Silicon Compound Containing Patents (Class 501/154)
  • Patent number: 7932203
    Abstract: A method for producing an oil-binding agent of granular open-porous structure with a silicate ceramic matrix by using recovered paper material and clay. The method is characterized in that, in each case based on the entire raw material, 35 to 60 wt.-% sewage sludge with a water content of between 70 and 85 wt.-%, 25 to 55 wt.-% recovered paper material with a water content of between 35 and 55 wt.-%, 10 to 25 wt.-% clay and optionally 1 to 3 wt.-% zeolite, 1 to 2 wt.-% quicklime and/or up to 3 wt. % fly ash are mixed to a homogeneous mixture. The raw material thus obtained is subsequently processed in order to form particles having an average diameter of 4 to 6 mm. The particles are then dried and subsequently burnt at 950 to 1050° C. The oil-binding agents produced according to said method have a bulk density of between 0.4 and 0.75 kg/1 and a oil-binding capability of 0.7 to 1.0 1 oil per oil-binder.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: April 26, 2011
    Assignee: Commerzialbank Mattersburg im Burgenland AG
    Inventor: Franz Josef Philipp
  • Publication number: 20110091722
    Abstract: In a method for producing silicon-containing ceramic structures, structures of a ceramic precursor polymer are provided on the surface of a substrate, the ceramic precursor polymer being selected from the group including polysiloxanes, polycarbosilanes, polysilazanes and/or polyureasilazanes, and the ceramic precursor structures being ceramicized on the substrate. In the method, the structures of the ceramic precursor polymer have a height of ?20 ?m and a width perpendicular to their longitudinal axis of ?500 ?m.
    Type: Application
    Filed: March 31, 2009
    Publication date: April 21, 2011
    Inventors: Martin Koehne, Viacheslav Bekker, Juergen Oberle
  • Publication number: 20110053761
    Abstract: [Object] Providing a solidified ceramic body with an improved mechanical strength, wherein the solidified ceramic body is fabricated by activating ceramic powder through mechanochemical treatment and solidifying the activated ceramic powder through alkali treatment. [Method of Solution] Activated ceramic powder having mechanochemically amorphized surfaces is obtained by grinding ceramic powder which is composed of silicic acid and/or silicate at least at surfaces thereof (grinding process). Inorganic fibers and/or plastic fibers are added to the activated ceramic powder and are mixed with the activated ceramic powder (mixing process), and a solidified ceramic body is obtained by adding alkali water solution containing alkaline metal hydroxide and/or alkaline earth metal hydroxide to the powder (alkali treatment process).
    Type: Application
    Filed: February 26, 2009
    Publication date: March 3, 2011
    Applicant: National University Corporation Nagoya Institute of Technology
    Inventors: Masayoshi Fuji, Tomohiro Yamakawa, Minoru Takahashi
  • Publication number: 20110045963
    Abstract: This invention relates to a method for manufacturing silicon-containing particles characterized by preparing a uniform phase comprising a curable composition that includes a silicon-containing compound having in one molecule one or more reactive functional groups per 50 silicon atoms and an oil that does not participate in curing of the composition, then curing the composition, and causing phase separation from the oil for obtaining the silicon-containing particles; and to silicon-containing particles obtained by the above method. The method provides silicon-containing particles of an extremely small diameter in a simple process without the use of surfactants. And the silicon-containing particles possess excellent dispersibility in oil and a high degree of ceramification by baking.
    Type: Application
    Filed: April 6, 2009
    Publication date: February 24, 2011
    Inventor: Yukinari Harimoto
  • Patent number: 7892623
    Abstract: A honeycomb structured body of the present invention is a honeycomb structured body in which plural pillar-shaped honeycomb units are bonded to one another through sealing material layers, each unit having in the longitudinal direction a large number of cells placed in parallel with a cell wall interposed therebetween. Herein, each honeycomb unit includes inorganic fibers and/or whiskers in addition to inorganic particles. A cross-sectional area of the honeycomb unit on a cross section perpendicular to the longitudinal direction is at least about 5 cm2 and at most about 50 cm2. A region in which a sealing material layer is not formed is provided on both ends of the side faces of each of the honeycomb unit, each of the ends accounting for at least about 0.3% and at most about 5% of the length of the honeycomb structured body.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 22, 2011
    Assignee: Ibiden Co., Ltd
    Inventors: Kazushige Ohno, Masafumi Kunieda, Kazutake Ogyu
  • Patent number: 7888277
    Abstract: A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: February 15, 2011
    Assignee: COI Ceramics, Inc
    Inventors: James A. Riedell, Timothy E. Easler
  • Patent number: 7884055
    Abstract: A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be used to treat subterranean wells.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 8, 2011
    Assignee: Intevep, S.A.
    Inventors: George Quercia, Yibran Perera, Aiskely Blanco, Fedymar Pereira
  • Publication number: 20110021338
    Abstract: A process for the synthesis of a bioceramic composition comprising calcium phosphosilicate (CPS, Ca10(PO4)4(SiO4)2), the process comprising: providing calcium or a calcium-containing compound, a phosphorus-containing compound and a silicon-containing compound; and forming a precipitate by reacting the compounds in an aqueous phase at an alkali pH.
    Type: Application
    Filed: January 9, 2009
    Publication date: January 27, 2011
    Applicant: UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN
    Inventors: Iain R. Gibson, Janet M. S. Skakle
  • Publication number: 20110015054
    Abstract: The invention provides a method for producing ceramic nanoparticles, which comprises hydrolyzing a ceramic material in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other.
    Type: Application
    Filed: July 4, 2008
    Publication date: January 20, 2011
    Inventor: Masakazu Enomura
  • Publication number: 20110014423
    Abstract: A ceramic powder composition and an optoelectronic device substrate utilizing the ceramic powder composition are disclosed. The optoelectronic device substrate is formed by sintering a ceramic powder composition including 4 to 97 wt % (weight percent) of zircon, 0 to 60 wt % of silicon dioxide, and 0 to 80 wt % of alumina, wherein the sintered ceramic substrate includes first and second crystalline phases, the first crystalline phase is zircon, and the second crystalline phase is at least one of or a combination of alumina, silicon dioxide, and zirconia crystalline phases, furthermore, the second crystalline phase can also includes a mullite crystalline phase.
    Type: Application
    Filed: December 31, 2009
    Publication date: January 20, 2011
    Inventors: Yu-Hsin YEH, Jiin-Jyh Shyu, Ren-Der Jean, Tzer-Shen Lin
  • Publication number: 20110014102
    Abstract: A composite material having utility for removing sulfur from a feedstock comprises a ceramic matrix having a relatively low melting point metal such as tin, zinc, lead or bismuth nanodispersed therein. The material may be prepared from a mixture of particles of a precursor of the ceramic matrix and precursor of the metal. The precursors are selected such that the melting point of the precursor of the ceramic is less than the melting point of the precursor of the metal. The mixture of precursor materials is heated to a temperature sufficient to melt the precursor of the ceramic material so as to coat it onto the precursor of the metal. The ceramic precursor is then reacted so as to convert it to a ceramic. Thereafter, the precursor of the metal is converted to a free metal which is retained within the ceramic matrix so as to prevent agglomeration.
    Type: Application
    Filed: February 12, 2010
    Publication date: January 20, 2011
    Applicant: A123 Systems, Inc.
    Inventors: Hanwei Lei, Maha Hammoud, Adam Rand, Liya Wang
  • Publication number: 20100331170
    Abstract: Metal ion conducting ceramic materials are disclosed having characteristics of high ion conductivity for certain alkali and monovalent metal ions at low temperatures, high selectivity for the metal ions, good current efficiency and stability in water and corrosive media under static and electrochemical conditions. The metal ion conducting ceramic materials are fabricated to be deficient in the metal ion. One general formulation of the metal ion conducting ceramic materials is Me1+x+y?zMIIIyMIV2?ySixP3?xO12?z/2, wherein Me is Na+, Li+, K+, Rb+, Cs+, Ag+, or mixtures thereof, 2.0?x?2.4, 0.0?y?1.0, and 0.05?z?0.9, where MIII is Al3+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Y3+, or mixtures thereof and MIV is Ti4+, Zr4+, Hf4+, or mixtures thereof.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: Shekar Balagopal, Marc Flinders
  • Publication number: 20100323178
    Abstract: A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.
    Type: Application
    Filed: May 13, 2008
    Publication date: December 23, 2010
    Inventors: Rodney S. Ruoff, Sasha Stankovich, Dmitriy A. Dikin, SonBinh T. Nguyen
  • Publication number: 20100324677
    Abstract: The present invention relates to a biocompatible ceramic material comprising Baghdadite (Ca3ZrSi2O9), and a method for its preparation. Preferably the Baghdadite is synthetically prepared. The present invention also relates to an implantable medical device comprising biocompatible Baghdadite, and a method for its production. The present invention further relates to a method for improving the long term stability of an implantable medical device and an implantable drug delivery device comprising Baghdadite. Further, the present invention relates to the use of comprising biocompatible Baghdadite in the regeneration or resurfacing of tissue.
    Type: Application
    Filed: October 24, 2008
    Publication date: December 23, 2010
    Applicant: THE UNIVERSITY OF SYDNEY
    Inventors: Hala Zreiqat, Chengtie Wu, Yogambha Ramaswamy
  • Patent number: 7855170
    Abstract: A synthetic glass family in the quaternary phase field of CaO—SiO2-Al2O3-MgO (CSAM) with hydraulic and pozzolanic properties for use in differing applications in the gas and oil well cementing area. A method of making a mud-to-cement (MTC) slurry and a method for treating oil and gas wells with the MTC slurry containing a homogenous amorphous synthetic glass made from a mixture of inorganic materials selected from the group consisting of CSAM, wherein the cementing glasses with the mixture of inorganic materials are in a 100% amorphous phase with a degree of crystallization of zero.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: December 21, 2010
    Assignee: INTEVEP, S.A.
    Inventors: Yibran Perera, Virginia Buccellato, George Quercia, Aiskely Blanco
  • Patent number: 7854882
    Abstract: A method for preparing a high-temperature heat-resistant composite material by combining a mixture of submicron alumina powder and submicron silica powder, wherein the ratio of alumina to silica is from about 4:1 to about 5:1, submicron Group II metal oxide powder, and a Group I metal silicate solution to form a slurry, wherein the weight of the Group II metal oxide powder is an amount corresponding to about 5% to about 10% of the weight of the silicate solution; contacting reinforcing high-temperature resistant fibers with the slurry to form a composite precursor composition; and curing the composition at a temperature sufficient to produce the high-temperature heat-resistant composite material capable of resisting temperatures up to about 1400° C. Composite materials prepared according to the method and articles incorporating the material are also presented.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 21, 2010
    Assignee: Rutgers, The State University
    Inventor: Perumalsamy Naidu Balaguru
  • Patent number: 7842632
    Abstract: A pulling roll for glass manufacture comprised of a high-temperature millboard material. The millboard comprises aluminosilicate refractory fiber, silicate, mica, and kaolin clay. A method of manufacturing a pulling roll is disclosed, together with a roll produced by the methods disclosed herein. The method comprises forming a pulling roll and densifying at least a portion of the pulling roll by exposing to the pulling roll to high temperatures.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 30, 2010
    Assignee: Corning Incorporated
    Inventors: Dean Veral Neubauer, Maurice Lacasse
  • Publication number: 20100297410
    Abstract: There is described a Ceramic Powder, a Ceramic Layer and a Layer System of Two Pyrochlore Phases and Oxides. Besides a good thermal insulation property, thermal insulation layer systems must also have a long lifetime of the thermal insulation layer. The layer system has a ceramic layer, which comprises a mixture of two pyrochlore phases.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 25, 2010
    Inventor: Ramesh Subramanian
  • Publication number: 20100273630
    Abstract: The invention relates to synthetic hybrid rock compositions, articles of manufacture and related processes employing mineral waste starting materials such as mine tailings, mine development rock, ash, slag, quarry fines, and slimes, to produce valuable articles of manufacture and products, which are characterized by superior physical and structural characteristics, including low porosity, low absorption, increased strength and durability, and retained plasticity. The resulting materials are compositionally and chemically distinct from conventional synthetic rock materials as demonstrated by scanning electron microprobe analysis, and are useful in a wide variety of applications, particularly with respect to commercial and residential construction.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 28, 2010
    Applicant: CERAMEXT, LLC
    Inventors: Ross GUENTHER, James L. Wood, Carl E. Frahme, Ian I. Chang, Robert D. Villwock
  • Patent number: 7815994
    Abstract: The invention provides a method for producing a porous body comprising: a starting material mixing step of mixing ceramic particles serving as an aggregate and a sintering aid which includes at least one element selected from the group consisting of rare earth elements, alkaline earth elements, Al and Si such that the amount of the sintering aid is about 1.0% by weight or less relative to the total amount of the ceramic particles and the sintering aid to form a puddle; and a molding and firing step of molding the puddle into a molded body and firing the molded body.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 19, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Hiroki Sato, Masayuki Hayashi
  • Patent number: 7816291
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: October 19, 2010
    Assignee: Ivoclar Vivadent AG
    Inventors: Marcel Schweiger, Volker M. Rheinberger, Harald Burke, Wolfram Holand
  • Publication number: 20100258233
    Abstract: Disclosed is a ceramic substrate including silicon in which the concentration of a silicon oxide and a silicon composite oxide in the surface thereof is less than or equal to 2.7 Atom %.
    Type: Application
    Filed: November 6, 2008
    Publication date: October 14, 2010
    Applicant: Mitsubishi Materials Corporation
    Inventors: Hiroshi Tonomura, Takeshi Kitahara, Hiroya Ishizuka, Yoshirou Kuromitsu, Yoshiyuki Nagatomo
  • Publication number: 20100244192
    Abstract: The present invention provides a dielectric film having a high permittivity and a high heat resistance. An embodiment of the present invention is a dielectric film (103) including a composite oxynitride containing an element A made of Hf, an element B made of Al or Si, and N and O, wherein mole fractions of the element A, the element B, and N expressed as B/(A+B+N) range from 0.015 to 0.095 and N/(A+B+N) equals or exceeds 0.045, and has a crystalline structure.
    Type: Application
    Filed: April 14, 2010
    Publication date: September 30, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Publication number: 20100210445
    Abstract: The present patent application relates to a reactive ceramic binder in liquid form which is suitable for producing ceramic products from ceramic powder, characterized in that the reactive, liquid ceramic binder comprises liquid organomodified siloxane compounds having organoalkoxysiloxane units of the general formula (I) where the radicals R1 are, independently of one another, identical or different alkyl, alkaryl or aryl radicals which may be interrupted by ether functions, the radicals R2 are, independently of one another, identical or different radicals selected from the group consisting of H and/or alkyl radicals having from 1 to 6 carbon atoms, the radicals R3 are, independently of one another, identical or different divalent, saturated or unsaturated hydrocarbon radicals which have from 1 to 30 carbon atoms and may be interrupted by ether functions and a is greater than or equal to 0 and less than or equal to 2.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Inventors: Tadeusz von Rymon Lipinski, Sascha Herrwerth, Thomas Ebbrecht, Frank Koenig, Michael Ferenz
  • Publication number: 20100151047
    Abstract: Disclosed are yellowing-stable, silver-white effect pigments having high whiteness based on synthetic mica flakes and to the use thereof in paints, lacquers, printing inks, plastics, button pastes, ceramic materials, glasses, for coloring seed, as dopant in laser markings of plastics and papers, as additive for laser welding of plastics, as additive for coloring in the foods and pharmaceuticals sectors and in cosmetic formulations, and for the preparation of pigment compositions and dry preparations.
    Type: Application
    Filed: February 17, 2010
    Publication date: June 17, 2010
    Inventors: Gerhard PFAFF, Johann Dietz, Sabine Schoen, Doreen Warthe
  • Publication number: 20100152019
    Abstract: A filler for a dental resin composition is disclosed, comprising silica particles derived from a nanoparticulate silica sol, the filler material having at least one crystalline phase. The filler material provides improved wear resistance and other properties.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 17, 2010
    Applicant: PENTRON CLINICAL TECHNOLOGIES, LLC
    Inventors: Jia Weitao, Jin Shuhua
  • Patent number: 7737063
    Abstract: Al2O3-rare earth oxide-ZrO2/HfO2 ceramics (including glasses, crystalline ceramics, and glass-ceramics) and methods of making the same. Ceramics according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. The particles and fibers are useful, for example, as thermal insulation, filler, or reinforcing material in composites (e.g., ceramic, metal, or polymeric matrix composites). The thin coatings can be useful, for example, as protective coatings in applications involving wear, as well as for thermal management. Certain ceramic particles according to the present invention can be are particularly useful as abrasive particles.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 15, 2010
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 7727613
    Abstract: A ceramic honeycomb structure comprising a ceramic honeycomb body comprising axial grooves on its periphery and cell walls constituting a larger number of flow paths inside the grooves, and a peripheral wall layer covering the grooves, wherein there are stress release portions at least partially in the peripheral wall layer and/or between the peripheral wall layer and the grooves. The thermal expansion coefficient of the peripheral wall layer is preferably smaller than those of the cell walls in a radial direction. The peripheral wall layer is preferably formed on the ceramic honeycomb body formed by removing a peripheral wall from a ceramic green body, before or after firing the ceramic honeycomb body.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: June 1, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hirohisa Suwabe, Yasuhiko Otsubo, Toshiaki Kimura
  • Patent number: 7723248
    Abstract: Highly wear-resistant, low-friction ceramic composites suited for machining-tool, sliding-component, and mold-die materials are made available. The ceramic composites characterized are constituted from a phase having carbon of 3 ?m or less, preferably 30 nm or less, average crystal-grain size as the principal component, and a ceramic phase (with the proviso that carbon is excluded). The ceramic phase is at least one selected from the group made up of nitrides, carbides, oxides, composite nitrides, composite carbides, composite oxides, carbonitrides, oxynitrides, oxycarbonitrides, and oxycarbides of Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W. The ceramic composites are produced by sintering the source-material powders at a sintering temperature of 800 to 1500° C. and a sintering pressure of 200 MPa or greater.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 25, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tomoyuki Ueno, Masashi Yoshimura
  • Patent number: 7722520
    Abstract: The compound is a clay aqueous suspension made of at least one 2:1 layer phyllosilicate clay mineral, at least one 1:1 layer phyllosilicate clay mineral, and water that can be used to sequester asbestos, such as chrysotile, as well as dust and other fibrous particles, at all scales of contamination.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 25, 2010
    Assignee: George Mason University
    Inventors: Mark P. S. Krekeler, Jillian G. Lepp, Cynthia Tselepis, Ryan B. Wantz
  • Publication number: 20100113252
    Abstract: Methods for crosslinking polysiloxane compounds, crosslinked polysiloxane compounds, methods for making ceramic products from the crosslinked polysiloxane compounds, and ceramic products made from the crosslinked polysiloxane compounds.
    Type: Application
    Filed: October 6, 2006
    Publication date: May 6, 2010
    Applicant: WASHINGTON, UNIVERSITY OF
    Inventors: Rajendra K. Bordia, Michael Scheffler
  • Publication number: 20100113249
    Abstract: A batch mixture including ceramic-forming ingredients, a pore former, a binder comprising an ammonium salt of an alkylated cellulose binder, and a liquid vehicle, as defined herein. Also disclosed is a method for producing a ceramic precursor article as defined herein having excellent extrusion properties.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Patricia Ann Beauseigneur, Kevin Ying Chou
  • Patent number: 7708957
    Abstract: A chemical processing apparatus that utilizes a ceramic media sintered at a lower temperature than the apparatus' maximum exposure temperature is described. The media's physical and chemical properties may contribute to its thermal stability when exposed to temperatures that exceed the media's sintering temperature by at least 50° C.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Saint-Gobain Ceramics & Plastics Inc.
    Inventor: John Stewart Reid
  • Patent number: 7704296
    Abstract: Disclosed are high-porosity cordierite honeycomb substrates having fine pore size, narrow pore size distribution, little or no microcracking, and a high thermal shock resistance. The porous ceramic honeycomb substrates generally include a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite substrates.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 27, 2010
    Assignee: Corning Incorporated
    Inventor: Gregory Albert Merkel
  • Publication number: 20100090294
    Abstract: A method of forming a dielectric film that includes nitrogen. The method includes incorporating nitrogen into a dielectric film using a nitridation gas and a rapid thermal annealing process, wherein an ultra-low pressure of equal to or less than about 10 Torr is used for the rapid thermal annealing process.
    Type: Application
    Filed: December 17, 2009
    Publication date: April 15, 2010
    Inventors: Pravin K. Narwankar, Gary E. Miner, Arnaud Lepert
  • Patent number: 7691284
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320K and a transition width is less than about 30K.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 6, 2010
    Assignee: The Boeing Company
    Inventors: Robert Cumberland, William B. Barvose Carter, Adam F. Gross
  • Patent number: 7691766
    Abstract: The invention is concerned with a material which shows low absorption for UV radiation having a wavelength below 250 nm, low birefringence, high chemical resistance and high radiation resistance and which is therefore particularly usable for making optical components for microlithography. According to the invention the material consists of synthetically produced quartz crystallites which form a polycrystalline structure and have a mean grain size in the range between 500 nm and 30 ?m. The method according to the invention for making a blank from the material comprises providing granules consisting of synthetically produced quartz crystals having a mean grain size in the range between 500 nm and 30 ?m, and sintering the granules to obtain a blank of polycrystalline quartz.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: April 6, 2010
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Bodo Kuehn, Stefan Ochs
  • Patent number: 7682528
    Abstract: An La2O3 powder and an SiO2 powder are mixed with each other, and then heated. By heating, a porous material of LaXSi6O1.5X+12 (8?X?10) as a composite oxide is produced. Subsequently, the porous material is pulverized to obtain a powder, and the powder is added to a solvent to prepare a slurry. The slurry is solidified in a magnetic field to prepare a compact. After that, the compact is sintered, and an oxide ion conductor is obtained thereby.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 23, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshikatsu Higuchi, Masayuki Sugawara, Kagehisa Hamazaki, Keizo Uematsu, Susumu Nakayama
  • Publication number: 20100044584
    Abstract: Disclosed herein is a material for altering electromagnetic radiation incident on the material. The material disclosed herein comprises carbon nanotubes having a length (L) that meets the following formula (1): L?½ ???(1) where ? is the wavelength of the electromagnetic radiation incident on the material. Also disclosed herein are methods of altering electromagnetic radiation, including mitigating, intensifying, or absorbing and re-transmitting electromagnetic radiation using the disclosed material.
    Type: Application
    Filed: January 7, 2009
    Publication date: February 25, 2010
    Inventors: Christopher H. Cooper, William K. Cooper, Alan G. Cummings
  • Publication number: 20100041537
    Abstract: Method of making particle compositions exhibiting improved floodability and/or flowability properties. The compositions generally contain particles and non-surface modified nanoparticles.
    Type: Application
    Filed: October 26, 2009
    Publication date: February 18, 2010
    Inventors: Jimmie R. Baran, JR., Madeline P. Shinbach
  • Patent number: 7662354
    Abstract: The present invention relates to use of an aluminosilicate particle for deodorization, wherein the aluminosilicate particle has the composition of: s M(1)xOy t M(2)2O.Al2O3 u SiO2 v RmQn w H2O, wherein M(1) is one or more members selected from the group consisting of Ag, Cu, Zn and Fe, M(2) is one or more members selected from the group consisting of Na, K and H, R is one or more members selected from the group consisting of Na, K, Ca and Mg, Q is one or more members selected from the group consisting of CO3, SO4, NO3, and Cl, s satisfies 0<s?3, and t satisfies 0?t?3, with proviso that s+t is from 0.5 to 3, and u satisfies 0.5?u?6, v satisfies 0<v?2, w satisfies w?0, x satisfies 1?x?2, y satisfies 1?y?3, m satisfies 1?m?2, and n satisfies 1?n?3, and wherein the aluminosilicate particle has a specific surface area of 1 m2/g or more and less than 70 m2/g.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: February 16, 2010
    Assignee: Kao Corporation
    Inventor: Kazuo Oki
  • Publication number: 20090312174
    Abstract: A ceramic article comprises ceramic fibers having an aspect ratio of greater than 3:1 and ceramic particles. The ceramic fibers are substantially randomly oriented in three dimensions in the ceramic article. A method of forming the ceramic article includes the step of providing a composition including ceramic fibers having an aspect ratio of greater than 3:1 and ceramic particles. The composition is extruded through a multi-screw extruder having at least three intermeshing screws to form an extrudate. The extrudate is heated to form the ceramic article.
    Type: Application
    Filed: July 17, 2008
    Publication date: December 17, 2009
    Applicant: CENTURY, INC.
    Inventors: Thomas W. McCullough, James E. Schuetz, Thomas D. Wood
  • Patent number: 7628878
    Abstract: A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: December 8, 2009
    Assignee: COI Ceramics, Inc.
    Inventors: James A. Riedell, Timothy E. Easler
  • Publication number: 20090298671
    Abstract: Silica-based materials and films having a dielectric constant of 3.7 or below and compositions and methods for making and using same are disclosed herein. In one aspect, there is provided a composition for preparing a silica-based material comprising an at least one silica source, a solvent, an at least one porogen, optionally a catalyst, and optionally a flow additive wherein the solvent boils at a temperature ranging from 90° C. to 170° C. and is selected from the group of compounds represented by the following formulas: HO—CHR8—CHR9—CH2—CHR10R11 where R8, R9, R10 and R11 can independently be an alkyl group ranging from 1 to 4 carbon atoms or a hydrogen atom; and R12—CO—R13 where R12 is a hydrocarbon group having from 3 to 6 carbon atoms; R13 is a hydrocarbon group having from 1 to 3 carbon atoms; and mixtures thereof.
    Type: Application
    Filed: August 10, 2009
    Publication date: December 3, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Scott Jeffrey Weigel, Shrikant Narendra Khot, James Edward Mac Dougall, Thomas Albert Braymer, John Francis Kirner, Brian Keith Peterson
  • Patent number: 7622189
    Abstract: Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7615201
    Abstract: By using a halogen-free siloxane and an organometallic compound containing at least one metal other than silicon as feed stocks, and simultaneously atomizing and burning them in a flame, spherical particles of silica-containing compound oxide are prepared which are substantially halogen-free, consist of 0.5-99% by weight of metal oxides and the balance of silica, and have a particle size of 10 nm to 3 ?m. The particles are useful as a filler in epoxy resin base semiconductor sealants, a refractive index modifier or the like.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: November 10, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiharu Konya, Koichiro Watanabe, Susumu Ueno
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Publication number: 20090239030
    Abstract: A ceramic honeycomb structure comprised of at least two separate smaller ceramic honeycombs that have been adhered together by a cement comprised of inorganic fibers and a binding phase wherein the smaller honeycombs and fibers are bonded together by the binding phase which is comprised of an amorphous silicate, aluminate or alumino-silicate glass and the cement has at most about 5% by volume of other inorganic particles. The cement may be made in the absence of other inorganic and organic additives while achieving a shear thinning cement, for example, by mixing oppositely charged inorganic binders in water together so as to make a useful cement for applying to the smaller honeycombs to be cemented.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 24, 2009
    Applicant: Dow Global Technologies Inc.
    Inventors: Jun Cai, Aleksander Jozef Pyzik, Kwanho Yang
  • Patent number: 7575815
    Abstract: Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: August 18, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Charles H. Henager, Jr., Yongsoon Shin, William D. Samuels
  • Patent number: 7575792
    Abstract: A honeycomb filter, for removing from exhaust gas fine solid particles containing carbon, is an aluminum magnesium titanate sintered product obtained by firing at from 1000 to 1700° C. a product formed from a mixture comprising a Mg-containing compound, an Al-containing compound and a Ti-containing compound in the same metal component ratio as the metal component ratio of Mg, Al and Ti in aluminum magnesium titanate represented by the empirical formula MgxAl2(1?x)Ti(1+x)O5 (wherein 0<x<1), or a mixture comprising 100 parts by mass, as calculated as oxides, of the above-mentioned mixture and from 1 to 10 parts by mass of an alkali feldspar represented by the empirical formula (NayK1?y)AlSi3O8 (wherein 0?y?1).
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 18, 2009
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi