. The operation of at least one control loop is modified in conjunction with a change in operating state, which may correspond to a change in linearity state, gain state, operating frequency, antenna configuration, etc. A change in linearity state may occur when jammers are detected and may cause bias current of analog circuit blocks to be adjusted. The at least one control loop to be modified may include a DC loop, an AGC loop, etc. The operation of a control loop may be modified by disabling the control loop or changing its time constant prior to changing operating state, waiting a predetermined amount of time to allow the receiver to settle, and enabling the control loop or restoring its time constant after waiting the predetermined amount of time.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: July 15, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Steven C. Ciccarelli, Brian Banister, Brian George, Soon-Seng Lau, Prasad Gudem, Arun Raghupathy
  • Patent number: 8693528
    Abstract: In one or more embodiments, a circuit is configured to receive a differential signal from a transmitter that is isolated from the receiver circuit and that includes a common-mode suppression circuit and signal combining circuit coupled to the corresponding lines carrying the differential signals. The common-mode suppression and signal combining circuits are configured to suppress common-mode signals of differential signals communicated on the set of differential signal lines and combine to form of differential-mode components of the differential signals.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 8, 2014
    Assignee: NXP B.V.
    Inventors: Rameswor Shrestha, Hendrik Boezen, Martin Bredius
  • Patent number: 8660508
    Abstract: An electronic device comprising a passive harmonic-rejection mixer (400) and a calibration circuitry (425). The passive harmonic rejection mixer has an input (102) connected to several sub-mixer stages (402), and the sub-mixer stages are connected to a summing module (406, 408) for generating the output (104). Each sub-mixing stage comprises a gating module (414), an amplifier (416), and a weighting module (418), the gating module selectively passing the input signal or the input signal with inverted polarity under the control of control signals. The calibration circuitry (425) is adapted to input a reference signal (430) to the input of the mixer, receive an output signal (104) from the output of the mixer, and set the weights (K1, K2, K3, K4) of the weighting modules to make the output signal match an expected output signal.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: February 25, 2014
    Assignee: NXP, B.V.
    Inventors: Dennis Jeurissen, Gerben Willem de Jong, Jan van Sinderen, Johannes Hubertus Antonius Brekelmans
  • Patent number: 8655299
    Abstract: A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a frequency translated bandpass filter (FTBPF), an LNA, and a mixing section. The FTBPF includes a switching network and a plurality of baseband impedances. The switching network is operable to couple the plurality of baseband impedances to the FEM interface in accordance with a plurality of phase-offset RF clock signals to RF bandpass filter the inbound RF signal. The LNA amplifies the filtered inbound RF signal and the mixing section mixes the amplified inbound RF signal with a local oscillation to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: February 18, 2014
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Hooman Darabi
  • Patent number: 8626084
    Abstract: An integrated circuit for transmit and receive matching is described. The integrated circuit includes a transmit amplifier. The transmit amplifier includes a first transistor, a second transistor and a first inductor. The first inductor couples the first transistor to the second transistor. The integrated circuit also includes a low noise amplifier. The low noise amplifier includes a third transistor, a fourth transistor, the first inductor, a second inductor, a third inductor and a transformer. The second inductor couples the first inductor to the third transistor. The third inductor couples the third transistor to ground.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: January 7, 2014
    Assignee: QUALCOMM, Incorporated
    Inventors: Ngar Loong A Chan, Jonghoon Choi, Bindu Gupta
  • Patent number: 8606210
    Abstract: A polyphase harmonic rejection mixer, comprising a plurality of stages following each other; wherein a first stage is arranged to perform at least frequency conversion; and a second stage is arranged to perform at least selective weighting and combining; wherein at least two of the plurality of stages are arranged to perform at least combining. In an embodiment, the first stage (28) comprises three single-ended gain blocks (10, 12, 14), arranged to perform selective weighting, frequency conversion and combining; and a second stage (30) following the first stage (28) and arranged to perform selective weighting and combining. The second stage (30) may reduce the number of phases output by the first stage (28) and may output (32) a complex differential down converted signal. The mixer may be directly interfaced to an antenna of an LNA-less receiver without weighting in the first stage. The mixer may be included in a software-defined radio.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: December 10, 2013
    Assignee: NXP, B.V.
    Inventors: Zhiyu Ru, Eric A. M. Klumperink, Bram Nauta, Johannes H. A. Brekelmans
  • Patent number: 8594604
    Abstract: Capacitive circuits are implemented with desirable quality factors in various implementations. According to an example embodiment, a fringe capacitor includes two capacitive circuits (e.g., plates), respectively having a plurality of capacitive fingers extending from an end structure, and respectively having a connecting pin that is adjacent the connecting pin of the other capacitive circuit, on a common side fringe capacitor. The capacitive fingers are arranged in stacked layers, with vias connecting the fingers in different layers back to the connecting pins.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 26, 2013
    Assignee: NXP, B.V.
    Inventors: Edwin van der Heijden, Lukas Frederik Tiemeijer, Maristella Spella
  • Patent number: 8564091
    Abstract: Some of the embodiments of the present disclosure provide a semiconductor package comprising a first die; a second die; and an inductor arrangement configured to inductively couple the first die and the second die while maintaining electrical isolation between active circuit components of the first die and active circuit components of the second die. Other embodiments are also described and claimed.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 8565711
    Abstract: A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a mixing module, a mixed buffer section, and a frequency translated BPF (FTBPF) circuit module. The mixing module converts an inbound RF signal into an in-phase (I) mixed signal and a quadrature (Q) mixed signal. The mixed buffer section filters and buffers the I mixed signal and filter and buffer the Q mixed signal. The FTBPF circuit module frequency translates a baseband filter response to an IF filter response such that the FTBPF circuit module filters undesired signal components of the IF I signal and the IF Q signal to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: October 22, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Hooman Darabi
  • Publication number: 20130260708
    Abstract: A power recovery system includes a transmission line that is coupled to transfer an RF signal received via an antenna. The RF signal generates a partial standing wave in the transmission line and the transmission line has at least one standing wave anti-node. A power recovery circuit converts an anti-node signal from the at least one standing wave anti-node to a power signal.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Inventor: Ahmadreza Rofougaran
  • Patent number: 8503960
    Abstract: An amplifier receives an input signal with an input node, provides an output signal in response, and includes a main branch and an auxiliary branch. The auxiliary branch is coupled between the input node and a splitting node for input matching of the input node. The main branch, also coupled to the splitting node, has an output node of current mode, and is arranged to output the output signal at the output node. An associated receiver is also disclosed.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: August 6, 2013
    Assignee: Mediatek Singapore PTE. Ltd.
    Inventors: Fei Song, Chun-Geik Tan
  • Patent number: 8489056
    Abstract: The present invention is a hybrid RF-digital signal processor-based filter for multiband radio architectures, systems capable of spectrum re-farming and software defined radios It performs low-loss frequency agile multiple notch filtering at RF where a large dynamic range exists at a filter input between signals in a stopband and passband It is a frequency dependent signal attenuation apparatus having two paths connected together by directional couplers The first path comprising a component such as a delay component or duplexer The second path comprising, in series, a down converter, a digital filter, an up converter, and a bandstop filter At the output of a power amplifier, the invention can be used to attenuate spurs, or noise within bands with strict emission constraints At the input of a low noise amplifier, the invention can be used to attenuate blockers and transmitter noise outside of the receiver passband.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: July 16, 2013
    Assignee: Rockstar Consortium US LP
    Inventor: Mark Wyville
  • Patent number: 8483642
    Abstract: A SAW-less receiver includes a front end module (FEM) interface module, an RF to IF section, and an IF to baseband section. The RF to IF section includes a frequency translated bandpass filter (FTBPF), an LNA, and a mixing section. The FTBPF includes a switching network and a complex baseband filter having an offset baseband filter response. The switching network is operable to frequency translate the offset baseband filter response to an RF frequency response such that the FTBPF filters the inbound RF signal by passing, substantially unattenuated, a desired RF signal component and by attenuating an image signal component and/or an undesired signal component. The LNA amplifies the filtered inbound RF signal and the mixing section mixes the amplified inbound RF signal with a local oscillation to produce an inbound IF signal. The IF to baseband section converts the inbound IF signal into an inbound symbol stream(s).
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: July 9, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Hooman Darabi
  • Patent number: 8478223
    Abstract: Radio frequency signals having a plurality of frequency ranges are received and coupled to a plurality of transmission lines, each of the plurality of transmission lines being formed in a corresponding plurality of generally parallel planes. Circuitry is formed for each of the plurality of transmission lines to define substantially low impedances for all of the plurality of frequency ranges except for a frequency range or ranges to be carried by the corresponding transmission line. Signals are coupled to the plurality of transmission lines so that signals with the plurality of frequency ranges are received and distributed with substantially decreased reflection and substantially high impedance matching by the plurality of transmission lines.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: July 2, 2013
    Assignee: Valentine Research, Inc.
    Inventors: John D. Hiers, Marwan E. Nusair
  • Patent number: 8428539
    Abstract: An apparatus comprising a functional circuitry on a first die. Said function circuitry configured to drive an RF voltage isolation link with an RF signal responsive to receipt of a logic signal at a first logic state. Control circuitry modifies the frequency of the RF signal to spread harmonics to other than a fundamental frequency.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 23, 2013
    Assignee: Silicon Laboratories Inc.
    Inventor: Timothy Dupuis
  • Patent number: 8422981
    Abstract: An integrated circuit (IC) includes multiple circuits isolated with respect to one another. Each circuit of the multiple circuits includes an inductor pair formed in a loop pattern on a same layer as at least one other inductor pair from another circuit of the multiple circuits, such that the inductor pair surrounds and is isolated from the at least one other inductor pair.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Won Mun, Seong-Han Ryu, Il-Ku Nam
  • Patent number: 8415777
    Abstract: A circuit includes a plurality of integrated circuits or dies having corresponding circuits, the plurality of integrated circuits or dies include a first plurality of integrated circuits or dies having corresponding millimeter wave interfaces and a second plurality of integrated circuits or dies having corresponding inductive interfaces. The first plurality of integrated circuits or dies communicate first signals therebetween via the corresponding millimeter wave interfaces and the second plurality of integrated circuits or dies communicate second signals therebetween via the corresponding inductive interfaces.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: April 9, 2013
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza (Reza) Rofougaran
  • Patent number: 8385871
    Abstract: The present invention is a hybrid RF-digital signal processor-based filter for multiband radio architectures systems capable of spectrum re-farming and software defined radios. It performs low-loss frequency agile multiple notch filtering at RF where a large dynamic range exists at a filter input between signals in a stopband and passband. It is a frequency dependent signal attenuation apparatus having two paths connected together by directional couplers. The first path comprising a component such as a delay component or duplexer. The second path comprising a bandstop filter connected to a down converter, a digital filter, and an up converter. At the output of a power amplifier, the invention can be used to attenuate spurs, or noise within bands with strict emission constraints. At the input of a low noise amplifier, the invention can be used to attenuate blockers and transmitter noise outside of the receiver passband.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: February 26, 2013
    Assignee: Rockstar Consortium US LP
    Inventor: Mark Wyville
  • Patent number: 8374566
    Abstract: A wideband RF tracking filter having a set of parallel tuned resonator amplifier stages with a de-Q resistor for each subband is disclosed. The resonant amplifier contains programmable tuned LC tank impedance and an array of parallel voltage to current converters (V2I) for each subband. The de-Q resistor together with the array of V2I converters provides a flat gain over each subband and each of the other subbands covering different frequencies.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 12, 2013
    Assignee: NXP B.V.
    Inventors: Weinan Gao, Ray Rosik
  • Patent number: 8373436
    Abstract: An apparatus for consolidated data services comprising a plurality of devices, a plurality of data services and a content application programming interface (API). A user API provides user identification for each of the plurality of devices. A feedback API configured to receive data from each of the plurality of devices. A device API configured to provide a client system to one or more of the plurality of devices using one or more of a plurality of device API methods. An update API configured to provide an updated client system to one or more of the plurality of devices using one more of a plurality of update API methods. A web service consolidator configured to control interactions between the content API, the user API, the feedback API, the device API, the update API, a plurality of data services and the plurality of devices.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: February 12, 2013
    Assignee: Triune Systems, LLC
    Inventors: Amer Atrash, Ross Teggatz, Brett Smith, Wayne Chen
  • Patent number: 8358989
    Abstract: A matching circuit, connected to a receiving antenna and to the input of a receiving circuit, incorporates a variable capacitor that is adjustable for tuning the resonance frequency of the antenna to a desired reception frequency. In an automatic tuning mode of operation, an oscillator signal of different frequency from the reception frequency is applied to induce resonance of the antenna and matching circuit, and the variable capacitor is adjusted until an output signal level from the receiving circuit attains a predetermined value which has been stored beforehand in a memory and which corresponds to a condition whereby the antenna resonance frequency corresponds to the reception frequency and impedance matching exists between the antenna and receiving circuit.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: January 22, 2013
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Yuuji Kakuya, Akira Takaoka, Munenori Matsumoto, Tomotsugu Sekine
  • Patent number: 8355688
    Abstract: Aspects of a method and system for frequency selection using microstrip transceivers for high-speed applications may include determining an operating frequency for operating one or both of a transmitter and a receiver. A frequency response and/or impedance of one or more transmission lines that may be utilized by the transmitter and/or the receiver may be controlled by adjusting one or more capacitances, communicatively coupled to the transmission lines based on the determined operating frequency. The capacitances may be coupled to the one or more transmission line at arbitrary physical spots, and may comprise capacitors and/or varactors. The capacitors and/or the varactors may be adjusted with a digital signal or an analog signal. The capacitances may comprise a matrix arrangement of capacitors and/or varactors. The one or more transmission lines may comprise a microstrip.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: January 15, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8351855
    Abstract: Disclosed herein are systems, apparatuses, and methods for providing a proximity coupling without Ohmic contact. Such a system includes a plurality of wireless-enabled components (WECs) that are wirelessly coupled to each other. Each WEC includes a metal-based element, a substrate, and a semiconductor layer that separates the metal-based element from the substrate. A signal is configured to be transmitted via a proximity coupling (e.g., a magnetic coupling, an electric coupling, and/or an electromagnetic coupling) between the metal-based element and the substrate without an Ohmic contact between the metal-based element and the substrate. In an example, a first subset of the plurality of the WECs is co-located on a first chip, and a second subset of the plurality of the WECs is co-located on a second chip. The first chip and the second chip may be located in a single device or in separate devices.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: January 8, 2013
    Assignee: Broadcom Corporation
    Inventors: Jesus Alfonso Castaneda, Arya Reza Behzad, Michael Boers, Ahmadreza Reza Rofougaran, Sam Ziqun Zhao
  • Patent number: 8351884
    Abstract: A method, apparatus, and computer program for controlling diversity reception in a radio receiver are provided. The radio receiver is configured to either activate or disable the diversity reception according to an application type of an application requesting transfer of data.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 8, 2013
    Assignee: Nokia Corporation
    Inventors: Harri Posti, Risto Timisjärvi
  • Patent number: 8346198
    Abstract: In one embodiment, the present invention includes an amplifier having a transistor stage coupled between a supply voltage and a bias current. The transistor stage has an input to receive a radio frequency (RF) input signal obtained from an antenna. The amplifier has an input impedance that is unmatched to a source impedance of the antenna. In some embodiments, this unmatched input impedance may be substantially greater than the source impedance, and may further be controlled based on a strength of the RF input signal.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: January 1, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Dan B. Kasha, G. Tyson Tuttle, Gregory A. Hodgson
  • Patent number: 8270907
    Abstract: Aspects of a method and system for matching an integrated system to an antenna utilizing on-chip measurement of reflected signals are provided. In a chip comprising at least a portion of a receiver and at least a portion of a transmitter, a best impedance match between an antenna and the chip may be determined based on on-chip measurement of one or more signals reflected from the antenna. The best impedance match between the antenna and the chip may be determined utilizing a correction algorithm. The correction algorithm may be determined utilizing data from an external test set that measures signals transmitted by the chip via the antenna. The reflected signals may be routed to a signal analyzer via on on-chip directional coupler. The best impedance match may be determined for each of a plurality of frequencies and/or each of a plurality of transmit signal strengths.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: September 18, 2012
    Assignee: Broadcom Corporation
    Inventor: Thomas Baker
  • Patent number: 8242841
    Abstract: A receiver having multi-stage low noise amplifier are provided. In this regard, a representative receiver, among others, includes at least one antenna and a filter that receives and filters signals from the at least one antenna. The filtered signals include a first frequency band signal and a second frequency band signal. The receiver further includes a multi-stage low noise amplifier that receives the filtered signals from the filter. The multi-stage low noise amplifier includes a first stage low noise amplifier that receives and performs impedance matching for the first frequency band signal and second frequency band signal. The multi-stage low noise amplifier further includes a second stage low noise amplifier that receives the first frequency band signal and second frequency band signal.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: August 14, 2012
    Assignee: CSR Technology Inc.
    Inventor: Liping Zhang
  • Publication number: 20120157030
    Abstract: The present invention discloses a signal reception apparatus and a method for implementation thereof. The apparatus comprises: a personal computer interface, configured to implement the communications between a personal computer and the signal reception apparatus; an antenna module, configured to receive signals of a base station; and an antenna interface, configured to implement the communications between a terminal and the signal reception apparatus, so as to provide the signals received by the antenna module to the terminal. The present invention improves the signal reception effect of the terminal.
    Type: Application
    Filed: April 19, 2010
    Publication date: June 21, 2012
    Applicant: ZTE CORPORATION
    Inventors: Jianhua Mao, Lei Liu, Xiaoming Yu
  • Patent number: 8200168
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 12, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8195119
    Abstract: Techniques for designing a switchable amplifier are described. In one aspect, a switchable amplifier including a core amplifier circuit configured to selectively enable one or more parallel input transistor pairs is described. The core amplifier circuit comprises a permanently enabled input transistor pair. In another aspect, a device operable between a first mode of operation and a second mode of operation comprising a receiver logic circuit for selectably enabling and disabling a plurality of input transistor pairs within a switchable amplifier is described where the switchable amplifier also includes a core amplifier circuit coupled to the receiver logic circuit for selectably enabling and disabling a transistor pair therein. The described switchable amplifiers result in the ability to provide varying amplifier performance characteristics based upon the current mode of operation of the device.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 5, 2012
    Assignee: QUALCOMM, Incorporated
    Inventors: Marco Cassia, Aleksandar M. Tasic
  • Patent number: 8185062
    Abstract: A configurable antenna assembly includes an antenna structure and a configurable antenna interface. The antenna structure is operable, in a first mode, to provide a first antenna structure and a second antenna structure, wherein the first antenna structure receives an inbound radio frequency (RF) signal and the second antenna structure transmits an outbound RF signal. The configurable antenna interface is operable in the first mode to provide a first antenna interface and a second antenna interface, wherein the first antenna interface is configured in accordance with a receive adjust signal to adjust at least one of phase and amplitude of the inbound RF signal, and wherein the second antenna interface is configured in accordance with a transmit adjust signal to adjust at least one of phase and amplitude of the outbound RF signal.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 22, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8170519
    Abstract: A waveform reconstruction circuit receives an rf signal from an antenna, digitizes it, and then generates an undistorted reconstructed waveform. The reconstructed waveform can then be conventionally mixed and demodulated to extract useful signal information with enhanced receiver fidelity and sensitivity.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 1, 2012
    Assignee: American Radio LLC
    Inventor: Robert Hotto
  • Patent number: 8160531
    Abstract: A receiving device is provided capable of avoiding reception of unnecessary energy when a signal waveform actually changes on a receiving side. An impedance control circuit includes a sensing unit to sense one or more of a voltage, current, or power of a signal to be received by a receiving circuit. The impedance control unit varies an input impedance according to the change in the sensed one or more quantities so that the received signal will be reflected. Thus the excess energy of the signal is reflected and fed to any other receiving circuit achieving stable communications.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 17, 2012
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Youichirou Suzuki, Noboru Maeda, Takahisa Koyasu, Koji Kondo, Shigeki Takahashi
  • Patent number: 8160275
    Abstract: An apparatus and method for amplifying a transmission signals in multiple modes and multiple bands. The apparatus includes a tunable power amplifying module adapted to receive a plurality of signal types comprising multiple modes and multiple bands. The tunable power amplifying module includes a first and second power amplifier stages and a number of tunable matching networks configured to optimize an impedance value based on the mode and band of the signal to be amplified.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: April 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xu Zhu, Michael L. Brobston, Lup M. Loh
  • Patent number: 8150355
    Abstract: There is provided a method that comprises identifying a parasitic signal transfer in a filter using a signal-directed graph; and adding compensation paths to the filter to reduce or eliminate the effect of the parasitic signal transfer A corresponding filter is provided which comprises a plurality of amplifier stages that generate one or more filter poles; at least one component coupled to at least one of the amplifier stages, the component causing a parasitic effect in the filter; and means for applying a compensation current to the at least one amplifier stage to reduce or eliminate the parasitic effect.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 3, 2012
    Assignee: NXP B.V.
    Inventor: Hendrikus C. Nauta
  • Patent number: 8131226
    Abstract: A high-frequency circuit comprising a high-frequency switch circuit for switching the three-way connection of an antenna to a transmitting circuit for the first communications system, a receiving circuit for a first communications system, and a transmitting/receiving circuit for a second communications system; a first bandpass filter disposed between the antenna and the high-frequency switch circuit; and a balanced-unbalanced conversion circuit disposed between the receiving circuit of the first communications system and the high-frequency switch circuit.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: March 6, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shigeru Kemmochi, Kazuhiro Hagiwara, Keisuke Fukamachi, Takahiro Yamashita, Masayuki Uchida, Mitsuhiro Watanabe
  • Patent number: 8120419
    Abstract: A type-A demodulator comprising a first rectifier configured to rectify a radio frequency (RF) signal received through an antenna and output a first voltage, a second rectifier configured to rectify the voltage of the RF signal received through the antenna and output a second voltage having a different voltage level than the first voltage, and a pause data detector configured to compare the first voltage with the second voltage and detect received pause data.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Pil Cho, Hyuk Jun Sung
  • Patent number: 8121574
    Abstract: A loop directional coupler having a first waveguide, particularly a hollow, planar, or a coaxial conductor in the form of a half loop antenna having first and second antenna branches for the contact-free extraction of an incoming signal “a” on a second waveguide and a returning signal “b” on the second waveguide. The first antenna branch is connected to a first input of a first network and the second antenna branch is connected to a second input of the first network, the first network having a first power splitter at the first input and a second power splitter at the second input for dividing the signal present at each antenna branch, the first network having a first adder adding the signals of the first and second power splitters to each other, and a first subtractor subtracting the signals of the first and second power splitters from each other.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 21, 2012
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventor: Thomas Zelder
  • Patent number: RE44980
    Abstract: A system and method for automatically changing a state of a device coupled to a headphone device is provided. The system comprises a means for detecting if at least one earpiece of the headphone device is activated or deactivated. Based on an activation state or a change in an activation state of the at least one earpiece, a state change may occur in the device. The state change is determined by a preset of a control module.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 1, 2014
    Assignee: Sony Computer Entertainment Inc.
    Inventor: Stewart Sargaison