Titanate Containing Patents (Class 501/136)
  • Patent number: 8598068
    Abstract: New photocatalytic product comprising compounds of titanium integrated with limestone. The product is obtained by reacting limestone with a suitable precursor of titanium dioxide in a basic solution, followed by accurately washing the solid obtained, drying it and calcining it. A composite is obtained containing limestone, titanium dioxide and calcium titanate. The composite thus obtained, used as such or in mixture with other components, has shown an unexpectedly high photocatalytic activity.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 3, 2013
    Assignee: Italcementi S.p.A.
    Inventors: Renato Ancora, Massimo Borsa, Maurizio Iler Marchi
  • Patent number: 8598064
    Abstract: New photocatalytic product comprising compounds of titanium integrated with limestone. The product is obtained by reacting limestone with a suitable precursor of titanium dioxide in a basic solution, recovering the product in particular conditions, drying it and calcining it. By operating in presence of sodium, a composite is obtained substantially free from titanium dioxide, containing limestone and calcium titanate. The composite thus obtained, used as such or in mixture with other components, has shown an unexpectedly high photocatalytic activity.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 3, 2013
    Assignee: Italcementi S.p.A.
    Inventors: Renato Ancora, Massimo Borsa, Maurizio Iler Marchi
  • Patent number: 8592041
    Abstract: Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroshige Adachi, Sadaaki Sakamoto
  • Publication number: 20130310247
    Abstract: A ceramic body based on an aluminum titanate system has the following composition: i) approximately >95% by weight Al2O3.TiO2; ii) approximately 0.1-approximately 5.0% by weight SiO2; iii) approximately 0.1-approximately 5.0% by weight MgO; iv) approximately 0-approximately 2.0% by weight Fe2O3; v) approximately 0-approximately 1.0% by weight BeO, BaO or CaO; vi) approximately 0-approximately 1.0% by weight Li2O, Na2O or K2O; vii) approximately 0-approximately 2% by weight impurities. The ceramic body has a mass ratio TiO2:Al2O3 that is in a range between approximately 0.75 and approximately 0.95.
    Type: Application
    Filed: July 25, 2013
    Publication date: November 21, 2013
    Applicant: MANN+HUMMEL GMBH
    Inventors: Jochen Linhart, Frank Ehlen
  • Patent number: 8586495
    Abstract: A dielectric material is provided. The material includes ?[Ca1-x-yBaxSry(Ca1-zCuz)Cu2-pLa2p/3Ti4-qMqO12-?]+(1??)[BarSr1-rTiO3], wherein M is aluminum, chromium, zirconium, or combinations thereof; x can vary between the value of zero and 0.1 such that 0?x?0; y, z, and r can vary between the value of zero and 1 such that 0?y?1, 0?z?1, and 0?r?1; p and q can vary between the value of zero and 0.1 such that 0?p?0.1 and 0?q?0.1; ? can vary between the value of zero and 0.05 such that 0???0.05; and ? can vary between the value of 0.5 and 1 such that 0.5???1, with a proviso that when x=y=0 and z=?=1, p and q are greater than zero; and when x=y=z=0, p and q are not simultaneously zero. A dielectric component including the dielectric material and a system including the dielectric component are provided.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 19, 2013
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Lohit Matani
  • Patent number: 8586494
    Abstract: The invention relates to a mixture of fused grains having the following chemical composition, in weight percentages on the basis of the oxides: less than 55% of Al2O3; more than 35% and less than 80% of TiO2; more than 1% and less than 20% of MgO; more than 0.7% and less than 20% of ZrO2; and less than 20% of SiO2, said fused grains also corresponding to the following composition, in molar percentages, on the basis of the single oxides Al2O3, TiO2, MgO, ZrO2: 90<2a+3m<110, 100+a<3t<210?a with a+t+m+zr=100, in which: a is the molar percentage of Al2O3; t is the molar percentage of TiO2; m is the molar percentage of MgO; and zr is the molar percentage of ZrO2. The invention also relates to a ceramic product obtained from such fused grains.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: November 19, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventor: Stephane Raffy
  • Publication number: 20130298650
    Abstract: A moisture-sensitive ceramic material having a composition represented by the general formula RE(A,B)O3, wherein RE is a rare earth element, A is a divalent metal element, and B is a tetravalent metal element. More specifically, the moisture-sensitive ceramic material has a composition represented by the general formula RE(A1-xBx)O3, and A is Ni or Mg, and B is Ti or Sn.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventor: Tadamasa Miura
  • Patent number: 8582277
    Abstract: A multilayer ceramic electronic component comprising an element body in which a dielectric layer and an internal electrode layer are stacked. The dielectric layer is constituted from a dielectric ceramic composition including; a compound having a perovskite structure expressed by a formula of ABO3 (A is at least one selected from Ba, Ca, and Sr; B is at least one selected from Ti, Zr, and Hf); an oxide of Mg; an oxide of rare earth elements including Sc and Y; and an oxide including Si. The dielectric ceramic composition comprises a plurality of dielectric particles and a grain boundary present in between the dielectric particles. In the grain boundary, when content ratios of Mg and Si are set to D(Mg) and D(Si) respectively, D(Mg) is 0.2 to 1.8 wt % in terms of MgO, and D(Si) is 0.4 to 8.0 wt % in terms of SiO2.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 12, 2013
    Assignee: TDK Corporation
    Inventors: Hirobumi Tanaka, Makoto Endo, Satoko Ueda, Daisuke Ueda, Shogo Murosawa, Daisuke Yoshida, Kenta Ono, Minoru Ogasawara, Tatsuya Kikuchi
  • Patent number: 8562852
    Abstract: According to a preferred embodiment, the piezoelectric ceramic includes a complex oxide having the composition represented by formula (1) or (2), and Mn at 0.2-1.2 mass % or 0.2-3 mass %, respectively, in terms of MnCO3. (Pb1-aA1a)TixZr1-x-y-z-b(Zn1/3A22/3)y(Yb1/2A21/2)zSnbO3??(1) (Pb1-aA1a)TixZr1-x-y-b(Zn1/3A22/3)ySnbO3??(2) [In formula (1), A1 represents at least one element selected from the group consisting of Ca, Sr and Ba, and A2 is at least one element selected from the group consisting of Nb, Ta and Sb, and includes at least Nb. In formula (2), A1 represents at least one element selected from among Ca, Sr and Ba, A2 represents at least one element selected from among Nb and W, and A2 includes at least Nb.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 22, 2013
    Assignee: TDK Corporation
    Inventors: Goushi Tauchi, Daisuke Tanaka, Masahito Furukawa
  • Patent number: 8557724
    Abstract: A semiconductor porcelain composition is prepared by separately preparing a composition of (BaR)TiO3 (R is La, Dy, Eu, Gd or Y) and a composition of (BiNa)TiO3, and calcining the composition of (BaR)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders. Similarly, a semiconductor porcelain composition is prepared by separately preparing a composition of (BaM)TiO3 (M is Nb, Ta or Sb) and a composition of (BiNa)TiO3, and calcining the composition of (BaM)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: October 15, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Patent number: 8557216
    Abstract: To provide an aluminum magnesium titanate crystal structure which can be used stably in variable high temperatures, because of its excellent heat resistance, thermal shock resistance, high thermal decomposition resistance and high mechanical property, and a process for its production. An aluminum magnesium titanate crystal structure, which is a solid solution wherein at least some of Al atoms in the surface layer of aluminum magnesium titanate crystal represented by the empirical formula MgxAl2(1?x)Ti(1+x)O5 (wherein 0.1?x<1) are substituted with Si atoms, and which has a thermal expansion coefficient of from ?6×10?6(1/K) to 6×10?6(1/K) in a range of from 50 to 800° C. at a temperature raising rate of 20° C./min, and a remaining ratio of aluminum magnesium titanate of at least 50%, when held in an atmosphere of 1,100° C. for 300 hours.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: October 15, 2013
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: 8551910
    Abstract: The invention relates to a porous structure comprising a ceramic material comprising mainly or consisting of an oxide material of the pseudobrookite type comprising titanium, aluminum, magnesium and zirconium in proportions such that the phase of the pseudobrookite type substantially satisfies the formula: (Al2TiO5)x(MgTi2O5)y(MgTiZrO5)z. This material satisfies the following composition, in mol % on the basis of just the oxides Al2O3, TiO2, MgO and ZrO2: 90<2a+3m<110; 100+a<3t<210?a; and a+t+m+zr=100, in which: a is the molar content of Al2O3; t is the molar content of TiO2; m is the molar content of MgO; and zr is the molar content of ZrO2.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 8, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Stephane Raffy, Philippe Auroy
  • Publication number: 20130228454
    Abstract: In order to obtain a ferroelectric thin film that is formed to have a predetermined thickness on a substrate, that have satisfactory crystallization and that achieves a high piezoelectric property, a method of manufacturing such a ferroelectric thin film and a method of manufacturing a piezoelectric element having such a ferroelectric thin film, when a dielectric material of a perovskite structure is formed into a film on the substrate, a predetermined amount of additive is mixed with PZT, and the concentration of the additive mixed is varied in the thickness direction of the thin film.
    Type: Application
    Filed: October 26, 2011
    Publication date: September 5, 2013
    Inventor: Kenji Mawatari
  • Publication number: 20130210608
    Abstract: Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
    Type: Application
    Filed: August 14, 2012
    Publication date: August 15, 2013
    Inventors: Gregory Albert Merkel, Patrick David Tepesch, Raja Rao Wusirika
  • Publication number: 20130203888
    Abstract: The invention discloses a copper-free ceramic friction material and a preparation method thereof. The friction material at least contains the following materials in mass content: 2-30% of alkaline earth-based metal compound and 2-30% of carbon fiber, wherein the alkaline earth-based metal compound is MxFeyTiOz, M is alkaline earth element Be, Mg, Ca, Sr or Ba, x is 0.2-2, y is 1-2, and z is 4-16. The friction material prepared according to the invention has excellent friction wear performance, high property of heat conductivity and excellent high temperature fading resistance. The temperature on the friction surfaces is effectively reduced during braking.
    Type: Application
    Filed: August 17, 2010
    Publication date: August 8, 2013
    Inventors: Xiaohua Lu, Yijun Shi, Jian Chen, Changsong Wang, Liwen Mu
  • Patent number: 8496893
    Abstract: A furnace assembly includes first and second sections. The first section includes first and seconds ends, a first joint disposed at the first end, a conical portion at a second end, a first filter disposed between the first and second ends, and a lumen extending through the first section in fluid communication with the first filter. The second section includes first and second ends, a second joint disposed at the first end, an opening disposed at the second end and to receive the conical portion of the first section, a second filter disposed between the first and second ends, and a lumen extending through the second section in fluid communication with the second filter. When engaged, the first and second sections form a chamber between the first and second filters. The chamber is in fluid communication with the respective first ends of the first and second sections.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: July 30, 2013
    Assignee: EEStor, Inc.
    Inventor: Richard D. Weir
  • Patent number: 8496870
    Abstract: This invention relates to a method of making lead-free piezoelectric ceramic films. Specifically, the invention is directed to a method for fabricating lead-free piezoelectric free standing films having enhanced piezoelectric properties. The films may be used for a number of applications including incorporation in microelectronic devices such as energy harvesting devices and sensor technologies.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: July 30, 2013
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Huidong Li
  • Patent number: 8488298
    Abstract: A dielectric ceramic capacitor that has excellent reliability and particularly excellent life characteristics in a load test even when the thickness of a dielectric ceramic layer is reduced uses a dielectric ceramic as a dielectric ceramic layer in a laminated ceramic capacitor which is a substance containing, as the main component, (Ba, R)(Ti, V)O3 or (Ba, Ca, R)(Ti, V)O3 in which R is at least one selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and in which both V and R are present uniformly in the main component particles.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 16, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takayuki Yao
  • Patent number: 8476179
    Abstract: A grain boundary-insulated semiconductor ceramic contains a SrTiO3-based compound as a main component, and a diffusing agent containing a grain boundary insulating agent and a glass component. The grain boundary insulating agent is composed of a material free of lead, the glass component mainly contains a SiO2—X2O-MO—TiO2-based glass material that does not contain boron or lead and in which X represents an alkali metal, and M represents at least one of barium, strontium, and calcium, and the content of the glass component is 3 to 15 parts by weight relative to 100 parts by weight of the grain boundary insulating agent. A component base is composed of the grain boundary-insulated semiconductor ceramic.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 2, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tsutomu Tatekawa
  • Patent number: 8472161
    Abstract: A dielectric ceramic composition enabling one to obtain a laminated capacitor which hardly causes degradation of insulation resistance with time under high-humidity even in using a base metal such as Ni as an internal electrode, contains as a main constituent, a constituent represented by (CaxSr1-x)(TiyZr1-y)O3 in which x and y are 0?x?1 and 0?y?0.50, and, as accessory constituents, at least 0.5 parts by mol and at most 15 parts by mol of SiO2, at least 0.1 parts by mol and at most 10 parts by mol of MnO, and at least 0.01 parts by mol and at most 0.079 parts by mol of Al2O3, with respect to 100 parts by mol of the main constituent.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: June 25, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hitoshi Nishimura, Masahiro Naito
  • Publication number: 20130111862
    Abstract: Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 9, 2013
    Inventors: Adriane Marie Divens-Dutcher, Patrick David Tepesch, Elizabeth Marie Vileno
  • Patent number: 8431109
    Abstract: The invention provides a process for production of a composition comprising a perovskite structure compound, the process comprising: a first process to heat a hydrous oxide of at least one B group element selected from the group consisting of Ti, Zr, Hf, and Sn at a temperature within a range of 80 to 300° C. in the presence of an aqueous medium so as to dehydrate the hydrous oxide; and a second process to heat a reaction product obtained in the first process and a hydroxide of at least one A group element selected from the group consisting of Ba, Sr, Ca, Mg and Pb at a temperature within a range of 100 to 300° C. in the presence of an aqueous medium. The process provides a composition comprising an ABO3 compound in the form of uniform and fine spherical particles which have an average particle diameter of 1 ?m or less, preferably within a range of 0.01 to 0.5 ?m, high crystallinity, and a controlled A/B ratio as desired, as well as few internal pores in the crystalline particles.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: April 30, 2013
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Yoshiaki Ikeda, Masami Kuwai, Shinji Ogama, Yukihiro Kuniyoshi, Kazuhisa Hidaka
  • Patent number: 8399376
    Abstract: The invention relates to a particle blend comprising mainly or consisting of an oxide phase of the pseudo-brookite type comprising at least titanium and aluminum, said blend being obtained from at least two particle size fractions, namely a coarse particle size fraction, the median diameter d50 of which is greater than 12 microns, and a fine particle size fraction, the median diameter d50 of which is between 0.5 and 3 microns, the mass ratio of said coarse fraction to said fine fraction being between 1.5 and 20, limits inclusive, and the ratio of the median diameter of the coarse fraction to that of the fine fraction being greater than 12.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 19, 2013
    Assignee: Saint-Gobain Centre de Recherches et D'etudes Europeen
    Inventors: Carine Dien-Barataud, Matthias Schumann
  • Patent number: 8383534
    Abstract: The invention is to provide a process capable of producing aluminium magnesium titanate having a small coefficient of thermal expansion at a firing temperature lower than 1500° C. The production process of the invention comprises maintaining a pre-mixture containing a titania source powder, an alumina source powder, a magnesia source powder and a silica source powder within a temperature range of from 1100° C. to 1350° C. for at least 3 hours, followed by heating up to a temperature not lower than 1400° C. and firing at the temperature. The silica source powder is preferably a powder of alkali feldspar. Aluminium magnesium titanate is prepared according to the production process of the invention, and the resulting aluminium magnesium titanate is ground to give an aluminium magnesium titanate powder.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: February 26, 2013
    Assignees: Sumitomo Chemical Company, Limited, E.I. du Pont de Nemours and Company
    Inventors: Tetsuro Tohma, Keiichiro Suzuki, Satoko Iwato, Rina Yamanaka
  • Patent number: 8367205
    Abstract: A plate-like polycrystalline particle is produced by forming inorganic particles into a freestanding shaped body, firing the shaped body, and crushing and classifying the fired shaped body. The inorganic particles contain as the main component an oxide that has a general formula of ABO3 and that satisfies a×Pb(M?1/3,Nb2/3)O3+b×PbTiO3+c×PbZrO3+z×M?O (wherein a+b+c=1, and M? denotes at least one element selected from Mg, Ni and Zn, and M? denotes at least one element selected from Mg, Ni and Zn), wherein z is in the range of 0.002?z?0.42. The oxide contains a predetermined excessive amount of M?O such that the plate-like polycrystalline particle contains an excessive amount of M?O. The plate-like polycrystalline particle contains a plurality of crystal grains that have a wavy structure composed of wavy grain boundaries. The plate-like polycrystalline particle is easily crushed at the grain boundaries and has a high degree of orientation.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: February 5, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukinobu Yura, Nobuyuki Kobayashi, Tsutomu Nanataki
  • Patent number: 8358494
    Abstract: A laminated ceramic capacitor is provided which is excellent in reliability even when its dielectric ceramic layers thinned. For a dielectric ceramic in a laminated ceramic capacitor, a ceramic is used which includes a main component containing a barium titanate based composite oxide represented by the general formula: (Ba1-h-m-xCahSrmRex)k(Ti1-n-yZrnMy)O3, where Re is La or the like, M is Mg or the like, and the respective relationships of 0.05?x?0.50, 0.02?y?0.3, 0.85?k?1.05, 0?h?0.25, 0?m?0.50, and 0?n?0.40 are satisfied; and an accessory component as a sintering aid, wherein the average grain diameter of crystal grains in a sintered body is 0.6 ?m or less.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: January 22, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hitoshi Nishimura, Noriyuki Inoue, Takafumi Okamoto
  • Publication number: 20130003254
    Abstract: A crystalline perovskite crystalline composite paraelectric material includes nano-regions containing rich N3? anions dispersed in a nano-grain sized matrix of crystalline oxide perovskite material, wherein (ABO3-?)?-(ABO3-?-?N?)1-?. A represents a divalent element, B represents a tetravalent element, ? satisfies 0.005???1.0, 1-? satisfies 0.05?1-??0.9, and 1-? is an area ratio between the regions containing rich N3? anions and the matrix of remaining oxide perovskite material.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Ivoyl KOUTSAROFF, Shinichi HIGAI, Akira ANDO
  • Publication number: 20120329634
    Abstract: Provided are aluminum titanate capable of providing a sintered body having a low coefficient of thermal expansion, a high porosity, and high mechanical strength, a production method of the same, and a sintered body of the columnar aluminum titanate. The columnar aluminum titanate has an average aspect ratio (=(number average major-axis length)/(number average minor-axis length)) of 1.5 or more and its magnesium content is preferably within the range of 0.5% to 2.0% by weight relative to the total amount of titanium and aluminum in terms of their respective oxides.
    Type: Application
    Filed: March 26, 2010
    Publication date: December 27, 2012
    Applicant: OTSUKA CHEMICAL CO., LTD.
    Inventors: Nobuki Itoi, Hiroyoshi Mori, Takahiro Mishima, Hidetoshi Ogawa
  • Patent number: 8315038
    Abstract: A thin-film capacitor has a high insulation resistance value with high reliability. The thin-film capacitor includes a dielectric thin film and electrodes opposing each other through the dielectric thin film, the dielectric thin film containing a perovskite-type composite oxide having a composition expressed by (1), Mn, and at least one kind of element M selected from V, Nb, and Ta; wherein the dielectric thin film has an Mn content of 0.05 to 0.45 mol with respect to 100 mol of the composite oxide; and wherein the dielectric thin film has a total element M content of 0.05 to 0.5 mol with respect to 100 mol of the composite oxide: AyBO3??(1) where A is at least one kind of element selected from Ba, Sr, Ca, and Pb, B is at least one kind of element selected from Ti, Zr, Hf, and Sn, and 0.97?y?0.995.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: November 20, 2012
    Assignee: TDK Corporation
    Inventors: Hitoshi Saita, Naoto Tsukamoto, Akira Shibue, Kenji Horino
  • Publication number: 20120241990
    Abstract: A ceramic material has the following composition: (Ba1-xMnx)O.z(Ti1-yMmy)O2.Dd.Ee. In this composition, (Ba1-xMnx)=A and (Ti1-yMmy)=B, where Mn stands for at least one element selected from: Mg, Ca, Sr, Pb and mixtures thereof; Mm stands for at least one element selected from: Sn, Zr and mixtures thereof; D stands for at least one element having donor properties; E stands for at least one element having acceptor properties. The following applies for the parameters: 0?x?0.6; 0?y?0.35; 0?d?0.02; 0?e?0.02; 1<z; and the following applies for the molar ratio of B to A: 1<B/A. The ceramic material comprises Si only as an impurity.
    Type: Application
    Filed: October 7, 2010
    Publication date: September 27, 2012
    Applicant: EPCOS AG
    Inventors: Bernhard Steinberger, Werner Kahr, Jan Ihle
  • Publication number: 20120245016
    Abstract: The present invention relates to composite materials with a high dielectric constant and high dielectric strength and to methods of producing the composite materials. The composite materials have high dielectric constants at a range of high frequencies and possess robust mechanical properties and strengths, such that they may be machined to a variety of configurations. The composite materials also have high dielectric strengths for operation in high power and high energy density systems. In one embodiment, the composite material is composed of a trimodal distribution of ceramic particles, including barium titanate, barium strontium titanate (BST), or combinations thereof and a polymer binder.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 27, 2012
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Randy D. Curry, Kevin O'Connor
  • Patent number: 8263230
    Abstract: A ceramic composition is prepared to contain a B2O3—SiO2—Al2O3-MO based glass composition (M: Ca, Mg, Sr and/or Ba, B2O3: 4 to 17.5 weight %, SiO2: 28 to 50 weight %, Al2O3: 0 to 20 weight %, and MO: 36 to 50 weight %): 24 to 40 weight %, SrTiO3 and/or CaTiO3: 46 to 75.4 weight %, CuO: 0.1 to 5.0 weight %, CaO: 0.5 to 7.0 weight %, and MnO, ZnO and/or CoO: 10 weight % or more (however, including 0% by weight). The ceramic composition is subjected to firing to produce a ceramic sintered body, and obtain a composite LC component including the ceramic sintered body. While suppressing the shrinkage behavior during firing, dielectric properties can be improved dramatically as compared with conventional cases, and moreover reliability can be ensured.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 11, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kazuhiro Kaneko, Satoshi Oga
  • Patent number: 8264817
    Abstract: A laminated ceramic capacitor which has a dielectric ceramic with a high dielectric constant and has excellent reliability against changes in temperature and mechanical shocks, even when dielectric ceramic layers are reduced in thickness employs a dielectric ceramic containing (Ba1-xCax)yTiO3 (where 0.045?x?0.15 and 0.98?y?1.05) as its main constituent and containing Re2O3 (where Re is at least one of Gd, Dy, Ho, Yb, and Y), MgO, MnO, V2O5, and SiO2 as accessory constituents, which is represented by the general formula: 100(Ba1-xCax)yTiO3+aRe2O3+bMgO+cMnO+dV2O5+eSiO2, and satisfies each of the following conditions: 0.65?a?1.5; 0.98?y?1.05; 0.15?b?2.0; 0.4?c?1.5; 0.02?d?0.25; and 0.2?e?3.0.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: September 11, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masanori Nakamura, Toshihiro Okamatsu, Akira Kato, Shinya Isota
  • Publication number: 20120218054
    Abstract: A dielectric ceramic which is capable of stably having a desired relative dielectric constant (?r), while having high Q value and good temperature coefficient of the resonance frequency. Specifically disclosed is a dielectric ceramic which contains lanthanum, magnesium, calcium and titanium, and when the compositional formula of the components is expressed as ?La2Ox.?MgO.?CaO.?TiO2 (wherein 3?x?4), the molar ratios ?, ?, ? and ? satisfy the formulae below. The dielectric ceramic also contains aluminum in an amount of 5% by mass or less (excluding 0% by mass) in terms of oxides relative to 100% by mass of the above-mentioned components. 0.160???0.270 0.050???0.100 0.260???0.390 0.360???0.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 30, 2012
    Applicant: KYOCERA CORPORATION
    Inventors: Satoshi Toyoda, Seiichirou Hirahara, Shunichi Murakawa, Tsuyoshi Komatsu
  • Patent number: 8247338
    Abstract: The present invention relates to a high dielectric constant paste composition comprising (A) inorganic particles having a perovskite crystal structure or a complex perovskite crystal structure, (B) a compound represented by any one of the general formulas (1) to (4) shown below, and (C) an organic solvent. The present invention provides a high dielectric constant paste composition for producing a high dielectric constant dielectric composition which has high insulation reliability and exhibits satisfactory resistance in a high-temperature high-humidity bias test.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: August 21, 2012
    Assignee: Toray Industries, Inc
    Inventors: Yoichi Shimba, Yoshitake Hara, Tsukuru Mizuguchi, Toshihisa Nonaka
  • Patent number: 8248752
    Abstract: A multilayer ceramic capacitor is provided. In the multilayer ceramic capacitor, a plurality of first and second inner electrodes are formed inside a ceramic sintered body. Ends of the first and second inner electrodes are alternately exposed to both ends of the ceramic sintered body. First and second outer electrodes are formed on both ends of the ceramic sintered body and connected to the first and second inner electrodes. The first and second outer electrodes include a first region having a porosity in the range of 1% to 10%, and a second region having a porosity less than that of the first region.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 21, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Kang Heon Hur, Sang Hoon Kwon, Doo Young Kim, Eun Sang Na, Byung Gyun Kim, Seok Joon Hwang, Kyoung Jin Jun, Hye Young Choi
  • Patent number: 8248753
    Abstract: A dielectric ceramic for use in dielectric ceramic layers has a main component represented by a composition formula of (Sr1-x-ySnxBay)TiO3, wherein x is 0.005?x?0.24, y is 0?y?0.25 in the composition formula. Preferably, the dielectric ceramic includes 0.01 mol to 5 mol of M (M is at least one of Mn and V) calculated as MO and/or 0.2 mol to 5 mol of Si calculated as SiO2, with respect to 100 mols of the main component, and more preferably, further includes 0.1 mol to 25 mol of Ca calculated as CaO with respect to 100 mols of the main component. The dielectric ceramic has an increased dielectric constant permitting size reduction when used in a laminated ceramic capacitor.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 21, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shoichiro Suzuki, Toshikazu Takeda
  • Patent number: 8241569
    Abstract: This invention relates to lead-free piezoelectric ceramic films and a method of making thereof. Specifically, the invention is directed to a method for fabricating lead-free piezoelectric free standing films having enhanced piezoelectric properties. The films may be used for a number of applications including incorporation in microelectronic devices such as energy harvesting devices and sensor technologies.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: August 14, 2012
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Huidong Li
  • Patent number: 8241595
    Abstract: A potassium titanate, method for manufacturing the potassium titanate, a friction material using the potassium titanate and a resin composition using the potassium titanate are disclosed. The potassium titanate is represented by K2TinO(2n+1) (n=4.0-11.0) and has the highest X-ray diffraction intensity peak (2?) in the range of 11.0°-13.5° with its half width being not less than 0.5°.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 14, 2012
    Assignee: Otsuka Chemical, Co., Ltd.
    Inventor: Nobuki Itoi
  • Publication number: 20120198805
    Abstract: The present invention is a process for producing an aluminum titanate ceramics, comprising firing a starting material mixture containing a titanium source powder and an aluminum source powder, wherein a content of niobium, expressed on the oxide basis, is not less than 0.2 parts by mass and not more than 2.5 parts by mass in 100 parts by mass of the starting material mixture.
    Type: Application
    Filed: August 10, 2010
    Publication date: August 9, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY ,LIMITED
    Inventors: Kentaro Iwasaki, Tetsuro Tohma, Kousuke Uoe
  • Patent number: 8232219
    Abstract: The present invention relates to a dielectric ceramic composition comprises a main component including a dielectric oxide having a composition shown by [(Ca1-xSrx)O]m[(Zr1-y-z-?TiyHf2Mn?)O2], note that, 0.991?m?1.010, 0?x?1, 0?y?0.1, 0<z?0.02, 0.002<??0.05), 0.1 to 0.5 parts by mol of Al2O3 and 0.5 to 5.0 parts by mol of SiO2 with respect to 100 parts by mol of the main component. A purpose of the present invention is to provide a dielectric ceramic composition available to prevent the occurrence of crack even when a dielectric layer is made thin, for example, 2 ?m or less, while maintaining various advantageous properties of a dielectric ceramic composition of [(CaSr)O]m[(TiZrHf)O2] type.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 31, 2012
    Assignee: TDK Corporation
    Inventors: Tomoaki Nonaka, Tetsuo Takaishi, Kenta Iwasawa, Hiroshi Sasaki
  • Patent number: 8221713
    Abstract: A method for making a mono-dispersed metal titanate includes the steps of: (a) mixing titanate ester, metal salt, and rare earth metal salt in a molar ratio of 1:1:x in a reaction medium comprised of ethanol and water to form a solution, wherein x is in the range from 0 to 0.1; (b) heating the solution, under an alkaline condition to form a white sediment; (c) filtering out liquid part of the solution to obtain the white sediment, (d) washing the white sediment, and (e) drying the white sediment to obtain mono-dispersed metal titanate.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 17, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Zi-Yang Huo, Chen Chen
  • Publication number: 20120171412
    Abstract: A porous structure comprising a ceramic material, mainly formed by or consisting of an oxide material comprising titanium, aluminum, zirconium and silicium satisfying the following composition, in wt % on the basis of the oxides: more than 15% but less than 55% Al2O3; more than 20% but less than 45% TiO2; more than 1% but less than 30% SiO2; more than 0.7% but less than 20%, in total, of at least one oxide chosen from ZrO2, Ce2O3 and HfO2; less than 1% MgO; said composition furthermore comprising other elements chosen, on the basis of oxides, from CaO, Na2O, K2O, SrO, B2O3 and BaO, the total summed amount of said oxides being less than 15% but greater than 1%; and said material being obtained by reactive sintering of said simple oxides or of one of their precursors, or by heat treatment of sintered particles, satisfying said composition.
    Type: Application
    Filed: September 21, 2010
    Publication date: July 5, 2012
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Stephane Raffy, Nabil Nahas
  • Patent number: 8211328
    Abstract: A crystallographically-oriented ceramic containing Pb and in which piezoelectric/electrostrictive properties can be enhanced. Using a raw material having Pb(Zr1-xTiX)O3 as a main component, a ceramic sheet was formed with a thickness of 15 ?m or less. In this material, grains were allowed to grow into an anisotropic shape, and crystal grains with specific crystal planes being aligned were produced. A non-oriented raw material having Pb(Zr1-xTiX)O3 as a main component and the crystal grains were mixed, and shaping was performed so that crystal grains were oriented in a predetermined direction. The shaped body was fired. In the resulting ceramic, the degree of orientation was high at 50% or more. It is possible to enhance the degree of orientation using, as crystal nuclei, a ceramic sheet which can have the same composition as that of the crystallographically-oriented ceramic. Therefore, production can be performed without adding an unnecessary element, for example, for orienting crystals.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 3, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukinobu Yura, Nobuyuki Kobayashi, Tsutomu Nanataki
  • Patent number: 8213154
    Abstract: A nickel oxide that is co-doped with a first alkali metal dopant and a second metal dopant may be used, for example, to form a dielectric material in an electronic device. The dielectric material may be used, for example, in a capacitor. The second metal dopant of the nickel oxide may be, for example, tin, antimony, indium, tungsten, iridium, scandium, gallium, vanadium, chromium, gold, yttrium, lanthanum, ruthenium, rhodium, molybdenum or niobium.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: July 3, 2012
    Assignee: Agency for Science, Technology and Research
    Inventors: Michael B. Sullivan, Jian Wei Zheng, Ping Wu
  • Patent number: 8194392
    Abstract: A ceramic material has a perovskite structure and is represented by formula of (1?x)ABO3-xYZO3. In the formula, “x” is a real number that is greater than 0 and is less than 1 each of “A,” “B,” “Y,” and “Z” is one or more kinds selected from a plurality of metal ions M other than a Pb ion and alkali metal ions, “A” is bivalent, “B” is tetravalent, “Y” is trivalent or combination of trivalent metal ions, and “Z” is bivalent and/or trivalent metal ions, or a bivalent and/or pentavalent metal ions.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: June 5, 2012
    Assignees: Denso Corporation, The Univeristy of Tokyo
    Inventors: Rajesh Kumar Malhan, Naohiro Sugiyama, Yuji Noguchi, Masaru Miyayama
  • Patent number: 8187506
    Abstract: A barium titanate-based semiconductor ceramic composition which can be used for PTC thermistors for temperature sensors and which has characteristics, including a linear characteristic, advantageous for such PTC thermistors and a barium titanate-based semiconductor ceramic device. The barium titanate-based semiconductor ceramic composition is represented by the formula (Ba(1-v-w)MevSrw)TixO3+ySiO2, wherein Me is at least one of Er, Sm, Ce, and La, 0.001?v?0.005, 0.42?w?0.49, 0.99?x?1.03, and 0.002?y?0.030.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: May 29, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoichi Kawase, Syunsuke Okuda, Yuichi Hirata, Yasuhiro Nabika
  • Publication number: 20120127628
    Abstract: There are provided a ceramic composition for a multilayer ceramic capacitor, a multilayer ceramic capacitor comprising the same, and a method of manufacturing the multilayer ceramic capacitor. The ceramic composition includes a dielectric ceramic powder; an organic binder; and an antistatic agent represented by a specific Chemical Formula. A ceramic green sheet comprising the ceramic composition according to an exemplary embodiment of the present invention only generates a small amount of static electricity and shows excellent mechanical physical properties even in the case that the thickness thereof is thin.
    Type: Application
    Filed: June 14, 2011
    Publication date: May 24, 2012
    Inventors: Eun Jung LEE, Hang Kyu Cho, Su Yeoun Kim, Byeong Gyu Park, Doo Young Kim
  • Patent number: 8178456
    Abstract: A batch powder composition for preparing a non-ferroelectric, sintered dielectric ceramic; a multilayer ceramic capacitor thereof; and an energy storage device. The batch powder contains a titanate powder of at least one of CaTiO3, SrTiO3, or CaxSr1-xTiO3 where x=0 to 1, and an acceptor additive. A sintering aid and a donor additive also may be present in the batch powder. The batch powder may be sintered at temperatures of about 1050° C. or less. The ceramic contains a titanate from the titanate powder, the acceptor additive, and the optional sintering aids and donor additive. The multilayer ceramic capacitor is made of the sintered dielectric ceramic and may have electrodes of copper or a copper-nickel alloy. An energy storage device has electrical connections connected to the electrodes of the multilayer ceramic capacitor. The electrical connections may be in electrical communication with additional multilayer ceramic capacitors.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: May 15, 2012
    Assignee: Ian Burn Consulting, Inc.
    Inventor: Ian Burn
  • Publication number: 20120091541
    Abstract: The present invention relates to a mixed metal oxide of formula SrM1-xTixO3 wherein x is 0>x>1 and M is Hf or Zr, such as a strontium-hafnium-titanium oxide orstrontium-zirconium-titanium oxide, and to a functional device comprising the mixed metal oxide.
    Type: Application
    Filed: April 7, 2010
    Publication date: April 19, 2012
    Applicant: The University of Liverpool
    Inventors: Matthew Suchomel, Matthew Rosseinsky, Hongjun Niu, Paul Raymond Chalker, Lei Yan