Synthesizer Patents (Class 455/76)
  • Patent number: 8515381
    Abstract: Systems and methods for improving the timing alignment of 25% duty cycle non-overlapping waveforms are provided. A representative system includes a waveform synthesizer that generates a plurality of 25% duty cycle input waveforms and inverters that receive the input waveforms at the inputs of the inverters and invert the input waveforms, producing a plurality of inverted waveforms at the outputs of the inverters. The system also includes NOR gates that receive the plurality of inverted waveforms at the inputs of the NOR gates and pass through one of the inverted waveforms at the outputs of the NOR gates responsive to three inverted waveforms of the plurality of inverted waveforms being at logic “0”; and mixers having inputs that receive the pass-through waveform and a first radio frequency (RF) signal, wherein the mixers combine the pass-through waveform and the RF signal into an output signal.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 20, 2013
    Assignee: CSR Technology, Inc.
    Inventor: Ronald C. Alford
  • Patent number: 8503965
    Abstract: The present disclosure relates to radio frequency integrated circuits. More particularly, systems, devices and methods related to field programmable, software implemented, radio frequency integrated circuits are disclosed. In accordance with an exemplary embodiment, a field programmable, software implemented, radio frequency integrated circuit may comprise a high frequency IF embodiment. An input signal may be up converted to a high frequency, such as 60 GHz. Next, the amplitude and/or phase may be adjusted as desired. Subsequently, the signal may be down converted.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 6, 2013
    Assignee: ViaSat, Inc.
    Inventor: Kenneth V. Buer
  • Patent number: 8494456
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: July 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Tanaka, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Patent number: 8489033
    Abstract: A method for operating an integrated transceiver, comprising coupling an operating transmitter and an operating receiver within the integrated wideband receiver, inputting a signal into the operating transmitter, performing a first conversion of the signal, wherein the signal is converted into a second signal, transmitting the second signal into the operating receiver, performing a second conversion of the signal, wherein the signal is converted into a third signal, transmitting the third signal into the operating transmitter, and adjusting the operating transmitter.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 16, 2013
    Assignee: Research In Motion Limited
    Inventors: Bradley John Morris, Edward M. Sich
  • Patent number: 8483625
    Abstract: An RF transceiver apparatus comprises transmitter circuitry arranged to convert signals from a baseband frequency to RF transmission frequencies and receiver circuitry arranged to convert signals from RF reception frequencies to the baseband frequency. The transmitter and receiver circuitry each comprise three mixers arranged to convert a signals between the baseband frequency, a first intermediate frequency; a second intermediate frequency that is higher than the transmission frequencies; and a second intermediate frequency to the transmission frequency.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: July 9, 2013
    Assignee: Lime Microsystems Limited
    Inventors: Srdjan Milenkovic, Danny Webster, Ebrahim Bushehri, Ri{hacek over (s)}ard Kurylo
  • Patent number: 8483626
    Abstract: Present software-defined radios (SDR) employ front end circuits that contain multiple receivers and transmitters for each band of interest, which is inflexible, expensive and power inefficient. A programmable front end circuit is implemented on a CMOS device and is configurable to transmit and receive signals in a wide band of frequencies, thereby providing an adaptable transmitter and receiver operable with current and future wireless networking technologies.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 9, 2013
    Assignee: Newlans, Inc.
    Inventor: Dev V. Gupta
  • Patent number: 8476985
    Abstract: In order to generate a broadband, frequency-modulated output signal, of which the carrier frequency is adjustable within a wide frequency range, a frequency-modulated signal is generated on an arbitrary, fixed carrier frequency, which is then converted into IQ signals, and the IQ signals generated in this manner are combined with the desired carrier frequency by IQ modulation to form the frequency-modulated output signal. By preference, the generated IQ signals are low-pass filtered before the IQ modulation.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: July 2, 2013
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Norbert Richt, Petr Lorenz
  • Patent number: 8467374
    Abstract: There is provided a communication device including a first communicating unit, a second communicating unit that has a plurality of antennas, a first communication processing unit that processes a signal received by the first communicating unit, allows the first communicating unit to transmit a signal, and a second communication processing unit that processes a signal received by the second communicating unit, allows the second communicating unit to transmit a signal. The second communication processing unit includes an adjusting unit that adjusts a signal to be transmitted from each of the plurality of antennas based on an adjustment factor, a transmission beam pattern candidate setting unit that derives at least one transmission beam pattern based on a first transmission request and a second transmission request, and a beam pattern applying unit that applies any of the set at least one transmission beam pattern candidate based on first requested-beam-pattern identification information.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 18, 2013
    Assignee: Sony Corporation
    Inventor: Hiroaki Takano
  • Patent number: 8467758
    Abstract: According to one embodiment, a register outputs a first control code in first and second operation modes, saves the first control code as a third control code at an end of the first operation mode, and outputs the third control code at a beginning of a third operation mode. In the first operation mode, a digital-to-analog converter supplies a control signal with a control voltage to a voltage controlled oscillator. In the second operation mode, the control signal is supplied to a buffer amplifier, the amplifier drives a bandlimiting filter, and the filter generates the control voltage. In the third operation mode, the control signal is supplied to the filter, and the filter generates the control voltage.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: June 18, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akihide Sai
  • Patent number: 8467739
    Abstract: A variable operational mode transceiver device formed with an integrated circuit having a semiconductor material substrate supporting a feedback oscillator having a signal power divider electrically coupled to said feedback oscillator output, and a signal frequency multiplier electrically coupled to said signal power divider. A signal mixer has a pair of inputs of which one is electrically coupled to that remaining one of said pair of outputs of said signal power divider.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: June 18, 2013
    Inventors: Sasidhar Vajha, Timothy T. Childs, Daniel C. Eller
  • Patent number: 8452247
    Abstract: In one example, a Bluetooth enabled navigation device pairs with a mobile phone and then sends a plurality of tuning transmissions, each at a different transmission power gain amount, to a remote server using the mobile phone. These tuning transmissions are encoded using frequency tones that synthesize speech for transmission through the mobile phone and a voice channel of its wireless telecommunications network. The navigation device then tunes transmit power settings according to a received response to the tuning transmissions and uses the tuned transmit power settings for subsequent transmission to the remote server using this particular mobile phone.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 28, 2013
    Inventors: Leon L. Hong, David Quimby, Ken Johnson
  • Patent number: 8442470
    Abstract: A system includes a weighting module, a mixer module, and a frequency selective impedance (FSI). The weighting module is configured to receive an input signal having an amplitude and to generate weighted outputs. Amplitudes of the weighted outputs have ratios relative to the amplitude of the input signal. The mixer module has switches configured to receive the weighted outputs and to generate a staircase waveform when the switches are clocked by clock signals. Amplitudes of steps of the staircase waveform are based on the ratios. The FSI is configured to communicate with the switches. The switches are configured to translate an impedance of the FSI centered on a first frequency to a second frequency determined by a frequency of the clock signals.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: May 14, 2013
    Assignee: Marvell International Ltd.
    Inventors: Cao-Thong Tu, David Cousinard, Frederic Declercq
  • Patent number: 8437442
    Abstract: A method and apparatus for generating a carrier frequency signal is disclosed. The method includes generating a first frequency signal; injecting a modulation signal at a first point of the two-point modulation architecture; generating a second frequency signal from the modulation signal; introducing the second frequency signal by mixing the first frequency signal and the second frequency signal to generate a mixed frequency signal and outputting the carrier frequency signal selected from the mixed frequency signal.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 7, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Christian Grewing, Anders Jakobsson, Ola Pettersson, Anders Emericks, Bingxin Li
  • Patent number: 8437706
    Abstract: Aspects of a method and system for transmission or reception of signals utilizing a DDFS clocked are provided. A first oscillator signal utilized for transmission and/or reception of signals of a first wireless communication protocol may be generated, and a direct digital frequency synthesizer (DDFS) may be clocked by the first oscillator signal to generate one or more second oscillator signals. The one or more second oscillator signals may be modulated to generate a signal adhering to a second wireless communication protocol. The one or more second oscillator signals may be utilized to demodulate signals of the second wireless communication protocol. A control word input to the DDFS may control a frequency of the one or more second oscillator signals generated by the DDFS. Simultaneous transmission and reception of signals of the second wireless communication protocol may be simulated by switching the control word input to the DDFS between two values.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 7, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8422975
    Abstract: Disclosed are circuits, techniques and methods for removing one or more harmonics from a waveform that has been mixed with a local oscillator. In one particular example, such a waveform may also be mixed with a second local oscillator at a different frequency and combined with the first mixed waveform to suppress and/or substantially remove the one or more harmonics.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: April 16, 2013
    Assignee: QUALCOMM, Incorporated
    Inventors: Manas Behera, Junxiong Deng
  • Patent number: 8406702
    Abstract: A clock signal generating arrangement for a communication device generates a system clock signal at an output for use as a timing reference. The clock signal generating arrangement comprises a reference clock generator for generating a reference clock signal, a main clock generator for generating a main clock signal having a greater accuracy than the reference clock signal, a clock adjust circuit coupled to the reference clock generator for generating a compensated reference clock signal to compensate for error in the reference clock signal and a clock signal selector coupled to the reference clock generator the main clock generator and the clock adjust circuit.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 26, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael Crowley, Norman Beamish, Sean Sexton, Kenneth Stebbings
  • Patent number: 8406722
    Abstract: A method, apparatus and system are described for adjusting the frequency of one or more clock signals used by a device. The one or more clock signals are adjusted by a determined amount when a channel quality metric of an RF channel in use by the device indicates a degradation in the reception quality.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 26, 2013
    Assignee: Psion Inc.
    Inventor: Iain Roy
  • Patent number: 8401493
    Abstract: A frequency synthesizer includes a phase-locked loop circuit having an output. A frequency divider is connected to the output of the phase-locked loop circuit for receiving the signal therefrom and dividing the frequency of the signal. A tunable bandpass filter is connected to the frequency divider and is tuned for selecting a harmonic frequency to obtain a fractional frequency division for a signal output from the phase-locked loop circuit.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 19, 2013
    Assignee: Harris Corporation
    Inventor: Amilcar DeLeon
  • Patent number: 8391803
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of configurable frequency signal generation. For example, a device may include at least one configurable local-oscillator (LO) generator to receive an input frequency signal and one or more configurable input values and to convert the input frequency signal into at least one output frequency signal according to a configurable conversion ratio, which is based on the configurable input values.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 5, 2013
    Assignee: Intel Corporation
    Inventors: Rotem Banin, Ofir Degani
  • Patent number: 8380138
    Abstract: Closed-loop techniques for adjusting the duty cycle of a cyclical signal, e.g., a clock signal, to approach a target value. In an exemplary embodiment, a charge pump is coupled to a charge and sample module, which drives a de-skew circuit in a negative feedback loop. The charge and sample module couples the charge pump to the integration capacitor during two of four successive phases, and also couples the integration capacitor to sampling capacitors during the other two of the four successive phases. The voltages across the sampling capacitors may be used to control the de-skew circuit, which adjusts the duty cycle of a cyclical signal to be adjusted.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: February 19, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Sameer Wadhwa, Marzio Pedrali-Noy
  • Patent number: 8362820
    Abstract: A semiconductor integrated circuit includes a mixer circuit unit having a first single gate mixer configured to receive a first input signal having a first frequency and a second input signal having a second frequency as inputs, a second single gate mixer configured to receive the first input signal and a third input signal of a phase inverted from a phase of the second input signal as inputs, a third single gate mixer configured to receive a fourth input signal of a phase inverted from the phase of the first input signal and the second input signal as inputs, and a fourth single gate mixer configured to receive the third and the fourth input signals as inputs; and a ½-frequency divider unit configured to receive output signals from the first to the fourth single gate mixers as inputs and output a desired signal.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Deguchi, Daisuke Miyashita
  • Publication number: 20130012142
    Abstract: A method and arrangement for transmitting and receiving RF signals, associated with different radio interfaces of communication systems, employ a direct conversion based transceiver which substantially comprises one receive signal branch and one transmit signal branch. Mixing frequencies of the different systems are generated by a single common by use of an output frequency divider in combination with the synthesizer, and by use of filtering corresponding to a system channel bandwith by means of a controllable low-pass filter operating at baseband frequency.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: NOKIA CORPORATION
    Inventors: Risto Väisänen, Kim Kaltiokallio
  • Patent number: 8351867
    Abstract: The present invention provides an oscillator and a communication system using the oscillator, in particular, an LC oscillator adapted to lessen phase noise deterioration due to harmonic distortions and increase the amplitude of oscillation, thereby having a favorable low phase noise characteristic. The oscillator comprises at least one voltage to current converter consisting of a transistor and a resonator comprising two LC tanks consisting of a pair of conductive elements and inductive elements. A feedback loop is formed such that an output terminal of the voltage to current converter is connected to the resonator and a current input to the resonator is converted to a voltage which is in turn fed back to an input terminal of the voltage to current converter. Inductive elements constituting the two LC tanks constituting the resonator are mutually inductively couple and a coefficient of the mutual induction is about ?0.6.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: January 8, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Yusuke Wachi
  • Publication number: 20130005276
    Abstract: A transceiver 1 includes a frequency synthesizer 2 configured to generate an output signal 3 for use as a carrier signal for transmission and/or a signal with a channel frequency for reception, wherein the frequency synthesizer is a sub-sampling based frequency locked loop frequency synthesizer. The combination of a FLL and sub-sampling allows to obtain a sub-sample based locked loop with a closed loop response similar to a PLL but with improved settling time and improved suppression of high frequency components of the quantization noise due to the sampling process. The transceiver allows to obtain a frequency synthesizer with improved characteristics with respect to at least one of power consumption, locking characteristic, design optimization characteristics compared to non-sub-sampling PLL based frequency synthesizers.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 3, 2013
    Applicant: GREENPEAK TECHNOLOGIES B.V.
    Inventor: Hans Van Driest
  • Patent number: 8346227
    Abstract: In one example, a Bluetooth enabled navigation device pairs with a mobile phone and then sends a plurality of tuning transmissions, each at a different transmission power gain amount, to a remote server using the mobile phone. These tuning transmissions are encoded using frequency tones that synthesize speech for transmission through the mobile phone and a voice channel of its wireless telecommunications network. The navigation device then tunes transmit power settings according to a received response to the tuning transmissions and uses the tuned transmit power settings for subsequent transmission to the remote server using this particular mobile phone.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: January 1, 2013
    Assignee: Airbiquity Inc.
    Inventors: David Quimby, Ken Johnson, Leon L. Hong
  • Patent number: 8340606
    Abstract: A transmitter and a signal amplifier are provided. The signal amplifier includes a digital-to-analog converter converting an input digital signal into an analog signal, a local oscillator signal generator outputting in-phase and quadrature-phase oscillator signals, a first mixer mixing the analog signal with the in-phase local oscillator signal to output an in-phase high frequency signal, a second mixer mixing the analog signal with the quadrature-phase local oscillator signal to output a quadrature-phase high frequency signal, a main amplifier amplifying the in-phase high frequency signal output from the first mixer, and an auxiliary amplifier amplifying the quadrature-phase high frequency signal output from the second mixer.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-soo Park, Do-hyung Kim, Jin-wook Burm, Seong-soo Lee, Heung-bae Lee
  • Patent number: 8326236
    Abstract: A configurable transceiver includes an RF receiver section that generates at least one downconverted signal from a received RF signal. A receiver processing module processes at least one downconverted signal in a plurality of receiver stages to produce a stream of inbound data, wherein the receiver processing module is configurable in response to a control signal to selectively bypass at least one of the plurality of receiver processing stages. A transmitter processing module processes outbound data in a plurality of transmitter stages to produce at least one baseband signal, wherein the receiver processing module is configurable in response to the control signal to selectively bypass at least one of the plurality of transmitter processing stages. An RF transmitter section generates at least one RF signal from the at least one baseband signal.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: December 4, 2012
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza (Reza) Rofougaran
  • Patent number: 8315575
    Abstract: The invention relates to an integrated circuit in a mobile radio transceiver. This circuit includes a radio-frequency assembly for producing a mobile radio signal and a modulator for converting transmission data into an analogue, modulated transmission signal which is broadcast in a frequency band outside the mobile radio frequency range.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 20, 2012
    Assignee: Intel Mobile Communications GmbH
    Inventors: Giuseppe Li Puma, Klaus Getta
  • Patent number: 8301102
    Abstract: An apparatus, a method and a system for correcting a phase imbalance are described. Embodiments may measure the phase imbalance inherent in a tuner and use the imbalance measure to correct the output of the tuner. Embodiments may include a tone generator to produce a single frequency tone and a tuner to receive the single frequency tone and output an intermediate frequency. The intermediate frequency may be corrected by a correction loop. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 30, 2012
    Assignee: Intel Corporation
    Inventors: Isaac Ali, Nicholas P. Cowley
  • Patent number: 8290447
    Abstract: Methods and apparatus for reducing transmit emissions are described herein. The transmit out of band emissions in an adjacent band can be reduced while complying with existing wireless communication standards through utilization of one or more of reduced transmit bandwidth, transmit operating band offset, and channel index remapping. The transceiver can support a receive operating band that is substantially adjacent to a band edge. The transmit operating band can be offset from an adjacent frequency band, and can use a narrower operating band than is supported by the receiver. The transmit baseband signal can have a reduced bandwidth to reduce the amount of noise. The frequency offset can introduce a larger transition band between the transmit operating band edges and the adjacent frequency band of interest. The transceiver can remap channel assignments to compensate for the frequency offset such that the frequency offset introduced in the transmitter is transparent to channel allocation.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: October 16, 2012
    Assignee: Wi-LAN Inc.
    Inventors: Todd Sutton, Srikanth Gummadi, Walid Hosseini, Lei Wang
  • Patent number: 8290020
    Abstract: A radio transmitter select its operating frequency based on the frequency characteristics of a collocated receiver and clock harmonics. The radio transmitter can dynamically change its operating frequency in a wide enough range so as to avoid frequencies where its spurs fall on the receive frequency of the collocated receiver. The frequency characteristics of the clock harmonic of the radio transmitter and the collocated receiver are obtained, then a range of operating frequencies is calculated to enable the collocated devices to operate without undue interference.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: October 16, 2012
    Assignee: Intel Corporation
    Inventors: Hsin-Yuo Liu, Leora Roth, Jing Zhu
  • Patent number: 8265568
    Abstract: A synchronized frequency divider that can divide a clock signal in frequency and provide differential output signals having good signal characteristics is described. In one exemplary design, the synchronized frequency divider includes a single-ended frequency divider and a synchronization circuit. The single-ended frequency divider divides the clock signal in frequency and provides first and second single-ended signals, which may be complementary signals having timing skew. The synchronization circuit resamples the first and second single-ended signals based on the clock signal and provides differential output signals having reduced timing skew. In one exemplary design, the synchronization circuit includes first and second switches and first and second inverters. The first switch and the first inverter form a first sample-and-hold circuit or a first latch that resamples the first single-ended signal.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 11, 2012
    Assignee: Qualcomm Incorporated
    Inventors: Dongjiang Qiao, Frederic Bossu
  • Patent number: 8260231
    Abstract: The present invention provides architectures and methods which use multiple radio receive chains in mobile devices to boost performance of the mobile devices. While a first set of the receive chains are assigned to a serving base station, another set of receive chains are dynamically allocated to neighbor base stations and/or to the serving base station depending upon present or expected system conditions and timing. A first synthesizer is configured to provide signals to the first and second set of receive chains. Other synthesizers are also configured to provide signals to the second set of receive chains. Thus, depending on the mode of operation, the second set of receive chains utilizes signals from a given synthesizer as needed. A priori data may be used to allocate specific receive chains to the serving base station, neighboring base stations or both. Unused synthesizers may be turned off to conserve power.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: September 4, 2012
    Inventors: Bhaskar Patel, Arumugam Govindswamy, Sarath Babu Govindarajulu
  • Patent number: 8254849
    Abstract: An FM radio with a wide frequency range operates in a cell phone without interfering with the VCO of the RF transceiver. The FM transceiver generates a VCO signal whose frequency varies by less than ±7% from the midpoint of a narrow first range. A synthesizer signal is generated by dividing the VCO frequency by a first divisor such that the synthesizer frequency varies over a lower frequency second range. The VCO frequency is also divided by a second divisor such that the synthesizer frequency varies over a third range. The upper limit of the second range falls at the lower limit of the third range. The lower limit of the second range is 85.5 MHz and the upper limit of the third range is 108.0 MHz. By also using a third divisor, a synthesizer signal with a range of 76-108 MHz is generated from the narrow first frequency range.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 28, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Tzu-wang Pan, Yi Zeng, I-Hsiang Lin, Pushp K. Trikha, Jeremy D. Dunworth, Rahul Apte
  • Patent number: 8249533
    Abstract: A rapidly adjustable local oscillation (LO) module for use in a radio transmitter or a radio receiver includes an oscillation generating module and a high frequency switching module. The oscillation generating module is operably coupled to generate a plurality of local oscillations. The high frequency switching module is operably coupled to, for a first one of a plurality of transmission paths, provide one of the plurality of local oscillations when a first transmission path selection indication is in a first state and provide another one of the plurality of local oscillations when the first transmission path selection indication is in a second state and, for a second one of the plurality of transmission paths, provide the one of the plurality of local oscillations when a second transmission path selection indication is in a first state and provide the another one of the plurality of local oscillations when the second transmission path selection indication is in a second state.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: August 21, 2012
    Assignee: Vixs Systems, Inc.
    Inventors: Bojan Subasic, Mathew A. Rybicki
  • Patent number: 8238840
    Abstract: A communication apparatus includes: a communication unit COM that performs operation control of a function involving transmission or reception of an electromagnetic wave by an antenna; a touch sensor module TSM having an oscillation circuit and an electrode connected to the oscillation circuit; a power supply PS that supplies power to the oscillation circuit; and a power supply controller PSCON that controls supply of power by the power supply PS. The touch sensor module TSM detects a contact operation based on an oscillation state of the oscillation circuit which varies in accordance with a contact operation. As a result, a state where the power supply PS is supplying power to the oscillation circuit under the control of the power supply controller PSCON and a state where the communication unit COM is performing operation control of the function involving transmission or reception of an electromagnetic wave do not exist concurrently.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 7, 2012
    Assignee: Kyocera Corporation
    Inventors: Taro Iio, Satoko Omura
  • Patent number: 8219051
    Abstract: A front end receiver is disclosed. The front end receiver comprises a plurality of transmissive signal paths originating from one signal input, a plurality of switching mechanisms; and at least one path of the plurality of transmissive signal paths including a first amplifier coupled to a first input port of each of the plurality of switching mechanisms. The front end receiver also comprises at least another path of the plurality of transmissive signal paths including a second amplifier coupled to a second input port of each of the plurality of switching mechanisms. The receiving subsystem coupled to the output port of each switching mechanism. Each of the receiving subsystems controls a switching mechanism to select the path that is optimal for radio reception depending on the strength of signal being received.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: July 10, 2012
    Assignee: Mediatek Inc.
    Inventor: Dai Sieh
  • Patent number: 8213879
    Abstract: The radio-frequency signal reception and/or transmission device includes an antenna (8) for picking up or transmitting radio-frequency signals, a bandpass filter (9), at least one low noise amplifier (11) for amplifying the filtered signals, an oscillator stage (1) for generating first high frequency signals (SVCO), at least one frequency divider (14) for dividing by M the frequency of the first signals in order to generate second high frequency signals (SD), where M is an integer number greater than 1, at least a first mixer unit (12) for mixing the filtered and amplified radio-frequency signals (SR) with the first high frequency signals (SVCO), and at least a second mixer unit (13) for mixing the intermediate signals supplied by the first mixer unit with the second high frequency signals in order to produce baseband signals (IR, QR).
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: July 3, 2012
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Emil Zellweger, Arnaud Casagrande
  • Publication number: 20120142283
    Abstract: A wireless communication apparatus using a frequency signal produced by a frequency synthesizer operates at a reduced power consumption and includes a reception portion comprising a first mixer mixing a signal based on the received wireless signal and the frequency signal, a second mixer mixing the first mixer output signal and a local signal, and a demodulation stage demodulating the second mixer output signal. The frequency synthesizer comprises a Voltage Controlled Oscillator (VCO) generating a frequency signal responsive to a variation of a control input voltage, and a feed back circuit receiving as a control input voltage a voltage corresponding to a phase difference between a signal obtained by frequency dividing the output frequency signal of the VCO and a reference clock signal. The VCO is operable at a high frequency that increases with an increase of a bias current.
    Type: Application
    Filed: November 29, 2011
    Publication date: June 7, 2012
    Applicant: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Takashi TAYA
  • Patent number: 8179167
    Abstract: Embodiments of the present invention include methods for wide bandwidth synthesizer circuits and methods. In one embodiment, the present invention includes a frequency synthesizer comprising a multiplexer and a band group selector. The multiplexer is coupled to receive a plurality of sinusoidal signals. Each sinusoidal signal has a unique frequency. The band group selector selects between a plurality of band groups. The band group selector is coupled to receive a first signal from the multiplexer. The multiplexer multiplexes between the plurality of sinusoidal signals and provides the first signal. The band group selector includes a band mixer. The band mixer mixes the first signal with a band signal having a band frequency. The band signal corresponds to a band group selected from the plurality of band groups. The band group selector provides a transmitter mixer signal and a receiver mixer signal.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: May 15, 2012
    Assignee: WiLinx Corporation
    Inventors: Mahdi Bagheri, Ali Karimi-Sanjaaani, Edris Rostami, Masoud Djafari, Mohammad E. Heidari, Rahim Bagheri
  • Patent number: 8175543
    Abstract: A method and system for wireless communication using integrated clock generation for Bluetooth and FM transmit and FM receive functions may include generating a clock signal to enable transmission and/or reception of Bluetooth signals; and clocking a Direct Digital Frequency Synthesizer (DDFS) via the generated clock signal to generate one or more signals by the DDFS that enable transmission or reception of FM signals. The generated clock signals for the Bluetooth and for the FM transmit and receive functions may include an in phase and quadrature phase component. Time Division Duplex of FM transmission and reception and simultaneous FM transmission and FM reception may be simulated by switching the control frequency word at a certain rate. The DDFS may also receive control words to compensate for frequency changes in the Bluetooth LO. The FM signals reception and transmission may be controlled by a bi-directional coupler.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: May 8, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8175544
    Abstract: A system and method providing variable-frequency IF conversion in a multimode communication device. Various aspects of the present invention provide a multimode communication device comprising at least one RF signal receiver adapted to receive at least a first RF signal corresponding to a first communication protocol and a second RF signal corresponding to a second communication protocol. A controllable frequency source may, for example, be adapted to output a mixing signal characterized by one of a plurality of selectable frequencies. Such selectable frequencies may, for example, comprise a first frequency corresponding to the first communication protocol and a second frequency corresponding to the second communication protocol. A mixer may, for example, receive a received RF signal from the RF signal receiver, receive a mixing signal from the controllable frequency source, and convert the received RF signal to an IF signal utilizing the received mixing signal.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: May 8, 2012
    Assignee: Broadcom Corporation
    Inventors: Arya Behzad, Ahmadreza Rofougaran
  • Patent number: 8165190
    Abstract: A method for converting a sample rate in a Software Defined Radio (SDR) communication system is provided. The method includes setting a sampling frequency range depending on a maximum sampling frequency and a minimum sampling frequency so as to enable support of a plurality of sample rates; if a required sampling frequency is set, determining a control value for converting the maximum sampling frequency to the required sampling frequency; and receiving a signal having the maximum sampling frequency, and converting the signal having the maximum sampling frequency to a signal having the required sampling frequency depending on the control value. The control value is determined taking into account a maximum sampling frequency for setting the sampling frequency range.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: April 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Chul Kim, Shi-Chang Rho
  • Patent number: 8155600
    Abstract: Systems and methods for digital communication using an inexpensive reference crystal are described herein. Some illustrative embodiments include a method that includes setting a center frequency of a local oscillator used by a radio frequency (RF) transceiver, sequentially applying each of a plurality of predetermined offsets to the center frequency of the local oscillator, determining a plurality of metrics indicative of the quality of a received signal (each of the plurality of metrics corresponding to a different predetermined offset of the plurality of predetermined offsets), and selecting a predetermined offset of the plurality of predetermined offsets that results in a metric indicating a received signal that is higher in quality than the received signal that results when applying each of the remaining predetermined offsets of the plurality of offsets.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Yehuda Azenkot, Manoneet Singh
  • Patent number: 8145140
    Abstract: Methods and systems for clocking FM transmit, FM receive and near field communication functions using DDFS are disclosed. Aspects of one method may include generating a Bluetooth signal that may comprise, for example, I and Q components, or Bluetooth local oscillator (LO) signals, for use in Bluetooth communication. One of the two Bluetooth LO signals may then be used by a DDFS to generate I and Q LO signals for FM reception and/or transmission. One of the I and Q LO signals for FM communication may be used by another DDFS to generate at least one LO signal for near field communication (NFC) transmission and/or reception. While the Bluetooth LO signal may vary in frequency as Bluetooth frequency hopping occurs, the FM LO signals may remain constant for a specific channel frequency. Similarly, while the FM LO signals may be changed to tune to different FM channels, the NFC LO signals may remain at a constant frequency.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: March 27, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Publication number: 20120071110
    Abstract: The invention relates to a radio-frequency circuit comprising: a control unit; and a phase-locked loop; wherein the control unit is arranged to determine an offset between an actual value of a reference frequency at the input to the loop on the basis of a measurement of the signal output from the filter of the loop, and a theoretical value of said frequency known to the control unit, via a relation known to the control unit, and to control a correction of said offset.
    Type: Application
    Filed: June 3, 2010
    Publication date: March 22, 2012
    Applicant: ST-Ericsson SA
    Inventor: Franck Castex
  • Patent number: 8140026
    Abstract: All-digital techniques for generating periodic digital signals having selectable duty cycles. In one aspect, a computation block is provided for computing the product of a selected duty cycle and a discrete ratio between a reference clock period and a high-frequency oscillator period. The computation block may be coupled to a pulse width generator for generating signals having pulse widths that are integer multiples of the high-frequency oscillator period. In another aspect, a pulse width generator may also accommodate mixed fractional multiples of high-frequency oscillator periods by tapping the individual inverter stages of a delay line matched to the individual inverter stages of a ring oscillator exemplary embodiment of the high-frequency oscillator.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 20, 2012
    Assignee: Qualcomm Incorporated
    Inventors: Xiaohong Quan, Lennart K. Mathe, Liang Dai, Dinesh J. Alladi
  • Patent number: 8140039
    Abstract: The present invention relates to a quadrature divider which may be used in a phase locked loop or frequency synthesizer or with a single side band mixer. According to a preferred embodiment the divider takes a quadrature input and has a quadrature output. The divider has four analog mixers 1, 2, 3 and 4. The first two mixers 1, 2 take the in-phase quadrature input, while the second mixers 3, 4 take the quadrature-phase quadrature input. The outputs and feedback loops of the mixers are properly arranged such that the in-phase and quadrature-phase outputs of the divider have a determinisitic phase sequence relationship based on the phase sequence relationship of the corresponding quadrature inputs. Third order harmonics may be minimized or reduced by addition or subtraction of the mixer outputs. As the divider is able to take a quadrature input, there is no need for a dummy divider in the phase locked loop, thus saving space and power.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: March 20, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Howard Cam Luong, Hui Zheng
  • Publication number: 20120064840
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Inventors: Satoshi TANAKA, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Publication number: 20120064839
    Abstract: A transmitter includes an input unit, a transmission phase locked loop PLL, a local PLL, and a synthesis unit. The input unit is configured to generate a division control signal based on an input signal and channel information. The transmission PLL is configured to generate a modulation signal having a frequency of a GHz band, which varies in response to the division control signal. The local PLL is configured to generate a local signal having the GHz band. The synthesis unit is configured to frequency-synthesize the modulation signal and the local signal to output a transmission signal of a MHz band.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Inventors: Jong-Ryul YANG, Hwa-Yeal YU