Transmission Controlled By Engine Patents (Class 477/115)
  • Patent number: 8894540
    Abstract: A hybrid vehicle is provided that includes a control system that controls the time required for engine shut down. An electric machine or integrated starter-generator may be used to apply a load to the combustion engine after an engine shut down signal is received. By reducing the time required to shut down the engine in a controlled manner, the catalytic converter can be conditioned by providing a desired volume of air and fuel to the catalyst to reduce emissions and increase fuel economy. If an indication is received that it is no longer desirable to shut down the engine, the engine may be restarted conventionally or started in a quick start mode by refueling the engine is the engine operating at a sufficient speed for a quick restart.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Siamak Hashemi, Yulei Chen
  • Publication number: 20140342875
    Abstract: While an engine (drive source) is being driven, when a long pressing operation (selection operation on a predetermined shift range) on an N-range button via a SBW shifter is executed, an engine drive/stop button blinks to notify a driver (step S1 and step S2). During the blinking of the engine drive/stop button, when the engine drive/stop button is pressed and the engine (drive source) is stopped, a neutral range is maintained without being switched to a parking range automatically (step 3 and step 4).
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Koji TANIDA
  • Publication number: 20140342876
    Abstract: A transmission controller executes synchronization shift of shifting a variator in a direction opposite to a speed ratio change direction of a sub transmission mechanism when shifting a sub transmission mechanism. When a gear position of the sub transmission mechanism is at the second gear position and an output increase request of a power source is made, the transmission controller prohibits the synchronization shift and shifts only the sub transmission mechanism from a second gear position to a first gear position.
    Type: Application
    Filed: November 9, 2012
    Publication date: November 20, 2014
    Inventors: Hiroyasu Tanaka, Mamiko Inoue, Ryousuke Nonomura, Takuichiro Inoue, Norio Asai, Masato Mori, Satoru Ishii, Fumito Shinohara
  • Patent number: 8892323
    Abstract: A control device controls a transmission mechanism which includes a first clutch to be engaged at startup and a second clutch, and is interlocked when hydraulic pressure is supplied to the first and second clutches and when the first and second clutches are completely engaged. The control device includes a hydraulic pressure control unit controlling hydraulic pressure supplied to the transmission mechanism so that the first clutch is set in a completely engaged state and the second clutch is set in a slip interlock state where the second clutch is not completely engaged in the case of a return from an idle stop control in which an engine is automatically stopped. The hydraulic pressure control unit starts reducing hydraulic pressure supplied to the second clutch when an increased amount of an engine rotation speed per unit time becomes smaller than a predetermined value.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: November 18, 2014
    Assignees: Jatco Ltd, Nissan Motor Co., Ltd.
    Inventors: Hideshi Wakayama, Keichi Tatewaki, Hiroshi Sekiya, Koutarou Tagami, Seiichiro Takahashi, Yuzuru Tohta, Takashi Matsuda, Daisuke Matsumoto
  • Publication number: 20140336000
    Abstract: The apparatus, comprised of a housing, at least one set of fixed pulleys and corresponding mobile pulleys and the means of controllably coupling the rotational movement to, through and from it reduces the energy required for the self-propelling function of a vehicle employing rotational movement for the said function by at least fifty percent regardless of the said vehicle's internal type of power source and previous amount of energy used for the said function.
    Type: Application
    Filed: August 27, 2013
    Publication date: November 13, 2014
    Inventor: Stefan Stuparu
  • Patent number: 8886374
    Abstract: The present invention provides a torque control method for an HEV, the method comprising: detecting an operation failure of an integrated starter-generator (ISG); calculating a driver demand torque based on a current accelerator position sensor (APS); controlling the hydraulic pressure and operation of a clutch so as to increase an engine speed to convert the driving mode of the vehicle from electric vehicle (EV) mode to hybrid electric vehicle (HEV) mode in the event that an operation failure of the ISG is detected and the driver demand torque is out of a predetermined range; and compensating the driver demand torque to a desired level based on a transfer torque from the clutch to a motor. The method can improve driving performance and power performance of HEV, in the event of ISG failure, by performing a hydraulic control for a clutch and calculating a driver request torque and a transfer torque from the clutch to a motor to compensate the drive request torque to a desired level.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 11, 2014
    Assignee: Hyundai Motor Company
    Inventor: Sang Joon Kim
  • Publication number: 20140329643
    Abstract: A control apparatus for an automatic transmission is provided with an automatic gearshift mode and a manual gearshift mode. The control apparatus changes a gearshift characteristic of the automatic transmission in response to a situation where an accelerator pedal opening is smaller than a predetermined opening, so that downshifting occurs at higher vehicle speed than in a situation where the accelerator pedal opening is greater than or equal to the predetermined opening. While the manual gearshift mode is being selected, the control apparatus inhibits change of the gearshift characteristic until downshifting is performed once, and permits change of the gearshift characteristic after downshifting is performed once.
    Type: Application
    Filed: October 23, 2012
    Publication date: November 6, 2014
    Inventor: Katsuhiro Matsuo
  • Publication number: 20140315685
    Abstract: A method of operating a vehicle drive-train including a drive engine, a transmission device and a drive output. At least one shifting element is provided in the transmission, whose transmission capacity for obtaining an operating condition of the transmission device can at least, in part, be continuously varied. During overdrive operation of the drive-train, torque present at the output can be supported at least partially by the transmission device in the area of the drive engine. During overdrive operation, the transmission capacity of one of the transmission shifting elements, which to obtain the current operating condition of the transmission device is essentially at least approximately zero, is set to a value at which at least part of the torque present at the drive output can be supported in the area of the transmission device, and the rotational speed of the drive engine has a value below a predefined limit value.
    Type: Application
    Filed: December 5, 2012
    Publication date: October 23, 2014
    Applicant: ZF Friedrichshafen AG
    Inventor: Hans Hofler
  • Patent number: 8868271
    Abstract: Disclosed herein is a motor control system and method for a vehicle with a transmission comprising for improving the quality of shifting, by improving precision in shifting control with precise and active motor torque control by calculating a maximum and a minimum motor torque in response to determining a power-on up-shift for increasing a shifting gear and a power-off down-shift for decreasing the shifting gear in shifting of the vehicle.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Hyundai Motor Company
    Inventor: Sang Joon Kim
  • Patent number: 8858394
    Abstract: An apparatus and a method for engaging a friction element, e.g., a clutch, in an automatic transmission. The apparatus includes a piston contained within a housing that is used to apply pressure to and operate the friction element. The piston divides the housing into first and second chambers that are supplied with fluid by various valves. The pressure of the fluid in the chambers controls the position of the piston.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Chrysler Group LLC
    Inventor: Thomas D. Nogle
  • Patent number: 8852056
    Abstract: A method for improving starting of an engine that may be repeatedly stopped and started is presented. In one example, the method adjusts a desired engine speed to at least two levels during engine speed run-up from cranking to engine idle speed. The method may improve vehicle launch for stop/start vehicles.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: October 7, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Felix Nedorezov, Seung-Hoon Lee, Yuji Fujii, Jeffrey Allen Doering
  • Patent number: 8845486
    Abstract: Outdoor power equipment includes an engine having a throttle and a drive shaft, a driven shaft, a tool coupled to the driven shaft. The engine further includes a transmission coupling the drive and driven shafts and providing a mechanical advantage therebetween. The transmission automatically changes the mechanical advantage in response to torque experienced by the driven shaft.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 30, 2014
    Assignee: Briggs & Stratton Corporation
    Inventor: Jason J. Raasch
  • Publication number: 20140287873
    Abstract: An ECU increases an engine rotation speed when the ECU determines that an inclination angle of an uphill is larger than or equal to a predetermined value, an accelerator is off and a vehicle speed in a direction opposite to a travelling direction of a vehicle, indicated by a specified range, is increasing. Subsequently, the ECU acquires an engine stall predicted vehicle speed, and calculates a predetermined value used in an immediate engine stall determination condition from a current rate of increase per unit time of a turbine rotation speed. Then, the ECU determines that immediate engine stall determination is affirmative when a rotation speed difference between the engine rotation speed and the turbine rotation speed becomes smaller than the predetermined value, and executes engine stall prevention control.
    Type: Application
    Filed: October 26, 2012
    Publication date: September 25, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Okamura, Takao Nishimura, Masatomo Yoshihara, Fumikazu Satou
  • Patent number: 8843284
    Abstract: A method for controlling a manual transmission of a vehicle includes providing a manual transmission comprising a shift fork actuator and a shifter assembly comprising a shift lever, a shift knob disposed on the shifter lever, a shift lever position sensor and a shifter tactile sensor. The tactile sensor may be used to determine when pressure is applied to the shift knob of the shifter assembly and, when pressure is applied to the shift knob, vehicle operating parameters are monitored. A predicted gear selection is determined based on the monitored vehicle operating parameters. An operator gear selection is then determined based on the shift lever position sensor when the shift lever is moved. The operator gear selection is compared to the predicted gear selection and, when the predicted gear selection is the same as the operator gear selection, the manual transmission is shifted to the predicted gear selection.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 23, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael John Wolterman
  • Publication number: 20140277975
    Abstract: Methods and systems are provided for adjusting a transmission shift schedule in engine systems configured to operate with multiple fuels. During low engine speed and high engine load conditions, when an air charge temperature is elevated, engine operation is shifted from gasoline usage to CNG usage. The torque advantage of CNG usage is leveraged to advance a transmission upshift schedule and delay a downshift schedule to improve vehicle responsiveness when operating with CNG only.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Ed Badillo, Dev Saberwal, Samuel Guido, Ross Dykstra Pursifull
  • Publication number: 20140274555
    Abstract: A system and method for minimizing torque disturbances during a shift event for an automatic transmission control actual transmission input shaft torque using a transmission input shaft signal produced by an input shaft torque sensor. The torque sensor provides a signal to a controller that monitors the measured transmission input torque. The torque sensor may be implemented by a strain gauge, a piezoelectric load cell, or a magneto-elastic torque sensor. The system may include a vehicle powertrain having an engine, a transmission coupled to the engine via a torque converter, an input torque sensor coupled to the input shaft of the transmission and a controller configured to control engine torque to cause the measured transmission input shaft torque to achieve a target transmission input shaft torque during the shift event.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Alexander O'Connor Gibson, Seung-Hoon Lee, Yuji Fujii, Gregory Michael Pietron, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas
  • Patent number: 8838345
    Abstract: An automatic transmission system for a bulldozer includes an automatic speed stage shifting section that switches among speed stages depending on a vehicle speed, a speed stage maintaining section that maintains a currently selected speed stage until a predetermined speed stage shifting disobedient time elapses after completion of a speed stage shifting while disobeying a switching instruction from the automatic speed stage shifting section, a load detecting section that detects a vehicle load, and a control restricting section that restricts a control processing of the maintaining section for causing it to obey the shifting section's instruction when the vehicle load is a predetermined load or greater even before the disobedient time elapses.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: September 16, 2014
    Assignee: Komatsu Ltd.
    Inventor: Kenjiro Shimada
  • Patent number: 8821344
    Abstract: A method for controlling a transmission gear change to a desired gear includes disengaging an offgoing transmission control element, changing engine speed to a synchronous speed of the desired gear, decreasing engine output torque, and engaging an oncoming transmission control element.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: September 2, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Richard R. Hathaway, Edward Katynski, Pedro S. Lujan
  • Publication number: 20140228172
    Abstract: A hydraulic pressure control device for a transmission, the hydraulic pressure control device configured to operate a prescribed hydraulic apparatus by hydraulic pressure generated by an oil pump to be driven during operation of a driving force source, for which automatic stop control is performed according to at least one of a vehicle speed and a request drive amount, to accumulate the hydraulic pressure in a pressure accumulator, and to supply the hydraulic pressure accumulated in the pressure accumulator to the hydraulic apparatus when the driving force source is automatically stopped, wherein: the automatic stop control includes control to stop the driving force source during travel in which the vehicle speed is equal to or higher than a prescribed vehicle speed; and the hydraulic pressure control device is configured to perform a pressure accumulation control to control an accumulated oil amount in the pressure accumulator and the automatic stop control in a cooperative manner so as to increase the accum
    Type: Application
    Filed: September 29, 2011
    Publication date: August 14, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomokazu Inagawa, Kenta Kimura, Takafumi Inagaki, Yuji Hattori, Yu Nagasato
  • Patent number: 8784265
    Abstract: A method for improving starting of an engine that may be repeatedly stopped and started is presented. In one embodiment, the method adjusts a transmission actuator in response to engine combustion during an engine start. The method may improve vehicle launch for stop/start vehicles.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: July 22, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Alex O'Connor Gibson, Roger Lyle Huffmaster, Ihab S. Soliman
  • Patent number: 8777810
    Abstract: A method is provided for controlling an automatic transmission of a motor vehicle, in which the engine speed is limited after a cold start and a normal shift point is used for shifting to the next higher gear of the automatic transmission in the case of an average operating temperature of an engine, before the average operating temperature is reached, a cold shift point being used for shifting to the next higher gear of the automatic transmission, in the case of which upshifting is performed at a lower vehicle velocity than in the case of the normal shift point. Upshifting into the next higher gear of the automatic transmission can be made easier, since upshifting can already be performed at lower vehicle velocities and therefore lower engine speeds in the cold start phase.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Hans Kleila
  • Patent number: 8771145
    Abstract: A method of controlling a double clutch transmission of a vehicle to conduct a series of downshifting operations from a preceding gear to a subsequent gear via a current gear in response to deceleration of the vehicle, may include maintaining a clutch which has been in an engaged state at the preceding gear, in the engaged state until after an order to shift to the subsequent gear may be generated, when shifting from the preceding gear to the current gear, releasing the clutch after the order to shift to the subsequent gear may be generated, and engaging a shift gear of the subsequent gear after the releasing of the clutch.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 8, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventors: Joung Chul Kim, Ju Hyun Nam, Hee Yong Lee, Byeong Wook Jeon
  • Patent number: 8771146
    Abstract: A method of controlling a transmission of a vehicle may include generating a first synchronization force between a shift gear of a target gear and an output shaft to shift gears from a current gear to a lower gear set as the target gear in response to deceleration of the vehicle, so as to form a first synchronization, removing the first synchronization force between the shift gear and the output shaft after the generating of the first synchronization force, and generating a second synchronization force between the shift gear of the target gear and the output shaft after the removing of the first synchronization force, so as to form a second synchronization.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 8, 2014
    Assignee: Hyundai Motor Company
    Inventors: Sung Yeol Kim, Seung Min Lee, Choung Wan Son, Seok Young Shin, Ju Hyun Nam, Sung Yop Lee, Kwang Min Won
  • Patent number: 8775036
    Abstract: When a capacity coefficient (Cre) of a torque converter is larger than or equal to a predetermined threshold (CreA), a speed ratio (e) is calculated on the basis of an actual power transmission efficiency (?) by referring to a predetermined unique relationship between a power transmission efficiency (?) and a speed ratio (e). Therefore, even in a second speed ratio variation range (R2) in which the capacity coefficient (Cre) is larger than or equal to the threshold (CreA) and the speed ratio (e) is not uniquely determined for the capacity coefficient (Cre), the speed ratio (e) is calculated using the unique relationship between the speed ratio (e) and the power transmission efficiency (?), so the speed ratio (e) may be calculated in all the speed ratio variation range of the torque converter.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Daisuke Inoue
  • Patent number: 8768588
    Abstract: A transmission includes a controller being provided with a change-speed stage anticipator. The controller adopts a time, which one of the transmission's gear-mechanism selectors requires in shifting a current change-speed stage to another change-speed stage, as a pre-shift time for selecting the latter change-speed stage. The change-speed stage anticipator operates the one of the gear-mechanism selectors while adopting a temporary change-speed stage as a subsequent change-speed stage when the temporary change-speed stage, which is estimated from a state of vehicle after the pre-shift time, the state of vehicle being relevant to each element of an anticipated change-speed stage group that is made up of one or more of the change-speed stages that can be selected by the one of the gear-mechanism selectors being set on one of the transmission's input shafts that is disconnected from a power source, coincides with an anticipated change-speed stage that corresponds to the pre-shift time.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 1, 2014
    Assignees: Aisin AI Co., Ltd., Aisin AW Co., Ltd.
    Inventors: Hiroki Hatori, Hiroshi Toyoda, Takeshige Miyazaki, Yoshiki Ito, Kiyoshi Nagami, Atsushi Takeuchi
  • Patent number: 8758199
    Abstract: A load control system for a work vehicle including set rotation speed detection means for detecting a set rotation speed of an engine of the work vehicle, actual rotation speed detection means that senses an actual rotation speed of the engine, a continuously variable speed change device that receives power from the engine of the work vehicle, speed change position detecting means for detecting a speed change operating position of the continuously variable speed change device, operating means for speed-shifting the continuously variable speed change device, and control means for controlling the operation of the operating means.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 24, 2014
    Assignee: Kubota Corporation
    Inventors: Eiji Nishi, Atsushi Shinkai, Keishiro Nishi, Yasunobu Nakatani
  • Patent number: 8758197
    Abstract: A vehicle idle stop system is disclosed. The idle stop system comprises an engine, an automatic transmission, a first oil pump driven by said engine and generating hydraulic pressure which is supplied to a friction element of said automatic transmission, a second oil pump capable of operating and generating hydraulic pressure which is supplied to a friction element of said automatic transmission during an engine stop, and a controller. The controller is configured to control the engine to stop when a predetermined engine stop condition is satisfied, and to control the second oil pump to supply hydraulic pressure to a predetermined friction element coupled to a forward starting gear of the automatic transmission, the hydraulic pressure supplied to couple the predetermined friction element when the engine is automatically stopped and when a gear range of the automatic transmission is in a neutral range.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 24, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Shinya Kamada, Motomi Kobayashi, Koshiro Saji
  • Patent number: 8751075
    Abstract: An engine control strategy for a marine vessel propulsion system receives a request for a gear from among plural transmission gears, determines an engine speed for the requested transmission gear shift, adjusts the engine to the determined speed for a predetermined amount of time, and prevents the requested transmission gear shift from occurring for the predetermined amount of time while maintaining the engine at the predetermined speed. After the predetermined amount of time elapses, the requested shift is allowed to occur.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: June 10, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Conor A. Leehaug, Joseph H. Scott, Andrew H. Bazan, Jiuzhu Yi
  • Patent number: 8747280
    Abstract: There is provided a control device for a vehicle that includes: a driving force source; a hydraulic transmission; and an interrupting mechanism that is able to interrupt power transmission from the driving force source to a drive wheel. The control device includes a controller that is configured to, after the driving force source is stopped while the vehicle is travelling, on the condition that a hydraulic pressure applied to the transmission has decreased, execute control for setting a speed ratio of the transmission to a predetermined low speed ratio, such as a high-speed gear in the case where a low-speed gear and the high-speed gear are provided, while the vehicle is travelling.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: June 10, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takeshi Hoshiba
  • Patent number: 8734294
    Abstract: It is provided a control device of a vehicle power transmission device including a transmission capable of fixing a rotating member with either of engagement of a one-way clutch or engagement of an engagement device, the transmission having a predetermined shift stage formed on condition that at least the rotating member is fixed, if an input torque to the transmission is changed after the engagement of the engagement device, a torque capacity of the engagement device being temporarily reduced without changing the predetermined shift stage, and if a request for applying a driven torque is made during reduction of the torque capacity of the engagement device, the temporarily reduced torque capacity of the engagement device being recovered, and the driven torque being increased depending on a recovery status of the torque capacity.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuhiro Hiasa, Tooru Matsubara, Atsushi Tabata
  • Patent number: 8734293
    Abstract: A system for pressurizing transmission control elements includes an accumulator for containing pressurized fluid, first and second check valves, a booster valve supplied with accumulator pressure, and an actuator that causes the booster valve to open a fluidic connection between the accumulator and the control elements through the check valves in response to an engine restart signal.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: May 27, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Lev Perkarsky, Robert O. Burkhart, Derek Kinch, John Butwin
  • Patent number: 8727944
    Abstract: A motor-generator system for a vehicle, in which power transmission between a crankshaft of an engine and a motor-generator is performed by a V-belt wound around pulleys thereof, includes a speed controller controlling the rotational speed of the V-belt within a predetermined range and provided on a crankshaft pulley mounted on the crankshaft. The motor-generator system, among others, can maintain the power transmission force of the V-belt at a high level.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 20, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Hyundai Motor Japan R&D Center, Inc.
    Inventors: Nakano Noboru, Sakurai Nobuo
  • Patent number: 8725367
    Abstract: In a control apparatus and a control method for a vehicle automatic transmission in which a plurality of gears with different speed ratios are achieved by selectively engaging a plurality of friction engagement devices and a one-way clutch, if an acceleration request is made in the case where the one-way clutch is in an idling state when a first predetermined gear is to be achieved by engaging the one-way clutch, a pre-synchronization control is executed to transmit torque through a predetermined friction engagement device used to achieve a second predetermined gear at which the one-way clutch is maintained in an idling state, and to continue to change a rotational direction of the one-way clutch toward a rotational direction in which the one-way clutch is brought to a synchronized state, according to the acceleration request.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takaaki Tokura, Hideaki Otsubo, Motonori Kimura
  • Patent number: 8725371
    Abstract: A speed changing control apparatus for use in a vehicle includes: a driving power source configured to generate driving power for running; a transmission having a synchromesh mechanism configured to synchronize an input shaft revolution number with an output shaft revolution number and an actuator configured to automatically carry out a shift operation; and an automatic clutch disposed between the driving power source and the transmission. The speed changing control apparatus is configured to start a shift disengaging operation for the transmission after a speed change is requested and before the automatic clutch turns into a decoupled state, so as to suppress torsional vibration at the time of decoupling the automatic clutch. Such control enables the synchromesh mechanism to carry out revolution synchronization with the input shaft revolution number of the transmission in a lowered state, and diminishes a revolution difference subjected to synchronization.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Shimizu, Masato Tateno, Masayasu Mizobuchi
  • Publication number: 20140129100
    Abstract: A hierarchical control system for a tandem axle assembly for a vehicle is provided. The hierarchical control system includes a vehicle level controller, an actuator, a shift controller, and a sensor. The shift controller is capable of placing the tandem axle assembly in at least a first operating condition and a second operating condition using the actuator. In response to the sensor and an operating condition of at least one of the power source and the transmission of the vehicle, the shift controller adjusts a manner of placing the tandem axle assembly in at least one of the first operating condition and the second operating condition. The hierarchical control system facilitates performing a shifting procedure in an automatic manner or as desired by an operator of the vehicle without excessively increasing a cost and a complexity of the tandem axle assembly.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 8, 2014
    Inventors: Richard A. Nellums, Ananthakrishnan Surianarayanan, Sameer A. Joshi, Sajeev C. Krishnan, Daniel G. Smedley, Ronald K. Markyvech, Sidharth Renganathan, Steven J. Wesolowski
  • Patent number: 8688336
    Abstract: A system for controlling power downshifts of a transmission includes a flare generation module, a flare control module, and a shift control module. The flare generation module generates turbine speed flare by decreasing pressure applied to an off-going clutch of the transmission. The flare control module decreases the turbine speed flare by increasing the pressure applied to the off-going clutch of the transmission. The shift control module increases a pressure applied to an on-coming clutch of the transmission when the turbine speed flare is less than a predetermined amount from a desired turbine speed flare.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 1, 2014
    Inventor: Todd J. Thor
  • Patent number: 8678977
    Abstract: A control device for controlling a transmission device configured such that when the speed change mechanism performs switching to a shift speed with a different speed ratio, special speed change control is executed in which a disengagement hydraulic pressure, is lowered to cause a disengagement element to slip, and in which the disengagement element is maintained in a slipping state over an entire speed change process. In the case where slipping of the disengagement element is not detected within a predetermined time after the disengagement hydraulic pressure is lowered at start of the special speed change control, pressure increase correction is performed in which an engagement hydraulic pressure, which is a hydraulic pressure of hydraulic oil for an engagement element that is a friction engagement element to be engaged, is raised until slipping of the disengagement element is detected.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Shigekazu Hase, Hiroya Ueno, Nobuaki Inagaki, Nobuhiro Iwai, Hiroshi Tsutsui
  • Patent number: 8682543
    Abstract: A method of operating a transmission having a plurality of gears which can operate in an automatic shifting mode, during which a gear is selected automatically depending on the current driving situation, and also in a manual shifting mode during which a gear is selected depending on a driver's command. When the driver commands a shift, a change takes place from the automatic shifting mode to the manual shifting mode. A specific threshold value of the transmission output speed or an equivalent rotational speed value is associated with each gear and, when the driver commands a downshift, a target gear is determined as a function of the current transmission output speed or the equivalent rotational speed value. The gear selected as the target gear is the gear whose specific threshold value is higher than or equal to the current transmission output speed or the equivalent rotational speed value.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 25, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Detlef Plath, Friedemann Jauch, Franz-Josef Schuler, Peter Spoerl
  • Publication number: 20140080669
    Abstract: Methods and systems are provided for restarting an engine in response to a driver's change-of-mind. In one embodiment, the engine is shutdown during an idle stop with the transmission in a higher gear or with the transmission tied-up to a transmission case. In response to a driver change-of-mind restart request, the transmission is downshifted, or released from the tie-up, to return driveline torque.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Felix Nedorezov, Chad Everette Griffin
  • Publication number: 20140080670
    Abstract: Riding lawn mowers may utilize friction drives configured with a variable normal force between frictional components. In a riding lawn mower, an internal combustion engine may be coupled to a differential via a friction drive, wherein the friction drive is configured with a variable normal force in order to provide improved power transfer and/or shifting performance.
    Type: Application
    Filed: May 31, 2011
    Publication date: March 20, 2014
    Applicant: HUSQVARNA CONSUMER OUTDOOR PRODUCTS N.A., INC.
    Inventors: Matthew Elder, Brad Graham, Justin Warner, Eric Canonge, Warren W. Pendry, Lennie D. Rhoades, Jeffrey C. Hickman, Darren Chandler, Duncan Burns, JR., Rick Nelson, Alex Evrard, Jeremy Hansen, Chris Roth
  • Patent number: 8672807
    Abstract: A speed-changing device includes a motor, a reduction gear train that reduces a rotation speed of the motor in accordance with a speed reduction ratio and transmits the rotation at the reduced speed, and a speed reduction ratio switching unit that switches the speed reduction ratio. The speed reduction ratio switching unit includes an actuator that switches the speed reduction ratio, a controller that controls the actuator, and a drive state detector that detects an index value representing load torque applied to the motor. The controller activates the actuator when the index value exceeds a first threshold value and activates the actuator when the index value fluctuates between the first threshold and a second threshold thereby forming an undulated pattern that satisfies a predetermined condition.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: March 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Masatoshi Atsumi, Kenichirou Inagaki, Hiroyuki Kaizo, Tadashi Arimura, Yutaka Yamada
  • Patent number: 8663067
    Abstract: A method of operating an automatic transmission of a motor vehicle. The automatic transmission, when the motor vehicle is driven with an actuated accelerator and an engaged starting clutch, and then coasts with the accelerator not actuated and the starting clutch engaged, during coasting with the engaged starting clutch the transmission remaining in the gear in which it was previously driven with the gas pedal actuated. When the transmission input speed of the automatic transmission drops below a limit value, during coasting, the starting clutch is disengaged. During coasting with a disengaged starting clutch in the automatic transmission, a gear is shifted that matches the current speed of the motor vehicle so that, when the starting clutch is subsequently engaged, a gear is available that matches the speed of the motor vehicle prevailing at the time the starting clutch is subsequently engaged.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: March 4, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Roland Mair, Florian Schneider
  • Publication number: 20140045653
    Abstract: A speed-changing device includes a motor, a reduction gear train that reduces a rotation speed of the motor in accordance with a speed reduction ratio and transmits the rotation at the reduced speed, and a speed reduction ratio switching unit that switches the speed reduction ratio. The speed reduction ratio switching unit includes an actuator that switches the speed reduction ratio, a controller that controls the actuator, and a drive state detector that detects an index value representing load torque applied to the motor. The controller activates the actuator when the index value exceeds a first threshold value and activates the actuator when the index value fluctuates between the first threshold and a second threshold thereby forming an undulated pattern that satisfies a predetermined condition.
    Type: Application
    Filed: November 15, 2012
    Publication date: February 13, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Masatoshi ATSUMI, Kenichirou INAGAKI, Hiroyuki KAIZO, Tadashi ARIMURA, Yutaka YAMADA
  • Patent number: 8630778
    Abstract: A system and method for determining a required throttle position and operating a throttle in the required throttle position to attain a required engine speed for fuel cut acquisition is disclosed. A lock-up clutch may be engaged without a shock if a required engine speed is achieved that corresponds to a current transmission speed. Fuel economy may be increased by cutting fuel to the engine when a lock-up clutch is engaged.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: January 14, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Chris Hopp
  • Publication number: 20140011636
    Abstract: An apparatus for influencing an automatic transmission has a man-machine-interface, which is connected to a transmission controller for selecting a transmission ratio of the automatic transmission connected to an internal combustion engine, and a monitoring device for monitoring at least one operating parameter that is relevant to the wear of the internal combustion engine, wherein a threshold value of the operating parameter and a desired rotation speed range of the internal combustion engine that depends on the threshold value can be selected via the man-machine-interface, and wherein the transmission controller selects a transmission ratio on the basis of the monitoring device, by which an actual rotation speed of the internal combustion engine is adjusted within the desired rotation speed range. A method for influencing an automatic transmission is also described.
    Type: Application
    Filed: February 1, 2012
    Publication date: January 9, 2014
    Applicant: Audi AG
    Inventor: Thomas Dietmar Reichert
  • Publication number: 20140011635
    Abstract: A method for improving starting of an engine that may be repeatedly stopped and started is presented. In one embodiment, the method adjusts a transmission actuator in response to engine combustion during an engine start. The method may improve vehicle launch for stop/start vehicles.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 9, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Alex O`Connor Gibson, Roger Lyle Huffmaster, Ihab S. Soliman
  • Publication number: 20140011638
    Abstract: A traveling speed control system for a work vehicle comprises an engine having a variable throttle opening; a hydrostatic transmission driven by the engine, the hydrostatic transmission having a variable output/input speed ratio; a travel mode selecting manipulator for selecting either a work travel mode or a normal travel mode; and an acceleration manipulator for setting a traveling speed of the work vehicle. Increase of the throttle opening during idling, of the engine is prior to increase of the output/input speed ratio for increasing the traveling speed of the work vehicle when the work travel mode is selected, and the increase of the throttle opening prior to the increase of the output/input speed ratio is canceled when the normal travel mode is selected.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 9, 2014
    Inventor: Koji IWAKI
  • Patent number: 8617028
    Abstract: A system is provided for managing torque in a vehicle driveline coupled to an internal combustion engine and to a hybrid motor/generator. An engine control circuit provides to a transmission control circuit an engine torque value corresponding to torque applied by the engine to the driveline. A hybrid control circuit provides to the transmission control circuit a motor torque value corresponding to torque applied by the hybrid motor/generator to the driveline. The transmission control circuit controls operation of at least one friction device and controls shifting of the transmission, and also manages torque applied to the drive line by the engine and by the hybrid motor/generator based on the engine torque value and the motor torque value such that the friction device control and shift schedule instructions do not require modification to accommodate inclusion of the hybrid motor/generator in the system or exclusion of the hybrid motor/generator from the system.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: December 31, 2013
    Assignee: Allison Transmission, Inc.
    Inventors: John Kresse, Jeffrey Runde
  • Patent number: 8620544
    Abstract: A transmission includes a plurality of clutches that are selectively engageable alone or in combination with each other to establish a plurality of forward drive modes, wherein one of the clutches is configured as a neutral idle (NI) clutch that is selectively actuated to shift the transmission into an NI state, and a controller. The controller is adapted to shift the transmission from a forward drive mode into the NI state during a coast-down maneuver prior to the transmission reaching a zero output speed. A method of shifting the transmission into the NI state includes determining the presence of a predetermined one of the forward drive modes using the controller, and using the controller to actuate a designated one of the clutches as an NI clutch to enter the NI state during the forward drive mode, during a coast-down maneuver, and prior to the transmission reaching a zero output speed.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ronald F. Lochocki, Jr., Sindu Sebastian, David W. Wright
  • Publication number: 20130345022
    Abstract: A control system for a vehicle transmission includes a controller configured to output a first torque estimate defined in terms of one nonlinear function of a transmission parameter for a particular value of the transmission parameter. The controller also receives a measured torque of the transmission at the particular value of the transmission parameter, and outputs a modified torque estimate for the particular value of the transmission parameter based on the measured torque.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Diana Yanakiev, Yuji Fujii, Gregory Michael Pietron, Alexander O'Connor Gibson, Joseph F. Kucharski, Nimrod Kapas