With Specified Local Oscillator Structure Or Coupling Patents (Class 455/318)
  • Publication number: 20130165059
    Abstract: Provided is a beamforming apparatus in a receiver in a mobile communication system. The beamforming apparatus includes a Local Oscillator (LO) signal generator for generating an LO signal; a phase shifter for generating a predetermined number of phase-shifted LO signals with respect to the generated LO signal; a switching network for mapping the phase-shifted LO signals to RF signals received via a plurality of receive paths; and a mixer for mixing the RF signals with the mapped LO signals to down-convert a frequency of the RF signals.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 27, 2013
    Applicants: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY (KAIST), SAMSUNG ELECTRONICS CO. LTD.
    Inventors: Samsung Electronics Co. Ltd., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY (KAIST)
  • Patent number: 8472902
    Abstract: A radio broadcast receiving apparatus according to the present invention includes a reception unit for receiving a broadcast signal from a broadcast station of a predetermined frequency; a content information extracting unit for extracting content information related to a content the broadcast station is broadcasting from the broadcast signal being received by the reception unit and storing the content information in a storage unit; a frequency control unit for sequentially switching the frequency to be received by the reception unit; and an electronic program guide generating unit for generating an electronic program guide showing content information related to a content the broadcast station is currently broadcasting based on the content information stored in the storage unit.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: June 25, 2013
    Assignee: Sony Corporation
    Inventor: Ryo Konno
  • Patent number: 8447259
    Abstract: A mode-switching LNA generally includes an input unit, an output unit and a bias voltage generator. The input unit amplifies an input signal to generate an amplified signal. The output unit receives the amplified signal from the input unit and operates either in an oscillation mode or in an amplification mode in response to a control signal to generate an output signal having a center frequency equal to a target frequency. The control signal indicates whether the center frequency of the output signal is the same as the target frequency. The bias voltage generator provides an input bias voltage to the input unit in response to the control signal, where the input bias voltage includes a first bias voltage in the amplification mode and a second bias voltage in the oscillation mode.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 21, 2013
    Inventors: Jae-Hong Chang, Hyung-Ki Ahn, Hui-Jung Kim
  • Patent number: 8442472
    Abstract: A frequency divider with a twenty-five percent duty cycle is disclosed. A frequency divider may include an input configured to receive a clock signal, each cycle of the clock signal including a first phase and a second phase, a plurality of latches, and a plurality of three-state circuits wherein a first of the plurality of three-state circuits is configured to drive a first twenty-five percent duty cycle signal from within the first three-state circuit high during a first phase of a first of two clock cycles.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: May 14, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Haolu Xie, Manish N. Shah
  • Patent number: 8433255
    Abstract: In embodiments of the present disclosure, a method may include determining an ambient temperature of an oscillator. The method may also include estimating an approximate frequency of operation of the oscillator. The method may additional include determining a process-based compensation to be applied to a resonator of the oscillator based on the approximate frequency. The method may further include setting a capacitance of a variable capacitor coupled to the resonator in order to compensate for temperature-dependent and process-dependent frequency variation of the oscillator based on the ambient temperature and the process-based compensation.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: April 30, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: David Harnishfeger
  • Patent number: 8412141
    Abstract: An LR polyphase filter implemented with inductors and resistors and capable of operating at high frequencies is described. In one design, the LR polyphase filter includes first and second paths, with each path including an inductor coupled to a resistor. The first and second paths receive a first input signal and provide first and second output signals, respectively, which may be in quadrature. For a differential design, the polyphase filter further includes third and fourth paths, which receive a second input signal and provide third and fourth output signals, respectively. The four output signals may be 90° out of phase. The first and second input signals are for a differential input signal. The first and third output signals are for a first differential output signal, and the second and fourth output signals are for a second differential output signal. Each inductor may be implemented with a transmission line.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Jafar Savoj
  • Patent number: 8406707
    Abstract: Various embodiments of systems and methods for generating local oscillator (LO) signals for a harmonic rejection mixer are provided. One embodiment is a system for generating local oscillator (LO) signals for a harmonic rejection mixer. One such system comprises a local oscillator, a divide-by-N frequency divider, a divide-by-three frequency divider, and a harmonic rejection mixer. The local oscillator is configured to provide a reference frequency signal. The divide-by-N frequency divider is configured to divide the reference frequency signal by a value N and provide an output signal. The divide-by-three frequency divider is configured to receive the output signal of the divide-by-N frequency divider and divide the output signal into three phase-offset signals. The harmonic rejection mixer is configured to receive the three phase-offset signals and eliminate third frequency harmonics.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 26, 2013
    Assignee: Skyworks Solutions, Inc.
    Inventors: Rajasekhar Pullela, Dmitriy Rozenblit, Hamid Firouzkouhi
  • Publication number: 20130064328
    Abstract: Wireless communication is ubiquitous today and deployments are growing rapidly leading to increased interference, increasing conflicts, etc. As a result monitoring the wireless environment is increasingly important for regulators, service providers, Government agencies, enterprises etc. Such monitoring should be flexible in terms of the networks being monitored within the wireless environment but should also provide real-time monitoring to detect unauthorized transmitters, provide dynamic network management, etc. Accordingly, based upon embodiments of the invention, a broadband, real-time signal analyzer (RTSA) circuit that allows for the deployment of RTSA devices in a distributed environment wherein determination of policy breaches, network performance, regulatory compliance, etc. are locally determined and exploited directly in network management or communicated to the central server and network administrators for subsequent action.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 14, 2013
    Applicant: THINKRF CORPORATION
    Inventors: Nikhil Adnani, Tim Hember, Gilbert Brunette
  • Patent number: 8385865
    Abstract: The wireless receiver of the present invention accommodates dual-carrier Evolved EDGE without significantly impacting existing receiver architectures. The inventive receiver comprises a shared local oscillator and two image-rejecting downconverters. The local oscillator generates a local oscillator frequency between two carrier frequencies of adjacent radio channels. The receiver receives a signal in each of the adjacent radio channels. In a dual-carrier mode, a first image-rejecting downconverter uses the local oscillator frequency to downconvert a first signal received in the first radio channel while rejecting a second signal received in the second radio channel. A second image-rejecting downconverter uses the local oscillator frequency to downconvert the second signal while rejecting the first signal.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: February 26, 2013
    Assignee: Sony Mobile Communications AB
    Inventors: William O. Camp, Jr., Toby John Bowen, Leland Scott Bloebaum
  • Patent number: 8385901
    Abstract: Systems, methods and interfaces are disclosed for managing communications associated with a mobile communication device. Mobile communication devices process environmental inputs and transmit mobile communication device context information to a communication management system. The context information may, for example, reflect the motion and/or geographic location of the mobile device, and may reflect the risk associated with using the device to handle a call or other communications session. The communication management system uses the context information, optionally in combination with communication device profiles, to determine how to manage incoming and/or ongoing calls or other communication sessions. Mobile device users may also be inhibited from initiating communication sessions.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: February 26, 2013
    Assignee: Aegis Mobility, Inc.
    Inventors: Peter A. Featherstone, Andrew S. Wright, Mandy Chan, John J. Geyer, Stephen J. Williams
  • Patent number: 8374568
    Abstract: Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 12, 2013
    Assignee: MaxLinear, Inc.
    Inventors: Kishore Seendripu, Raymond Montemayor, Sheng Ye, Glenn Chang, Curtis Ling
  • Patent number: 8374570
    Abstract: Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 12, 2013
    Assignee: MaxLinear, Inc.
    Inventors: Kishore Seendripu, Raymond Montemayor, Sheng Ye, Glenn Chang, Curtis Ling
  • Patent number: 8374569
    Abstract: Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 12, 2013
    Assignee: MaxLinear, Inc.
    Inventors: Kishore Seendripu, Raymond Montemayor, Sheng Ye, Glenn Chang, Curtis Ling
  • Patent number: 8346201
    Abstract: An asynchronous FIFO interface having a readout clock asynchronous with a write clock is provided. The asynchronous FIFO interface includes a FIFO buffer, a clock controller, a reference source and a signal source. The FIFO buffer receives a digital signal from an ADC according to the write clock and outputs a digital signal to a processor according to the readout clock. The clock controller outputs a clock control signal according to the amount of data stored in the FIFO buffer. The reference source provides an oscillation frequency. The signal source divides the oscillation frequency by a first integer divisor to generate a reference frequency, divides the readout clock by a second integer divisor to generate an input frequency, and outputs a control signal by comparing the reference frequency with the input frequency.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 1, 2013
    Assignee: Richwave Technology Corp.
    Inventor: Tse-Peng Chen
  • Patent number: 8340623
    Abstract: This invention is primarily a circuit structure of self-mixing receiver, and the methodology of circuit structure is described as follows. The first stage is a high input impedance voltage amplifier utilized to amplify the received RF carrier signal from the antenna. Besides, there are no any inductors required. The second stage is a multi-stage amplifier to amplify the output signal of first stage to rail-to-rail level, which is quite the same with supply voltage. The third stage is a mixer adopted to lower the signal frequency. The fourth stage is a digital output converter, which is proposed to demodulate the electric signals and convert the demodulated signal to digital signal.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: December 25, 2012
    Assignee: National Taiwan University
    Inventors: Shey Shi Lu, Yu Tso Lin, Fang Ren Liao
  • Patent number: 8340619
    Abstract: In one embodiment, a local oscillator (LO) is configured to generate an LO signal. A transmission line receives the LO signal from the local oscillator and transmits the LO signal. A first set of taps and a second set of taps tap the transmission line to receive the LO signal. A plurality of transceiver blocks are configured to receive and transmit a plurality of phase-shifted radio frequency signals. Each transceiver block is coupled to a first tap and a second tap. Each LO signal received for a transceiver block is received with a different phase. However, the same reference phase may be calculated from a first LO signal received from the first tap and a second LO signal received from a second tap. Each transceiver block receives the reference LO signal having the reference phase determined from the first LO signal and the second LO signal.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: December 25, 2012
    Assignee: Marvell International Ltd.
    Inventors: Alireza Shirvani-Mahdavi, Saeed Chehrazi
  • Patent number: 8315586
    Abstract: A signal receiving device is provided which can prevent the imbalance occurring between in-phase and quadrature signals. A polarity of a local oscillator output signal to be outputted from a local oscillator 13 is switched by a polarity switching unit 14 in a time division way. Each of signals outputted from the polarity switching unit 14 is frequency divided by a frequency divider 16. The frequency-divided local oscillation signal is supplied to a mixer 34. Frequency conversion of a receiving signal is performed by the mixer 34 which receives the signal and local oscillation signal to demodulate received data.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: November 20, 2012
    Assignee: NEC Corporation
    Inventor: Yuuichi Aoki
  • Patent number: 8306484
    Abstract: A direct-conversion transmitter with resistance to local oscillator pulling effect comprises a local oscillation circuit, a quadrature modulator connected with the local oscillation circuit, a power amplifier connected with the quadrature modulator, a first variable analog delay device connected with the power amplifier, a variable analog attenuator connected with the first variable analog delay device, an inner self-injection loop, and a power combiner connected with the variable analog attenuator and the inner self-injection loop. The local oscillation circuit comprises a two point voltage-controlled oscillator and a phase locked loop connected with the two point voltage-controlled oscillator. The inner self-injection loop comprises a second variable analog delay device, a phase shifter connected with the second variable analog delay device and a variable gain amplifier connected with the phase shifter.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: November 6, 2012
    Assignee: National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Chieh-Hsun Hsiao, Kang-Chun Peng
  • Patent number: 8300734
    Abstract: In a frequency converting system, an input signal x(t) is supplied to a signal branching section for dividing a predetermined frequency domain into M bands, extracting signal components of the respective divided bands. The respective signal components and local signals each including a frequency difference corresponding to a predetermined intermediate frequency with respect to a center frequency of each band are input to a frequency converting part. The signals of the respective divided bands are converted into signals of intermediate frequency bands each including the predetermined intermediate frequency as the center frequency, the conversion outputs are sampled by using a common clock signal, whereby the conversion outputs are converted into digital signals. Further, after being subjected to phase correction processing, the digital signals are subjected to frequency conversion and combination processing by a signal regeneration part.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: October 30, 2012
    Assignee: Anritsu Corporation
    Inventors: Masaaki Fuse, Hitoshi Sekiya
  • Patent number: 8301104
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 30, 2012
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 8295800
    Abstract: Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 23, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8285241
    Abstract: A method and apparatus is disclosed to effectively frequency translate a filter characterized as a low quality factor (Q) filter corresponding to a baseband frequency of approximately zero Hertz or to an intermediate frequency (IF) to a filter characterized as a high Q filter at frequencies greater than the baseband frequency or the IF. A downconversion mixer is used to frequency translate a communication signal to the baseband frequency or the IF using a first local oscillator signal to provide a downconverted communication signal. A filter characterized as the low Q filter corresponding to the baseband frequency or the IF filters the downconverted communication signal to provide a filtered communication signal. An upconversion mixer is used to frequency translate a communication signal using a second local oscillator signal, the second local oscillator signal being substantially similar in frequency of the first local oscillator signal.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 9, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8280331
    Abstract: A device is provided for dividing a clock signal by even and odd integers. The device includes a divider, a delay portion and a duty cycle corrector. The divider is arranged to receive the clock signal and can divide the clock signal and output a divided clock signal. The delay portion can output a delayed signal based on the divided clock signal. The duty cycle corrector can output a first signal based on the delayed signal and the divided clock signal.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 2, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnasawamy Nagaraj, Neeraj Nayak
  • Patent number: 8280330
    Abstract: Systems and methods of clock generation for radio frequency receiver. In radio frequency receiver, the system requires accurate local oscillating (LO) signal and system clocks for proper operation and to ensure high quality performance. In order to achieve accurate LO frequency and system clock, a crystal or and accurate reference clock is provide to the clock generation circuit. How a low-cost receiver, it is desirable to eliminate the requirement for a crystal or an accurate reference clock. The present invention discloses systems and methods to utilize a pilot signal embedded in the transmitted signal. The pilot signal usually has very accurate frequency which is particular true for broadcast system such as FM broadcast. In various embodiments of the present invention, the systems and methods measure the relation between the frequency of the pilot signal and the current clock generated.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 2, 2012
    Assignee: Quintic Holdings
    Inventors: Peiqi Xuan, Yifeng Zhang
  • Patent number: 8275336
    Abstract: An oscillator circuit having a source of an oscillating signal, a tank circuit including an inductor and a capacitor, and a discretely switchable capacitance module configured to control an amount of capacitance in the oscillator circuit. The discretely switchable capacitance module includes, in one embodiment, a capacitor coupled between a first node and a second node, a switch, having a control node, coupled between the second node and a third node; and a DC feed circuit, having a first end coupled to the second node and a second end configured to receive a first or second control signal. The control node of the switch is tied to a predetermined bias voltage. When the first control signal is applied, the capacitor is coupled between the first node and the third node via the switch such that the capacitor is coupled in parallel with the capacitor of the tank circuit, and when the second control signal is applied the capacitor is decoupled from the tank circuit.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: September 25, 2012
    Assignee: Richwave Technology Corp.
    Inventor: Chen Tse-Peng
  • Patent number: 8249533
    Abstract: A rapidly adjustable local oscillation (LO) module for use in a radio transmitter or a radio receiver includes an oscillation generating module and a high frequency switching module. The oscillation generating module is operably coupled to generate a plurality of local oscillations. The high frequency switching module is operably coupled to, for a first one of a plurality of transmission paths, provide one of the plurality of local oscillations when a first transmission path selection indication is in a first state and provide another one of the plurality of local oscillations when the first transmission path selection indication is in a second state and, for a second one of the plurality of transmission paths, provide the one of the plurality of local oscillations when a second transmission path selection indication is in a first state and provide the another one of the plurality of local oscillations when the second transmission path selection indication is in a second state.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: August 21, 2012
    Assignee: Vixs Systems, Inc.
    Inventors: Bojan Subasic, Mathew A. Rybicki
  • Patent number: 8229386
    Abstract: A receiver includes a radio frequency metal-oxide-semiconductor amplifier, a mixer, and an intermediate frequency amplifier. The radio frequency metal-oxide-semiconductor amplifier is used for receiving amplifying a signal of a first band and a signal of a second band of a satellite microwave band from an external antenna circuit according to a control signal. The mixer is coupled to the radio frequency metal-oxide-semiconductor amplifier for reducing the signal of the first band to a signal of a first intermediate frequency band according to a first oscillation frequency of a local oscillator, or reducing the signal of the second band to a signal of a second intermediate frequency band according to a second oscillation frequency of the local oscillator. The intermediate frequency amplifier is coupled to the mixer for amplifying and outputting the signal of the first intermediate frequency band and the signal of the second intermediate frequency band.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 24, 2012
    Assignee: AMICCOM Electronics Corporation
    Inventors: Kuang-Yu Hsu, Chien-Chia Ma
  • Patent number: 8224260
    Abstract: A radio frequency (RF) signal transmission/reception apparatus and an RF signal transmission/reception method are disclosed. The RF signal transmission/reception apparatus is adapted to perform a transmission/reception duplex function using a bi-directional mixer at the IF band or baseband, not at the RF band. When a reception signal of the RF band is passed through the bi-directional mixer, it is converted into a signal in any one of the IF band and the baseband. Also, when a transmission signal in any one of the IF band and the baseband is passed through the bi-directional mixer, it is converted into a signal of the RF band.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: July 17, 2012
    Assignee: LG Electronics Inc.
    Inventors: Hong Teuk Kim, Kwy Ro Lee, Sergey Sergeyev, Sergey Khvorov, Alexander Belonozhkin
  • Publication number: 20120171973
    Abstract: Various embodiments of systems and methods for generating local oscillator (LO) signals for a harmonic rejection mixer are provided. One embodiment is a system for generating local oscillator (LO) signals for a harmonic rejection mixer. One such system comprises a local oscillator, a divide-by-N frequency divider, a divide-by-three frequency divider, and a harmonic rejection mixer. The local oscillator is configured to provide a reference frequency signal. The divide-by-N frequency divider is configured to divide the reference frequency signal by a value N and provide an output signal. The divide-by-three frequency divider is configured to receive the output signal of the divide-by-N frequency divider and divide the output signal into three phase-offset signals. The harmonic rejection mixer is configured to receive the three phase-offset signals and eliminate third frequency harmonics.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Rajasekhar Pullela, Dmitriy Rozenblit, Hamid Firouzkouhi
  • Publication number: 20120164966
    Abstract: The high sensitivity FSK radiofrequency signal receiver includes an antenna for receiving FSK radiofrequency signals, a LNA amplifier receiving signals picked up by the antenna, a local oscillator for supplying oscillating signals, a mixer for mixing the incoming signals with the oscillating signals to produce intermediate signals. The receiver includes a broadband or poly-phase filter for filtering the intermediate signals, and a sampler for supplying sampled intermediate signals to a high sensitivity demodulation stage, which supplies data signals. The receiver includes a processing circuit for performing a discrete Fourier transform of sampled intermediate signals. The selector at the processing circuit output determines the difference between the signal amplitude peak frequency above a determined threshold and the expected frequency of the intermediate signals.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 28, 2012
    Applicant: THE SWATCH GROUP RESEARCH AND DEVELOPMENT LTD.
    Inventors: Arnaud CASAGRANDE, Jean-Luc AREND
  • Patent number: 8200181
    Abstract: The present invention relates to a dual radio frequency (RF) receiver circuit that includes a first RF mixer and a second RF mixer. The first and second RF mixers may be fed from a common local oscillator or from two separate local oscillators. When fed from two separate local oscillators and when the first and second RF mixers are receiving the same or nearly the same RF channel, the frequency of the RF channel is less than the frequency of one local oscillator and is greater than the frequency of the other local oscillator. This arrangement separates the frequencies of the local oscillators, thereby reducing noise, instability, or both, which may otherwise de-sensitize the dual RF receiver circuit.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 12, 2012
    Assignee: RF Micro Devices, Inc.
    Inventors: Nadim Khlat, Alexander Wayne Hietala, Frank Della Corte
  • Patent number: 8190116
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Briefly stated, such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: May 29, 2012
    Assignee: Parker Vision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr.
  • Patent number: 8170467
    Abstract: An airborne jammer for transport by an aircraft for jamming communications in a communications system where the communications system operates with digital bursts having burst periods measured in time and occurring in a communication frequency band such as GSM having a transmit band and a receive band. The jammer includes a tone comb generator for providing repetitions of jamming signals for the communication frequency band where the jamming signals have jamming signal intervals providing frequency separation between the jamming signals. The jamming signals are generated with a dwell time substantially less than a burst period for the communications system. The jamming signals are transmitted as RF jamming signals to jam communications for mobile stations.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: May 1, 2012
    Assignee: Aeroflex High Speed Test Solutions, Inc.
    Inventor: Robert Eugene Stoddard
  • Patent number: 8165538
    Abstract: Various embodiments of systems and methods for generating local oscillator (LO) signals for a harmonic rejection mixer are provided. One embodiment is a system for generating local oscillator (LO) signals for a harmonic rejection mixer. One such system comprises a local oscillator, a divide-by-N frequency divider, a divide-by-three frequency divider, and a harmonic rejection mixer. The local oscillator is configured to provide a reference frequency signal. The divide-by-N frequency divider is configured to divide the reference frequency signal by a value N and provide an output signal. The divide-by-three frequency divider is configured to receive the output signal of the divide-by-N frequency divider and divide the output signal into three phase-offset signals. The harmonic rejection mixer is configured to receive the three phase-offset signals and eliminate third frequency harmonics.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 24, 2012
    Assignee: Skyworks Solutions, Inc.
    Inventors: Rajasekhar Pullela, Dmitriy Rozenblit, Hamid Firouzkouhi
  • Patent number: 8150352
    Abstract: What is described herein is a technique that includes a clock generator configured to generate a clock signal having a frequency of |fbp+fi|. The technique further includes a mixer configured to input (1) an input signal that includes a desired signal at the frequency fi and (2) the clock signal and generate a mixed signal using the input signal and the clock signal. A filter, having a bandpass region that includes the frequency fbp, is configured to input the mixed signal and generate a filtered signal based at least in part on the bandpass region.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: April 3, 2012
    Assignee: Project FT, Inc.
    Inventors: Arshan Aga, Farbod Aram
  • Patent number: 8145173
    Abstract: A receiver includes a first receiving section, a second receiving section, and a controller. A controller is operable to switch between a diversity receiving mode in which both of the first receiving section and the second receiving section are activated and a single receiving mode in which the first receiving section is activated while the second receiving section is deactivated. The controller allows the first mixer to heterodyne the signal output from the first RF amplifier with using the second oscillation signal and output the heterodyned signal in the first single receiving mode.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: March 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Daisuke Nishimura, Hiroaki Ozeki, Yoshio Fuwa, Kazuyori Doumoto
  • Patent number: 8145143
    Abstract: When a power supply switch is turned on and an RF signal and an LO signal are input to a bipolar transistor, a mixed signal of both signals is output as an IF signal. When the power supply switch is turned off, the bipolar transistor operates as two diodes connected between a base terminal and an emitter terminal and between the base terminal and a collector terminal. When the IF signal and the LO signal are input, the input signals are mixed with each other by the diodes and the RF signal is output. Accordingly, one frequency conversion is performed by the use of one frequency converter, an external circuit such as a signal path switching switch is not necessary.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Yoshifumi Hosokawa, Michiaki Matsuo, Noriaki Saito
  • Patent number: 8139685
    Abstract: A receiver according to one embodiment includes a frequency control unit configured to receive a stream of samples including a plurality of received instances of a transmitted signal. The frequency control unit is configured to output a first correction signal (e.g. indicating a rotation) that is based on more than one of the received instances and a second correction signal (e.g. to control an oscillator) that is also based on more than one of the received instances. In some embodiments, a controlled oscillator is used to receive and/or transmit another signal, such as a signal received from a GPS space vehicle. In other embodiments, the received instances are from a GPS signal. In further embodiments, a fixed-frequency oscillator is used, and the second correction signal is used to receive and/or transmit another signal, such as a GPS signal.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: March 20, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Emilija Simic, Christopher Patrick, Raghu Challa, Douglas Neal Rowitch
  • Patent number: 8134421
    Abstract: A voltage control oscillator includes: first and second field effect transistors, a drain of one of which is connected to a gate of the other and a drain of the other of which is connected to a gate of the one; third and fourth field effect transistors, a drain of one of which is connected to a gate of the other and a drain of the other of which is connected to a gate of the one; a first inductor connected between the drain of the first field effect transistor and the drain of the second field effect transistor; a second inductor connected between the drain of the third field effect transistor and the drain of the fourth field effect transistor; a third inductor magnetically coupled to the first inductor; a fourth inductor magnetically coupled to the second inductor; a first capacitor that capacitively couples one end of the third inductor and one end of the fourth inductor; and a second capacitor that capacitively couples the other end of the third inductor and the other end of the fourth inductor.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: March 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichi Hirashiki, Shinichiro Ishizuka, Nobuyuki Itoh
  • Patent number: 8131249
    Abstract: The present invention provides a frequency converter including a frequency conversion device capable of accommodating a Si-series MMIC and also a GaAs-series MMIC by using a magneto-resistance element. A frequency converter according to an embodiment of the present invention includes: a frequency conversion device having a magneto-resistance element with a magnetization free layer, an intermediate layer, and a magnetization pinned layer; a magnetic field application mechanism for applying a magnetic field to the frequency conversion device; a local oscillator for applying a local oscillation signal to the frequency conversion device; and an input terminal electrically connected to the above frequency conversion device for receiving an external input signal. Further, the local oscillator includes a magneto-resistance element capable of generating the local oscillation signal by outputting an AC voltage according to a resistance change thereof.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: March 6, 2012
    Assignee: Canon Anelva Corporation
    Inventor: Hiroki Maehara
  • Patent number: 8131242
    Abstract: A system and method for implementing an IQ generator includes a master latch that generates an I signal in response to a clock input signal, and a slave latch that generates a Q signal in response to an inverted clock input signal. A master selector is configured to provide a communication path from the master latch to the slave latch, and a slave selector is configured to provide a feedback path from the slave latch to the master latch. The foregoing I and Q signals are output directly from the respective master and slave latches without any intervening electronic circuitry.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: March 6, 2012
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventors: Derek Mellor, Bernard J. Griffiths, Frank E. Hayden
  • Patent number: 8131248
    Abstract: A feed-forward device is provided for a mixer including a diplexer having a radio frequency port, an intermediate frequency port, and a common port; and a mixing circuit receiving an in-phase local oscillator signal and an out-of-phase local oscillator signal and having an output coupled to the common port of the diplexer. The feed-forward device includes: a first signal sampler having an input adapted to sample the in-phase local oscillator signal and to output a sampled in-phase local oscillator signal; a second signal sampler having an input adapted to sample the out-of-phase local oscillator signal and to output a sampled out-of-phase local oscillator signal; and an arrangement for coupling the sampled in-phase local oscillator signal and the sampled out-of-phase local oscillator signal to the common port of the diplexer.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: March 6, 2012
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventor: Sushil Kumar
  • Patent number: 8126420
    Abstract: In one embodiment, the present invention includes a method for digitizing a phase noise value indicative of a level of phase noise present in a LO signal and downconverting an RF signal to a second frequency signal using the LO signal. This downconversion can cause the phase noise to be transferred to the second frequency signal. The method may thus further include removing the phase noise from the second frequency signal using the digitized phase noise value.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: February 28, 2012
    Assignee: Silicon Laboratories Inc.
    Inventors: Mustafa H. Koroglu, G. Tyson Tuttle, Peter J. Vancorenland, Alessandro Piovaccari
  • Patent number: 8116359
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 14, 2012
    Assignee: ViaSat, Inc.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Patent number: 8116358
    Abstract: A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. In another exemplary embodiment, the frequency plan may self correct a transmit signal based on a reference signal, such as the receive signal. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: February 14, 2012
    Assignee: ViaSat, Inc.
    Inventors: Dean Lawrence Cook, Kenneth V. Buer
  • Patent number: 8107919
    Abstract: A radio frequency (RF) receiver includes an oscillator for outputting an oscillation signal from an output port thereof, a limiter for dividing the oscillation signal output from the oscillator into a branch signal at a predetermined dividing ratio outputting the branch signal, an amplifier for amplifying the branch signal output from the limiter, a frequency multiplier for outputting a local oscillation signal having a frequency obtained by multiplying a frequency of the amplified signal by a predetermined multiplicand, a mixer for mixing the local oscillation signal and a signal supplied from an antenna, a band-pass filter for receiving a signal output from the mixer and outputting an intermediate frequency (IF) signal, a detector for producing a detected signal by detecting the IF signal, and a controller connected directly with the output port of the oscillator for performing an operation according to the detected signal based on the oscillation signal as a clock signal.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: January 31, 2012
    Assignee: Panasonic Corporation
    Inventor: Kazuhiko Fujikawa
  • Patent number: 8077803
    Abstract: An integrated transmit circuit includes a voltage controlled oscillator (702) for generating an input frequency signal (e.g., VCO) that is provided to a divide by two quadrature generator circuit (706) which generates therefrom in-phase and quadrature clocking signals (I, IB, Q, QB) that are applied to control a plurality of transmission gates (711-718) configured in a matched switching topology (710) so as to selectively pass pulses from the input frequency signal, thereby generating interleaved LO pulses (Ø1, Ø1B, . . . Ø4, Ø4B). By applying the interleaved LO pulses to control the transmission gates (26, 28, 30, 32, 34, 36, 38, and 40) in the upmixer (720), the +I, ?I, +Q, ?Q input signals are interleaved over a plurality of phases of a carrier period to produce differential outputs (42, 44).
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 13, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kurt B. Hausmann, Mark A. Kirschenmann, Lillian G. Lent
  • Patent number: 8072284
    Abstract: A split delay-line oscillator for secure data transmission is disclosed. In one embodiment, an apparatus for a split delay-line oscillator for secure data transmission includes a first modulator/demodulator block in a first device, the first modulator/demodulator block operable to insert a first variable delay to modulate a frequency of a shared carrier signal passing through the first modulator/demodulator block, and a second modulator/demodulator block in a second device, the second modulator/demodulator block operable to insert a second variable delay to modulate the frequency of the shared carrier signal passing through the second modulator/demodulator block, wherein the first and second devices create a shared secret by contributing data on the frequency-modulated shared carrier signal.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 6, 2011
    Assignee: Ricoh Co., Ltd.
    Inventors: Stephen Savitzky, Sergey Chemishkian, Bradley Rhodes
  • Patent number: 8064381
    Abstract: A method of calculating uplink output power in a wireless communication system is disclosed. More specifically, the method includes receiving a message which includes a command to a mobile station (MS) to perform handover from a current serving cell to a target cell, which is one of neighbor cells, performing handover to the target cell according to the message, measuring power of a downlink transmission channel in the target cell, and calculating the uplink output power by using only the measured power and without considering previous measured powers from the current serving cell if the measured power is used for a first calculation to obtain the uplink output power after the MS moves to the target cell.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: November 22, 2011
    Assignee: LG Electronics, Inc.
    Inventor: Hyoun Hee Koo
  • Patent number: 8064869
    Abstract: The present invention discloses a mixer comprising with an input stage (100) for receiving and amplifying input signals (VINP, VINN) and an output stage (300) for outputting output signals (Voutp, Voutn). A switching stage (200) is coupled between the input stage (100) and the output stage (300), the switching stage (200) mixing the amplified input signals with a local oscillator signal (vlop, vlon) to produce the output signals (Voutp, Voutn) at the output stage (300). An RC circuit (cop, rop; con, ron) is connected to the output stage (300) and adapted to move the pole of the output signals.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: November 22, 2011
    Assignee: Synopsys, Inc.
    Inventor: Ricardo dos Santos Reis