Titanate, Zirconate, Stannate, Niobate, Or Tantalate Or Oxide Of Titanium, Zirconium, Tin, Niobium, Or Tantalum Containing (e.g., Dielectrics, Etc.) Patents (Class 501/134)
  • Publication number: 20130341812
    Abstract: The present disclosure relates to a dental ceramic article comprising ceramic components, the ceramic components having ZrO2 and Al2O3 and at least one component comprising Mn, Er or mixtures thereof, Al2O3 being present in an amount below about 0.15 wt.-% with respect to the weight of the ceramic article. The present disclosure relates also to kit of parts comprising a ceramic article and a colouring solution and processes for producing a dental ceramic article.
    Type: Application
    Filed: March 16, 2012
    Publication date: December 26, 2013
    Applicant: 3M Innovative Properties Company
    Inventors: Gallus Schechner, Holger Hauptmann, Rainer K. Dittmann, Hans R. Schnagl
  • Patent number: 8614001
    Abstract: A sintered particle has the following chemical analysis, as percentages by weight: ZrO2 partially stabilized with CeO2 and Y2O3: complement to 100%; Al2 10%-60%; additive selected from CaO, a manganese oxide, La2O3, SrO, BaO, and mixtures thereof: 0.2%-6; the quantity of CaO being less than 2%; impurities: <2%; the zirconia being stabilized with CeO2 and Y2O3 present in quantities such that, as molar percentages based on the sum of ZrO2, CeO2 and Y2O3: CeO2: 6 mol %-11 mol %; and Y2O3: 0.5 mol %-2 mol %; the particle being obtained by sintering at a sintering temperature higher than 1300° C., the sintering temperature being higher than 1400° C. if the additive is CaO or if the molar CeO2 content is in the range 10% to 11%.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 24, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Emmanuel P. M. Nonnet, Yves M. L. Boussant Roux
  • Patent number: 8609565
    Abstract: The present invention provides a proton conducting thin film having a dense nanometric ceramic material with a relative density of at least about 90% and a grain size of less than about 30 nm, wherein the proton conducting thin film is capable of operating at temperatures of less than about 100° C. in the presence of water vapor. The present invention also provides an electrochemical device using the proton conducting thin film, and a method of making the proton conducting thin film.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: December 17, 2013
    Assignee: The Regents of the University of California
    Inventors: Zuhair A. Munir, Sangtae Kim, Umberto Anselmi-Tamburini, Manfred Martin
  • Publication number: 20130324390
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Patent number: 8598068
    Abstract: New photocatalytic product comprising compounds of titanium integrated with limestone. The product is obtained by reacting limestone with a suitable precursor of titanium dioxide in a basic solution, followed by accurately washing the solid obtained, drying it and calcining it. A composite is obtained containing limestone, titanium dioxide and calcium titanate. The composite thus obtained, used as such or in mixture with other components, has shown an unexpectedly high photocatalytic activity.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 3, 2013
    Assignee: Italcementi S.p.A.
    Inventors: Renato Ancora, Massimo Borsa, Maurizio Iler Marchi
  • Patent number: 8598064
    Abstract: New photocatalytic product comprising compounds of titanium integrated with limestone. The product is obtained by reacting limestone with a suitable precursor of titanium dioxide in a basic solution, recovering the product in particular conditions, drying it and calcining it. By operating in presence of sodium, a composite is obtained substantially free from titanium dioxide, containing limestone and calcium titanate. The composite thus obtained, used as such or in mixture with other components, has shown an unexpectedly high photocatalytic activity.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 3, 2013
    Assignee: Italcementi S.p.A.
    Inventors: Renato Ancora, Massimo Borsa, Maurizio Iler Marchi
  • Patent number: 8597536
    Abstract: Disclosed is a non-lead perovskite oxide having a low Curie temperature and high ferroelectricity represented by General Formula (P) given below. (Bix1,Bax2,Xx3)(Fey1,Tiy2,Mny3)O3??(P) (where, Bi and Ba are A-site elements, X is one kind or a plurality of kinds of A-site elements, other than Pb and Ba, with an average ion valence of 2. Fe, Ti, and Mn are B-site elements. O is oxygen. 0<x1+X2<1.0, 0<x3<1.0, 0<y1+y2<1.0, 0?y3<1.0, 0<x1, 0<x2, 0<y1, 0<y2. The standard molar ratios among A-site elements, B-site elements, and oxygen are 1:1:3, but the molar ratios among them may deviate from the standard ratios within a range in which a perovskite structure may be formed.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita
  • Patent number: 8597537
    Abstract: A perovskite oxide, which includes a first component represented by General Formula (P1) given below and a second component represented by General Formula (P2) given below. (Bix1, Xx2) (Fez1, Mnz2)O3 ??(P1) (Ay1, Yy2)BO3 ??(P2) (where, Bi is an A-site element and X is an A-site element with an average ion valence of not less than four. A is one kind or a plurality of kinds of A site elements other than Pb with an average ion valence of two, Y is a one kind or a plurality of kinds of A-site elements with an average valence of not less than three. Fe and Mn are B-site elements, and B is one kind or plurality of kinds of B-site elements with an average ion valence of four.) 0.6?x1<1.0, 0?x2?0.4, 0.65?y1<1.0, 0?y2?0.4, x2+y2>0, 0.6?z1<1.0, 0?z2?0.4.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita
  • Patent number: 8593819
    Abstract: Circuit modules and methods of construction thereof that contain composite meta-material dielectric bodies that have high effective values of real permittivity but which minimize reflective losses, through the use of host dielectric (organic or ceramic), materials having relative permittivities substantially less than ceramic dielectric inclusions embedded therein. The composite meta-material bodies permit reductions in physical lengths of electrically conducting elements such as antenna element(s) without adversely impacting radiation efficiency. The meta-material structure may additionally provide frequency band filtering functions that would normally be provided by other components typically found in an RF front-end.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 26, 2013
    Inventor: L. Pierre de Rochemont
  • Patent number: 8592041
    Abstract: Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroshige Adachi, Sadaaki Sakamoto
  • Publication number: 20130306902
    Abstract: A process for producing a homogenous multi compound system which is hydroxide- and/or oxide-based includes a first alternative process comprising providing a first and a second refractory metal in respective hydrofluoric solutions, and mixing the first and second hydrofluoric solutions to provide a mixed hydrofluoric solution comprising a dissolved first and second refractory metal. A second alternative process comprises dissolving the first and the second refractory metal in an alternative mixed hydrofluoric solution. The mixed hydrofluoric solution or the alternative mixed hydrofluoric solution is precipitated with a precipitant to provide a solids mixture in a suspension. The first and second refractory metal is from the group consisting of Mo, W, Nb, Re, Zr, Hf, V, Sb, Si, Al, and Ta. The first and second refractory metal are different. At least one of the first and second refractory metal is provided as a fluoro and/or as an oxyfluoro complex.
    Type: Application
    Filed: February 3, 2012
    Publication date: November 21, 2013
    Applicant: H.C. STARCK GMBH
    Inventors: Karsten Beck, Sven Albrecht, Christoph Schnitter, Timo Langetepe, Ralph Otterstedt
  • Publication number: 20130307201
    Abstract: An additive manufacturing process includes providing a powder mixture having a ceramic constituent and a reactive metal constituent, and reacting and fusing the powder mixture with a directed energy source to form a geometry.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Inventor: Bryan William McEnerney
  • Publication number: 20130298650
    Abstract: A moisture-sensitive ceramic material having a composition represented by the general formula RE(A,B)O3, wherein RE is a rare earth element, A is a divalent metal element, and B is a tetravalent metal element. More specifically, the moisture-sensitive ceramic material has a composition represented by the general formula RE(A1-xBx)O3, and A is Ni or Mg, and B is Ti or Sn.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventor: Tadamasa Miura
  • Publication number: 20130295414
    Abstract: Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9<x<1.3, 0?y<0.1, and 0?z<0.9 are satisfied] with a composite oxide (B) or a carboxylic acid (B) represented by general formula (2): CnH2n+1COOH [wherein 3?n?7 is satisfied]. The composite oxide (B) contains one or at least two elements selected from the group consisting of P (phosphorus), Si, Ce, and Bi and one or at least two elements selected from the group consisting of Sn, Sm, Nd, and Y (yttrium).
    Type: Application
    Filed: May 21, 2013
    Publication date: November 7, 2013
    Inventors: Jun Fujii, Hideaki Sakurai, Takashi Noguchi, Nobuyuki Soyama
  • Publication number: 20130293320
    Abstract: There are provided a dielectric ceramic having a high Qf value in a relative permittivity ?r range of 35 to 45, and a small absolute value of a temperature coefficient ?f which indicates change of the resonant frequency in a wide temperature range from a low temperature range to a high temperature range, and a dielectric filter having the dielectric ceramic. A dielectric ceramic includes: a main component, molar ratios ?, ?, and ? satisfying expressions of 0.240???0.470, 0.040???0.200, 0.400???0.650, and ?+?+?=1 when a composition formula of the main component is represented as ?ZrO2.?SnO2.?TiO2; and Mn, a content of Mn in terms of MnO2 being greater than or equal to 0.01% by mass and less than 0.1% by mass with respect to 100% by mass of the main component.
    Type: Application
    Filed: December 22, 2011
    Publication date: November 7, 2013
    Applicant: KYOCERA CORPORATION
    Inventors: Tsuyoshi Komatsu, Satoshi Toyoda, Hidehiro Takenoshita
  • Patent number: 8576040
    Abstract: Disclosed herein is a multilayer type power inductor including: a plurality of body layers including internal electrodes and having magnetic material layers stacked therein; and a plurality of gap layers, wherein the gap layer has an asymmetrical structure. In the multilayer type power inductor, portions that are in contact with the body layers have, a non-porous structure, which is a dense structure, and portions that are not in contact with the body layers have a porous structure, such that the gap layer has the asymmetrical structure. Therefore, a magnetic flux propagation path in a coil is dispersed to suppress magnetization at a high current, thereby making it possible to improve a change in inductance (L) value according to the application of current.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myeong Gi Kim, So Yeon Song, Ic Seob Kim, Sung Yong An, Jin Woo Hahn, Soo Hwan Son
  • Patent number: 8569192
    Abstract: A sintered complex oxide comprising metal oxide particles (a) having a hexagonal lamellar structure and containing zinc oxide and indium, and metal oxide particles (b) having a spinel structure and containing a metal element M (where M is aluminum and/or gallium), wherein the mean value of the long diameter of the metal oxide particles (a) is no greater than 10 ?m, and at least 20% of the metal oxide particles (a) have an aspect ratio (long diameter/short diameter) of 2 or greater, based on the number of particles.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: October 29, 2013
    Assignee: Tosoh Corporation
    Inventors: Hideto Kuramochi, Kenji Omi, Masanori Ichida, Hitoshi Iigusa
  • Patent number: 8557724
    Abstract: A semiconductor porcelain composition is prepared by separately preparing a composition of (BaR)TiO3 (R is La, Dy, Eu, Gd or Y) and a composition of (BiNa)TiO3, and calcining the composition of (BaR)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders. Similarly, a semiconductor porcelain composition is prepared by separately preparing a composition of (BaM)TiO3 (M is Nb, Ta or Sb) and a composition of (BiNa)TiO3, and calcining the composition of (BaM)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: October 15, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Publication number: 20130263523
    Abstract: The present invention relates to a fused ceramic particle having the following chemical composition, as weight percentages based on the oxides, and for a total of 100%: ZrO2+HfO2: balance to 100%; 5.0%<SiO2<32.0%; 2.0%<La2O3<15.0%; 2.5%<Y2O3<11.0%; 0.5%<Al2O3<8.0%; and less than 1.0% of other oxides. Use in particular as a grinding agent, an agent for dispersion in a wet medium, a supporting agent, a heat-exchange agent, or for the treatment of surfaces.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 10, 2013
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Samuel Marlin, Michela Valentini
  • Patent number: 8551203
    Abstract: A molten alumina/zirconia grain mixture having the following chemical composition, in wt %: ZrO2+HfO2: 35 to 45.5%; Al2O3: 43.7 to 65%; other oxides: <10%; SiO2: <0.8%, which simultaneously adheres to a granulometric condition and to a densimetric condition.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 8, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes European
    Inventors: Samuel Marlin, David Langohr, Anthony Gaeta
  • Patent number: 8551910
    Abstract: The invention relates to a porous structure comprising a ceramic material comprising mainly or consisting of an oxide material of the pseudobrookite type comprising titanium, aluminum, magnesium and zirconium in proportions such that the phase of the pseudobrookite type substantially satisfies the formula: (Al2TiO5)x(MgTi2O5)y(MgTiZrO5)z. This material satisfies the following composition, in mol % on the basis of just the oxides Al2O3, TiO2, MgO and ZrO2: 90<2a+3m<110; 100+a<3t<210?a; and a+t+m+zr=100, in which: a is the molar content of Al2O3; t is the molar content of TiO2; m is the molar content of MgO; and zr is the molar content of ZrO2.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 8, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Stephane Raffy, Philippe Auroy
  • Publication number: 20130260983
    Abstract: A NOx sensor 100 is produced by forming a stack with a ceramics paste including ceramic particles, a resin, a solvent, and one or more additives selected from additives of a first group having a first structure containing one or more selected from ether structures, urethane structures, hydroxy group-containing structures, ester structures, and acrylic structures and additives of a second group having any one or more structures of the additives of the first group and a second structure containing one or more selected from imidazoline structures, ethylenediamine structures, and amine structures. The ceramics paste contains any one of the additives of the first group and the second group and thus has an appropriate affinity for a cutting edge at the time of cutting a laminated body before the firing of the NOx sensor 100.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 3, 2013
    Applicant: NGK INSULATORS, LTD.
    Inventors: Takeshi OMORI, Koichi IWATA, Masahiro ABE
  • Patent number: 8541330
    Abstract: The method of making a transparent ceramic includes making a molded body from a powder mixture of starting materials, which include one or more sintering aids. The sintering aids can include SiO2, TiO2, ZrO2, HfO2, Al2O3 and/or fluorides. The transparent ceramic is made by pre-sintering the molded body at temperatures between 500° C. to 900° C., subsequently sintering in vacuum at temperatures between 1400° C. and 1900° C. and then pressurizing the sintered molded body at a pressure of from 10 to 198 MPa followed by annealing. The optoceramic material contains crystals with a stoichiometry of A2+XBYBYDZE7, wherein ?1.15?x?+1.1, 0?y?3, 0?z?1.6 and 3x+4y+5z=8; and wherein A is a trivalent rare earth cation, B is a tetravalent cation, D is a pentavalent cation and E is a divalent anion.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 24, 2013
    Assignee: Schott AG
    Inventors: Yvonne Menke, Akio Ikesue
  • Patent number: 8535601
    Abstract: A composite target material includes titanium oxide in a range between about 50 wt % and about 85 wt % and the remaining comprising stannic oxide or aluminum oxide or a combination of stannic oxide and aluminum oxide. A method for manufacturing composite target material includes the steps of: providing a mixture made of titanium oxide power in a range between about 40 wt % and about 80 wt %, stannic oxide powder or aluminum oxide in a range between about 15 wt % and about 50 wt %, binder in a range between about 5 wt % and about 10 wt %; pressing the mixture to form a blank; sintering the blank; cooling the blank.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: September 17, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Jia Huang
  • Publication number: 20130231239
    Abstract: Coloring in a slip casting process by which a ceramic slurry is cast into green state bodies. It is during this slip casting that a coloring solution consisting of metallic salts is introduced to the slurry and subsequently slip-cast. A coloring solution may comprise for example a metallic salt, a solvent, an organic solvent such as derivatives of propylene oxides, and an acid can be introduced to the slip casting process. Such a coloring solution can be added to the slip casting process. The solution is thoroughly mixed with the ceramic slurry, after which the ceramic body is cast, dried and finally subjected to a sintering process. After final sinter, the resulting ceramic body possesses an innate color that is homogenous throughout its composition. The method is especially useful for coloring zirconia dental restorations.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Inventors: Robin A. Carden, Thomas C. Valenti, Frank A. Jimenez
  • Publication number: 20130228454
    Abstract: In order to obtain a ferroelectric thin film that is formed to have a predetermined thickness on a substrate, that have satisfactory crystallization and that achieves a high piezoelectric property, a method of manufacturing such a ferroelectric thin film and a method of manufacturing a piezoelectric element having such a ferroelectric thin film, when a dielectric material of a perovskite structure is formed into a film on the substrate, a predetermined amount of additive is mixed with PZT, and the concentration of the additive mixed is varied in the thickness direction of the thin film.
    Type: Application
    Filed: October 26, 2011
    Publication date: September 5, 2013
    Inventor: Kenji Mawatari
  • Patent number: 8524123
    Abstract: A sputtering target which is composed of a sintered body of an oxide which contains at least indium, tin, and zinc and includes a spinel structure compound of Zn2SnO4 and a bixbyite structure compound of In2O3. A sputtering target includes indium, tin, zinc, and oxygen with only a peak ascribed to a bixbyite structure compound being substantially observed by X-ray diffraction (XRD).
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: September 3, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Kazuyoshi Inoue, Akira Kaijo, Satoshi Umeno, Tokie Tanaka
  • Patent number: 8524109
    Abstract: A preferred piezoelectric ceramic material is a BiFeO3—PbZrO3—PbTiO3 ternary solid solution wherein proportions of the constituent perovskite metal oxides are selected so that the material exhibits relatively high Curie temperatures above 380° C. and useful piezoelectric properties.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 3, 2013
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Xiaoli Tan, Wei Hu
  • Publication number: 20130221554
    Abstract: A dental block for producing a dental prosthesis comprises a green body including zirconia and having a chemical composition including increasing amounts of yttria through a thickness of the green body. The green body is substantially opaque with a substantially consistent optical characteristic of non-translucency with respect to visible light across the thickness, and is subsequently millable and sinterable to form the dental prosthesis with an optical characteristic of increasing translucency through a thickness of the dental prosthesis.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Inventors: Yunoh Jung, Daniel Yonil Jung, Young Jin Kim, Yoonho Jun
  • Patent number: 8519602
    Abstract: To provide a piezoelectric thin film on a substrate, having an alkali-niobium oxide-based perovskite structure expressed by a composition formula (K1-xNax)yNbO3, wherein the composition ratio x of the piezoelectric thin film expressed by (K1-xNax)yNbO3 is in a range of 0.4?x?0.7, and a half width of a rocking curve of (001) plane by X-ray diffraction measurement is in a range of 0.5° or more and 2.5° or less.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: August 27, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Kenji Shibata, Kazufumi Suenaga, Akira Nomoto, Kazutoshi Watanabe
  • Patent number: 8501031
    Abstract: Piezoelectric compounds of the formula xNamBinTiO3-yKmBinTiO3-zLimBinTiO3-pBaTiO3 where (0<x?1), (0?y?1), (0?z?1), (0.3?m?0.7), (0.3?n?0.7), (0<p?1) (0.9?m/n?1.1) as well as to doped variations thereof are disclosed. The material is suitable for high power applications.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: August 6, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Shujun Zhang, Hyeong Jae Lee, Thomas R Shrout
  • Patent number: 8496893
    Abstract: A furnace assembly includes first and second sections. The first section includes first and seconds ends, a first joint disposed at the first end, a conical portion at a second end, a first filter disposed between the first and second ends, and a lumen extending through the first section in fluid communication with the first filter. The second section includes first and second ends, a second joint disposed at the first end, an opening disposed at the second end and to receive the conical portion of the first section, a second filter disposed between the first and second ends, and a lumen extending through the second section in fluid communication with the second filter. When engaged, the first and second sections form a chamber between the first and second filters. The chamber is in fluid communication with the respective first ends of the first and second sections.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: July 30, 2013
    Assignee: EEStor, Inc.
    Inventor: Richard D. Weir
  • Patent number: 8496870
    Abstract: This invention relates to a method of making lead-free piezoelectric ceramic films. Specifically, the invention is directed to a method for fabricating lead-free piezoelectric free standing films having enhanced piezoelectric properties. The films may be used for a number of applications including incorporation in microelectronic devices such as energy harvesting devices and sensor technologies.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: July 30, 2013
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Huidong Li
  • Publication number: 20130190164
    Abstract: A sintering composition and calcined object which are precursors for a sintered zirconia. The burned surface of the sintered zirconia gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.4 or more, and a region located at a depth of 100 ?m or more from the burned surface gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.3 or less.
    Type: Application
    Filed: August 19, 2011
    Publication date: July 25, 2013
    Applicant: NORITAKE CO LIMITED
    Inventors: Yoshihisa Ito, Shinji Kato
  • Publication number: 20130190163
    Abstract: A dielectric ceramic contains Mg2SiO4 as a main component, and TiO2, Al2O3, and Li2O as subcomponents, wherein, based on 100 parts by mass of the main component, the TiO2 content is 0.5 parts by mass or more and 5.0 parts by mass or less in terms of oxide, the Al2O3 content is 0.5 parts by mass or more and 3.0 parts by mass or less in terms of oxide, and the Li2O content is 1.0 part by mass or more and 3.0 parts by mass or less in terms of oxide.
    Type: Application
    Filed: December 14, 2012
    Publication date: July 25, 2013
    Applicant: TDK CORPORATION
    Inventor: TDK CORPORATION
  • Publication number: 20130188292
    Abstract: [Problems] To provide a ceramic composition that retains a high insulation resistance after being fired in a reductive atmosphere to form a laminated body. [Means for Solving the Problem] A novel ceramic composition according to an embodiment of the invention include: (NaxK1-x)(NbyTa1-y)O3 (0?x?1.0, 0.3<y?1.0) as main ingredient and Li and F in an amount ranging from 0.1 to 10.0 mol, calculated on lithium fluoride basis, relative to 100 mol of the main ingredient.
    Type: Application
    Filed: July 25, 2012
    Publication date: July 25, 2013
    Inventors: KEISUKE KOBAYASHI, Clive A. Randall, Keiichi Hatano, Yutaka Doshida, Yoichi Mizuno, Minoru Ryu
  • Patent number: 8486520
    Abstract: By engineering thermal spray parameters, such as temperature and velocity, and engineering feedstock powder size and morphology, ceramic coatings may be produced having desired mechanical and thermal properties. The ceramic thermal spray coating may have a microstructure having about 10-80% by cross-sectional area of a particulate phase based on, surface area of the coating, and the particulate phase is uniformly distributed throughout the coating. The particulate phase is an unmelted portion of the thermal sprayed feedstock, which is highly porous and may be produced by agglomerating nanoparticles of the ceramic. Such coatings can be applied as TBCs or as abradable coatings.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: July 16, 2013
    Assignee: National Research Council of Canada
    Inventors: Rogerio S. Lima, Basil R. Marple, Christian Moreau
  • Patent number: 8488298
    Abstract: A dielectric ceramic capacitor that has excellent reliability and particularly excellent life characteristics in a load test even when the thickness of a dielectric ceramic layer is reduced uses a dielectric ceramic as a dielectric ceramic layer in a laminated ceramic capacitor which is a substance containing, as the main component, (Ba, R)(Ti, V)O3 or (Ba, Ca, R)(Ti, V)O3 in which R is at least one selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and in which both V and R are present uniformly in the main component particles.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 16, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takayuki Yao
  • Patent number: 8480918
    Abstract: The present invention provides a piezoelectric material which can be applied even to the MEMS technique, exhibits satisfactory piezoelectricity even at high ambient temperatures and is environmentally clean, namely, a piezoelectric material including an oxide obtained by forming a solid solution composed of two perovskite oxides A(1)B(1)O3 and A(2)B(2)O3 different from each other in crystalline phase, the oxide being represented by the following general formula (1): X{A(1)B(1)O3}?(1?X){A(2)B(2)O3}??(1) wherein “A(1)” and “A(2)” are each an element including an alkali earth metal and may be the same or different from each other; “B(1)” and “B(2)” each include two or more metal elements, and either one of “B(1)” and “B(2)” contains Cu in a content of 3 atm % or more; and “X” satisfies the relation 0<X<1.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: July 9, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 8472161
    Abstract: A dielectric ceramic composition enabling one to obtain a laminated capacitor which hardly causes degradation of insulation resistance with time under high-humidity even in using a base metal such as Ni as an internal electrode, contains as a main constituent, a constituent represented by (CaxSr1-x)(TiyZr1-y)O3 in which x and y are 0?x?1 and 0?y?0.50, and, as accessory constituents, at least 0.5 parts by mol and at most 15 parts by mol of SiO2, at least 0.1 parts by mol and at most 10 parts by mol of MnO, and at least 0.01 parts by mol and at most 0.079 parts by mol of Al2O3, with respect to 100 parts by mol of the main constituent.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: June 25, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hitoshi Nishimura, Masahiro Naito
  • Patent number: 8470211
    Abstract: The present invention provides new ferroelectric ceramic materials which can be sintered at a temperature lower than that of the conventional ferroelectric ceramic materials and upon sintering, devices formed of the new ferroelectric ceramic materials possesses excellent piezoelectric properties which are suitable for many industrial applications. The ferroelectric ceramic material includes a composition with a general formula of wPb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPb(Mg1/3Nb2/3)O3-zPbZrO3-(1?w?x?y?z)PbTiO3, in which 0<w<1, 0<x<1, 0?y<1, 0<z<1, w+x+y+z<1, and 0.5?w+x+y. A method of preparing a ferroelectric ceramic material includes preparing MgNb2O6, ZnNb2O6 and NiNb2O6 powder precursors, mixing the precursors with PbO, TiO2 and ZrO2 to form a mixture and calcining the mixture.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: June 25, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Kui Yao, Bee Keen Gan
  • Publication number: 20130149363
    Abstract: The present invention relates to five-layered pigments based on multicoated platelet-shaped substrates which comprise a layer sequence comprising (A) a layer of SnO2 having a layer thickness of 0.1-50 nm, (B) a high-refractive-index coating consisting of TiO2 in the rutile modification having a layer thickness of 10-800 nm, (C) a colorless coating having a refractive index n?1.8 having a layer thickness of 20-800 nm, (D) a high-refractive-index coating consisting of SnO2 having a layer thickness of 0.1-50 nm, (E) a layer of TiO2 in the rutile modification having a layer thickness of 10-800 nm, and optionally (F) an outer protective layer, and to the use thereof in paints, coatings, powder coatings, printing inks, security printing inks, plastics, ceramic materials, glasses, as dopants for the laser marking of papers and plastics, in cosmetic formulations and for the preparation of pigment preparations and dry preparations.
    Type: Application
    Filed: February 8, 2013
    Publication date: June 13, 2013
    Applicant: MERCK PATENT GMBH
    Inventor: MERCK PATENT GMBH
  • Publication number: 20130150227
    Abstract: A composite bio-ceramic dental implant and fabricating method thereof are disclosed. The composite bio-ceramic is sintered at a temperature between 1000 and 1800° C. using the nearly inert bio-ceramic powder and the active bio-ceramic powder or the completely resorbable bio-ceramic powder. The bioactive bio-ceramic material is dispersed in the inert bio-ceramic material. Therefore, the composite bio-ceramic has enough mechanical strength and good bioactivity for dental implant.
    Type: Application
    Filed: February 7, 2013
    Publication date: June 13, 2013
    Applicant: NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY
    Inventor: National Taipei University of Technology
  • Patent number: 8450227
    Abstract: The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: May 28, 2013
    Assignee: Corning Incorporated
    Inventors: Daniel Edward McCauley, Anthony Nicholas Rodbourn, Patrick David Tepesch, Christopher John Warren
  • Patent number: 8450911
    Abstract: To provide a piezoelectric thin film element comprising: a piezoelectric thin film on a substrate, having an alkali-niobium oxide-based perovskite structure expressed by a composition formula (K1-xNax)yNbO3, wherein composition ratios x, y of the piezoelectric thin film expressed by (K1-xNax)yNbO3 are in a range of 0.4?x?0.7 and 0.7?y?0.94.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 28, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Kenji Shibata, Kazufumi Suenaga, Akira Nomoto, Kazutoshi Watanabe
  • Patent number: 8431049
    Abstract: In one embodiment a tin oxide based electrode is disclosed. The tin oxide-based electrode includes a base material of tin oxide, a resistivity modifier, a sintering aid, and a corrosion inhibitor. The corrosion inhibitor forms a solid solution with the base material and has a melting point not less than about 1700° C. and a partial pressure of not greater than about 1.0E-7 atmospheres at 1500° C. The corrosion inhibitor further includes 0-4.0 wt % ZrO2 based on the total weight of the composition.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: April 30, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Olivier Citti, Charles N. McGarry, Yves Boussant-Roux
  • Patent number: 8431109
    Abstract: The invention provides a process for production of a composition comprising a perovskite structure compound, the process comprising: a first process to heat a hydrous oxide of at least one B group element selected from the group consisting of Ti, Zr, Hf, and Sn at a temperature within a range of 80 to 300° C. in the presence of an aqueous medium so as to dehydrate the hydrous oxide; and a second process to heat a reaction product obtained in the first process and a hydroxide of at least one A group element selected from the group consisting of Ba, Sr, Ca, Mg and Pb at a temperature within a range of 100 to 300° C. in the presence of an aqueous medium. The process provides a composition comprising an ABO3 compound in the form of uniform and fine spherical particles which have an average particle diameter of 1 ?m or less, preferably within a range of 0.01 to 0.5 ?m, high crystallinity, and a controlled A/B ratio as desired, as well as few internal pores in the crystalline particles.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: April 30, 2013
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Yoshiaki Ikeda, Masami Kuwai, Shinji Ogama, Yukihiro Kuniyoshi, Kazuhisa Hidaka
  • Publication number: 20130102805
    Abstract: A porous ceramic matrix contains a plurality of ceramic particles adhered to each other, and a plurality of channels defined by surfaces of neighbouring ceramic particles, the channels each having an average diameter of 0.5-2.5 ?m. Preferred ceramics also have a porosity of 25.0-40.0%, a Darcy's Permeability of 1.57-34.8×10?14 m2, and a mechanical strength of 25-64 MPa. Also disclosed is a method of preparing such a porous ceramic matrix, comprising providing a pellet containing ceramic particles that are coated with a monomer, a catalyst, and a binder; polymerising the monomer in the solid state by heating, then carbonizing and sintering the pellet.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 25, 2013
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Liang Hong, Xinwei Chen
  • Patent number: 8414791
    Abstract: A piezoelectric/electrostrictive ceramic sintered body has a microstructure in which a matrix phase and an additional material phase having different compositions coexist and the additional material phase is dispersed in the matrix phase. A residual strain ratio of the additional material phase alone is larger than a residual strain ratio of the matrix phase alone. The matrix phase and the additional material phase have a composition in which a Mn compound containing Mn atoms of 0 parts by mole or more and 3 parts by mole or less and a Ba compound containing Ba atoms of 0 parts by mole or more and 1 part by mole or less are contained in a composite of 100 parts by mole represented by a general formula {Liy(Na1-xKx)1-y}a(Nb1-z-wTazSbw)O3, where a, x, y, z and w satisfy 0.9?a?1.2, 0.2?x?0.8, 0.0?y?0.2, 0?z?0.5 and 0?w?0.1, respectively.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: April 9, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Kazuyuki Kaigawa, Ritsu Tanaka
  • Publication number: 20130079215
    Abstract: It is an object of the present invention to provide a sintered cBN compact having excellent wear resistance and fracture resistance even in machining centrifugally cast iron having a property of being difficult to machine, and to provide a sintered cBN compact tool. A sintered cBN compact of the present invention contains 20% by volume or more and 65% by volume or less of cBN and, as a binder, 34% by volume or more and less than 80% by volume of Al2O3, at least one selected from the group consisting of nitrides, carbides, carbonitrides, borides, and boronitrides of Zr and solid solutions thereof (hereinafter, referred to as “X”), and ZrO2, the total amount of X and ZrO2 being 1.0% by volume or more and 6.0% by volume or less, the volume ratio of ZrO2 to Al2O3, ZrO2/Al2O3, being 0.010 or more and less than 0.100, in which the ratio Itetragonal ZrO2(101)/I?Al2O3(110) is 0.
    Type: Application
    Filed: October 26, 2011
    Publication date: March 28, 2013
    Applicant: SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Katsumi Okamura, Machiko Abe, Satoru Kukino