Chemically Specified Frit Compositions Patents (Class 501/21)
  • Publication number: 20030064874
    Abstract: The present invention provides a composition for use in forming an opaque porcelain enamel coating on a metal substrate. A porcelain enamel coating formed using a composition according to the invention readily adheres to metal substrates such as, for example, steel, that are degreased-only. Furthermore, such a porcelain enamel coating displays an acid resistance of A according to ISO 2722 and good easy-to-clean properties. The composition according to the invention includes a glass component including by weight from about 45% to about 55% SiO2, from about 8% to about 17% B2O3, from about 1.8% to about 17.7% SrO+BaO, from about 1.9% to about 10% Li2O, up to about 6% ZrO2, from about 2% to about 11% TiO2, from about 1.5% to about 6% K2O, from about 1% to about 4% MoO3, from about 0.3% to about 13% Na2O, up to about 2% NiO, up to about 3% Al2O3, up to about 2.9% MnO, up to about 0.8% CoO, up to about 3% MgO, up to about 5% CaO, and up to about 2% Sb2O3.
    Type: Application
    Filed: April 8, 2002
    Publication date: April 3, 2003
    Applicant: Ferro France - S.A.R.L.
    Inventors: Jean-Christophe Eckmann, Moha Ait Ali Oumoumene, Francois Roques
  • Patent number: 6534427
    Abstract: A lead-free glow in the dark glaze is provided for ceramic bisques. It includes Frit, Lithium Carbonate, Borax, carboxmethylceullulose and a phosphorus pigment. In some applications, Bentonite and/or Magnesium Sulfate are used. Preservatives and deflocculants may be needed in some applications.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: March 18, 2003
    Inventor: Christian R. Quemere
  • Patent number: 6525300
    Abstract: The invention relates to lead- and cadmium-free glass for glazing, enamelling and decorating glasses or glass-ceramics which have a low coefficient of thermal expansion of less than 2×10−6/K, having the composition (in % by weight) 0-6 Li2O, 0-5 Na2O, 0 to less than 2 K2O, where the sum Li2O+K2+Na2O is between 2 and 12, 0-4 MgO, 0-4 CaO, 0-4 SrO, 0-1 BaO, 0-4 ZnO, 3 to less than 10 Al2O3, 13-23 B2O3, 50-65 SiO2, 0-4 TiO2, 0-4 ZrO2 and 0-4 F, as replacement for oxygen and containing up to 30% by weight of a pigment which is resistant at the firing temperature, where the glass is suitable for glazing, enamelling and decoration in both primary and secondary firing, and both the full-area and sparse glaze, enamel or decoration layers have low abrasion susceptibility after firing, and it relates to processes for the production of a glass-ceramic coated therewith.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: February 25, 2003
    Assignee: Schott Glas
    Inventors: Ina Mitra, Friedrich Siebers, Jutta Reichert, Cora Krause, Otmar Becker, Michael Bug
  • Patent number: 6518209
    Abstract: A chemical, thermal, and electrical corrosion resistant dry mix for use in fusing glass to metal motor vehicle and building industry articles. A chemical, thermal, and electrical corrosion resistant composition for fusing glass to metal motor vehicle and building industry articles. A method of glass fusing metal motor vehicle and building industry articles using a chemical, thermal, and electrical corrosion resistant dry mix. A method of glass fusing metal motor vehicle and building industry articles with a chemical, thermal, and electrical corrosion resistant composition. A method of fusing single or multiple layers of glass to metal motor vehicle and building industry articles.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: February 11, 2003
    Inventor: Gary D. Wilson
  • Patent number: 6511931
    Abstract: The present invention provides a ground coat composition for use in forming an enamel layer on sheet steel that exhibits good spot acid resistance, a satin finish, good bond, and is easy-to-clean. The composition according to the invention includes a glass component that includes a blend of from about 40% to about 70% by weight of a first glass portion including one or more alkali aluminophosphate frits, up to about 30% by weight of a second glass portion including one or more zirconia-phosphate frits, and up to about 30% by weight of a third glass portion including one or more alkali borosilicate frits.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: January 28, 2003
    Assignee: Ferro Corporation
    Inventor: Charles A. Baldwin
  • Patent number: 6492289
    Abstract: A lead-free glaze that can be fired at a low temperature, a spark plug for which it is used, and a spark plug production method are provided. The lead-free glaze is for coating onto ceramic materials. This lead-free glaze contains 16-49 wt % of SiO2, 15-35 wt % of B2O3, 0-10 wt % of Al2O3 and 0-10 wt % of ZnO. A spark plug is provided that comprises coating the lead-free glaze onto the surface of an insulator and firing.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: December 10, 2002
    Assignee: Denso Corporation
    Inventors: Hirofumi Suzuki, Toshiya Nakamura, Yoshiki Morita
  • Patent number: 6475938
    Abstract: The present invention relates to glass ceramic material and its use as means for joining different types of material and as support. Said glass ceramic material comprising, on a weight percent basis, 10-35% MgO, 10-55% BaO and 25-50% SiO2 and is formed by the following steps: a) melting of glass raw material at a temperature in excess of 1450 ° C. and that the thereby formed melt is cooled rapidly to a temperature below 900° C. and thereafter to ambient temperature to form a precursor glass, b) milling of the precursor glass into a sinterable glass powder with an average particle size in the range of 1 micron to 100 microns, c) forming of the glass powder into a green body of suitable shape, with or without organic processing aids, and subjecting said green body to a thermal treatment comprising a heating stage of average heating rate not exceeding 100 ° C./minute between the temperatures of 750 ° C. and 900 ° C.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: November 5, 2002
    Assignee: Norsk Hydro ASA
    Inventor: Michael Budd
  • Patent number: 6455453
    Abstract: A low-temperature sinterable ceramic composition which can be simultaneously sintered with a low melting point metal, such as silver or copper, and which has a preferable combination of high strength and superior electrical characteristics. The low-temperature sinterable ceramic composition is formed by mixing a ceramic component comprising an MgO crystal phase and an MgAl2O4 crystal phase and a glass component composed of 13 to 50 wt % silicon oxide, 3 to 30 wt % boron oxide, and 40 to 80 wt % alkaline earth oxide.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: September 24, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Osamu Chikagawa
  • Patent number: 6430966
    Abstract: The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of MAO—MBOy—SiO2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the MAO—MBOy—SiO2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: August 13, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, John D. Vienna, Timothy R. Armstrong, Larry R. Pederson
  • Patent number: 6428614
    Abstract: Opaque porcelains for use with metal cores in the manufacture of PFM restorations. The porcelains exhibit a coefficient of thermal expansion (CTE) substantially equal to or slightly above the CTE of the metal to which it is applied. The porcelains exhibit a CTE equal to or up to about 1.5×10−6/° C. higher than the dental alloys to which they are applied as the opaque. The porcelains are fabricated from a mixture of two frit compositions. A high expansion, leucite containing frit is combined with a low melting glass frit to provide a porcelain having an expansion in the range of 16.9 to about 18×10−6/° C. in the temperature range of 25°-500° C.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: August 6, 2002
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera
  • Patent number: 6429161
    Abstract: The present invention provides a new and improved porcelain enamel coating composition for use in forming a self-cleanable coating upon aluminized steel. The coating composition comprises a glass component having a composition comprising from about 30% to about 55% SiO2, from about 11% to about 20% TiO2, from about 0% to about 10% B2O3, from about 20% to about 40% alkali metal oxides, less than about 5% rare earth metal oxides, from about 0% to about 10% CaO, from about 0% to about 10% BaO, from about 0% to about 10% MnO, from about 2% to about 12% CuO, from about 0% to about 10% Sb2O3, from about 1.5% to about 10% Fe2O3, from about 0% to about 10% SnO2, from about 0% to about 10% P2O5, less than about 2% MoO3, and less than about 5% V2O5.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: August 6, 2002
    Assignee: Ferro France S.A.R.L.
    Inventors: Thierry Souchard, Alain Aronica
  • Patent number: 6410633
    Abstract: An antibacterial glass is a ZnO—B2O3—SiO2 glass and includes 0-6 wt % Na2O. Typically, the antibacterial glass is used as an antibacterial agent which is filled into a resin.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: June 25, 2002
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Hajime Hikata, Kazuyoshi Shindo, Toshio Yamanaka
  • Patent number: 6407020
    Abstract: There is disclosed a ceramics composition mainly comprising Ba-based glass and a quartz. The content of Ba-based glass is in a range of 55.0 to 69.4 wt %, the content of a quartz is in a range of 12.1 to 40.2 wt %, and the content of Al2O3 is 24.5 wt % or less. For the components of Ba-based glass, in terms of oxides, the content of BaO is in a range of 19 to 29 mol %, the content of Si02 is in a range of 62 to 72 mol %, the content of Al2O3 is in a range of 6 to 11 mol %, and the content of B2O3 per the total of 100 mol of BaO, SiO2 and Al2O3 is in a range of 3 to 7 mol. Therefore, the sintering can be performed at a temperature equal to or less than the melting point of Ag, Cu, or an alloy mainly containing Ag or Cu, dielectric constant is low, but linear expansion coefficient is high, and the co-firing can be realized with other dielectric material and magnetic material which can be sintered at a low temperature.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: June 18, 2002
    Assignee: TDK Corporation
    Inventors: Hiroshige Ohkawa, Toshio Sakurai
  • Patent number: 6403507
    Abstract: The lead-free bismuth-containing silicate glasses, which are particularly suitable for use as funnel glass or neck glass for cathode ray tubes and as soldering glass, have the following respective compositions (in % by weight, based on oxide): SiO2 40-60; Bi2O3, 10-30; ZrO2, 0-3; Al2O3, 0.5-5; MgO, 0-6; CaO, 0.5-5; SrO, 1-15; BaO, 0-15; sum of the alkaline earth metal oxides, 2-20; ZnO, 0-2; Li2O, 0-10; Na2O, 1-10; K2O, 2-10; Cs2O, 0-3, sum of the alkali metal oxides, 5-20; CeO2, 0-8; WO3, 0.5-5; MoO3, 0-5 and Sb2O3, 0-0.6; and SiO2 30-50; Bi2O3, 20-40; ZrO2, 0-3; Al2O3, 0.5-5; MgO, 0-4; CaO, 0.5-4; SrO, 1-15; BaO, 0-15; sum of the alkaline earth metal oxides, 2-20; ZnO, 0-2; Li2O, 0-5; Na2O, 1-12; K2O, 2-15; Cs2O, 0-3, sum of the alkali metal oxides, 5-20; CeO2, 0-8; WO3, 0.5-5; MoO3, 0-5 and Sb2O3, 0-0.6.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: June 11, 2002
    Assignee: Schott Glas
    Inventors: Karin Naumann, Magdalena Winkler-Trudewig, Ute Woelfel, Christian Kunert
  • Patent number: 6403506
    Abstract: The invention relates to a glass powder, where at least one oxidizing agent or one reducing agent is added to the glass powder. The glass powder is preferably used as dental glass powder.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: June 11, 2002
    Assignee: Schott Glas
    Inventors: Susanne Kessler, Hartmut Paschke, Hans-Werner Beudt, Susanne Kiermayer
  • Patent number: 6387513
    Abstract: The present invention relates to a more easily recyclable enamel composition which includes at least one glass frit and includes, as pigment(s), at least one or more manganese compounds, this composition furthermore having a melting temperature below 750° C. The invention also relates to an enamelling process using this composition, as well as to the enamelled products obtained.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: May 14, 2002
    Assignee: Saint Gobain Vitrage
    Inventors: André Beyrle, Aline DeJean, Daniel Dages, Anne-Valentine Veret-Lemarinier
  • Patent number: 6387832
    Abstract: Transition metal NZP type compounds are synthesized. Examples of these compounds include MnZr4(PO4)6, FeZr4(PO4)6, CoZr4(PO4)6, NiZr4(PO4)6, and CuZr4(PO4)6. These compounds are synthesized by the Xerogel process. These transition metal NZP type compounds can be used as colorants in applications such as ceramic glazes where high thermal stability of the colorant is important.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: May 14, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Sridhar Komarneni, William W. Gould
  • Publication number: 20020039957
    Abstract: A glass ionomer-based fluoride applying material that is able to release 200 &mgr;g/cm2 or more, and preferably 300 &mgr;g/cm2 or more of a fluoride ion until 30 days after immersing a set material thereof in distilled water kept at 37° C., is provided, which contains a fluoroaluminosilicate glass powder, a polycarboxylic acid and water as major components, the fluoroaluminosilicate glass powder accounting for 5 to 70% by weight of the whole, preferably containing, as constitutional elements, 10 to 20% by weight of Si, 10 to 20% by weight of Al, 1 to 20% weight of F, and 5 to 30% by weight of Sr, and additionally, at least one of Na, K, Mg and Ca, and preferably containing Na in an amount of 3 to 15% by weight.
    Type: Application
    Filed: July 5, 2001
    Publication date: April 4, 2002
    Applicant: GC Corporation
    Inventors: Keizo Kobayashi, Kazuo Hirota
  • Patent number: 6365265
    Abstract: A photosensitive insulating paste including an insulating material containing a borosilicate glass powder. The insulating material is dispersed in a photosensitive organic vehicle, and the borosilicate glass powder contains SiO2, B2O3 and K2O such that the compositional proportions by weight of the three components represented by (SiO2, B2O3, K2O) fall within a region formed by connecting points A (65, 35, 0), B (65, 25, 10), C (85, 5, 10) and D (85, 15, 0) in a ternary diagram thereof. A thick-film multi-layer circuit substrate including the paste is also disclosed.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: April 2, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Makoto Tose, Hiromichi Kawakami, Shizuharu Watanabe, Michiaki Iha
  • Patent number: 6355187
    Abstract: There is provided a conductive paste comprising a conductive component, a glass frit, and a vehicle, wherein the glass frit comprises a glass and at least one of alumina (Al2O3), silica (SiO2), titania (TiO2) and zirconia (ZrO2). The conductive paste is capable of being baked at a low temperature with sufficient coloring, and is suitable for forming a circuit on a glass substrate, the glass circuit substrate suitable for application in a defogging glass for an automobile window formed therewith.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: March 12, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tomoki Sanada, Haruhiko Kano, Fumiya Adachi
  • Patent number: 6348425
    Abstract: The present invention provides a glass-ceramic glaze composition for use in the production of ceramic tile. The glaze composition comprises a glass composition from which diopside crystals can be formed, a diopside crystallization rate controller, a surface texture controller, and other optional fillers, pigments and additives. Preferably, the glass composition comprises one or more glass frits containing precursors from which diopside crystals can be formed. The diopside crystallization rate controller comprises mill added sodium feldspar, potassium feldspar, nepheline, and/or spodumene, with sodium feldspar being preferred. The surface texture controller preferably comprises zinc oxide and calcined alumina. When fired on a ceramic tile, the glaze composition of the present invention provides a semi-transparent to translucent, smooth matte finish that displays excellent chemical durability and abrasion resistance.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: February 19, 2002
    Assignee: Ferro Corporation
    Inventors: Marzia Barattini, Paolo Bertocchi, Emanuela Neri
  • Patent number: 6306784
    Abstract: Alkali silicate glasses are described which, in view of their good chemical stability and their optical properties and processing properties, are particularly suitable as a coating or veneering material for ceramic dental frameworks and hence for the production of all-ceramic dental restorations such as crowns or bridges.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: October 23, 2001
    Assignee: Ivoclar AG
    Inventors: Helga Drescher, Martin Frank, Volker Rheinberger, Wolfram Höland
  • Patent number: 6287995
    Abstract: A sealing glass composition for bonding the upper plate and the lower plate of a flat panel display device is described. The sealing glass composition includes a low melting point glass containing PbO of less than 20% and having a sintering temperature of less than 500° C. The sealing glass composition contains a low component of PbO to thereby decrease environmental contamination and increase work efficiency. Also, the sealing glass prevents the deformation and cracking of a substrate caused by thermal and mechanical stress and reduces the sintering temperature to thereby enhance the airtightness of the sealing glass.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: September 11, 2001
    Assignee: LG Electronics Inc.
    Inventor: Yoon Kwan Lee
  • Patent number: 6281152
    Abstract: A conventional black oxide colorant used for the shielding coat membrane of the D2R type discharge lamps for automobiles has a problem that its wettablity with the granulated glass is not good so that a strong membrane is difficult to be obtained. A paint for the shielding coat membrane comprises polycrystalline silica and Mn-doped ferric oxide as a black colorant, which has a good wettability with the granulated glass and a shielding characteristics so as to improve the membrane strength, thereby providing a lamp with the shielding coat membrane that passes all evaluation test in the view point of the membrane strength, the light transmissivity, the discoloration, the suppression of pealing-off and cracking.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: August 28, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tatsuo Mifune, Masaru Ikeda
  • Patent number: 6271158
    Abstract: A sealant for a solid oxide fuel cell comprises a glass material that acts as a matrix, with the glass material being present between about 40 to 90 wt. %. A gap-filler material is also in the sealant and selected from the group consisting of a metal material and a ceramic material, with the gap-filler material being present between about 10 to 60 wt. %. The sealant can seal a gap as large as about 3 mm.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: August 7, 2001
    Assignee: AlliedSignal Inc.
    Inventors: Liang A. Xue, James Piascik, Jean Yamanis, Gregory Lear, James Powers, Daniel Dalfonzo
  • Patent number: 6225392
    Abstract: A conductive paste comprising conductive powder and low-melting glass frit, wherein the low-melting glass frit constituting the conductive paste crystallizes crystals during firing to increase the resistivity of the conductive paste.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: May 1, 2001
    Assignee: Asahi Glass Company Ltd.
    Inventor: Kazuo Sunahara
  • Patent number: 6206958
    Abstract: Porcelain compositions of the present invention comprises particulate of one or more glass or glass-ceramic powder components. Additionally, one or more opacifing agents, pigments, fluorescing agents and the like may be included in the composition. Based on volume percent, the particulate has a d10 of from about 1.1 and about 1.8 microns; a d50 of from about 3 to about 6 microns; a d90 of from about 8 to about 16 microns; and about 1.0 to about 4.0% by volume of the particulate has a particle size greater than or equal to about 20 microns. The mean particle size is preferably in the range of about 3.0 microns to about 7.5 microns.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: March 27, 2001
    Assignee: Jeneric/Pentron, Incorporated
    Inventors: Paul Panzera, Jana N. Pruden, Dmitri Brodkin, Lisa M. Kaiser, Richard A. Brightly, Carlino Panzera
  • Patent number: 6207285
    Abstract: A ceramic enamel composition consists of an oxide frit, a bismuth silicate seed material, a pigment, and a vehicle. A preferred bismuth silicate seed material is selected from crystalline Bi12SiO20, Bi4(SiO4)3, and Bi2SiO5, and mixtures thereof. Upon firing a glass substrate coated with the enamel, components of the enamel adhere to the substrate. The glass can be formed with a die to a desired shape with reduced sticking of the coated region to the die. The ceramic enamel is particularly useful in providing a colored border around automotive glass, which enhances appearance and reduces degradation of adhesives by ultraviolet radiation.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: March 27, 2001
    Assignee: Cerdec Corporation
    Inventors: George E. Sakoske, Joseph W. Ryan
  • Patent number: 6204212
    Abstract: The zirconium-containing and lithium-containing borosilicate glasses have a higher resistance to chemical attack and have the following composition (in % by weight on an oxide basis): SiO2, 71 to <73%; B2O3, 7 to 10%; Al2O3, 6 to 9%; Li2O, 0.5 to 2%; Na2O, 0 to 10%; K2O, 0 to 10%; MgO, 0 to 2%; CaO, 0 to 3%; SrO, 0 to 3%; BaO, 0 to 3%; ZnO, 0 to 3%; ZrO2, 0.8 to 3%; CeO2, 0 to 1%, and a refining agent in an amount suitable for refining, as needed, with the proviso that a total amount of Li2O+Na2O+K2O is from 0.5 to 10.5%, and with the proviso that a total amount of MgO+CaO+SrO+BaO+ZnO is from 0 to 3%. These borosilicate glasses with their thermal expansion coefficients &agr;20/300 between 5.2 and 5.7×10−6/K are especially suitable for sealing glasses for Fe—Co—Ni alloys.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: March 20, 2001
    Assignee: Schott Glas
    Inventors: Christian Kunert, Peter Brix
  • Patent number: 6187429
    Abstract: For obtaining firmly adhering decorative layers of ceramic colors applied to glass or glass ceramic substrates, prior to stoving, optically inactive inorganic substances, e.g., mica, which are chemically inert with respect to the base enamel and the pigments are added to the base enamel together with the pigments in fine-particle form, e.g., 20-40 &mgr;m, in a quantity of 1-20 wt. %.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: February 13, 2001
    Assignee: Schott Glasswerke
    Inventors: Waldemar Weinberg, Herwig Scheidler
  • Patent number: 6187701
    Abstract: Provided is a porcelain which is suitable as a dental porcelain capable of being fired on a ceramics core and has a low firing temperature and a low thermal expansion coefficient and which is excellent in a chemical durability. The above dental porcelain comprises glass containing silicon oxide, aluminum oxide, boron oxide, zinc oxide, sodium oxide and lithium oxide as principal components. The contents of these respective components in the above glass are 57 to 65% by weight of SiO2, 8 to 18% by weight of Al2O3, 15 to 25% by weight of B2O3, 0.1 to 2% by weight of ZnO, 3 to 7% by weight of Na2O and 2 to 8% by weight of Li2O respectively in terms of a percent by weight based on the total of the respective components when the respective components are reduced to SiO2, Al2O3, B2O3, ZnO, Na2O and Li2O respectively. The particularly preferred dental porcelain comprises glass having a thermal expansion coefficient of 6.0×10−6 (1/°C.) or less as a principal structural component.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: February 13, 2001
    Assignee: Tokuyama Corporation
    Inventors: Masato Sekino, Hiroyuki Nakagawa, Osamu Iwamoto, Masaaki Ushioda
  • Patent number: 6174608
    Abstract: The present invention provides a ceramic tile and a glaze composition for use in forming the tile. The glaze composition comprises a glass component, an expansion modifier and a spodumene crystallization promoter. The spodumene crystallization promoter comprises a material that promotes the formation of beta spodumene during the firing of the glaze composition.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: January 16, 2001
    Assignee: Ferro (Italia) SRL
    Inventors: Paolo Bertocchi, Emanuela Neri, Bruno Burzacchini, Marzia Barattini
  • Patent number: 6171987
    Abstract: A glass composition comprising, in mole percent of the total composition: glass-forming compounds in a total amount of 75 to 85%, wherein said glass forming compounds comprise 40 to 65% SiO2, 10 to 20% Bi2O3 and 0.1 to 3% Al2O3, and glass modifiers in a total amount of 15 to 25%, wherein said glass modifiers comprise 1 to 23 % ZnO, 0.1 to 5% CuO, 0.1 to 5 CaO and 0.1 to 2% MgO, thick film formulations containing said composition and uses thereof.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: January 9, 2001
    Assignee: Ben-Gurion University of the Negev
    Inventor: Jacob Hormadaly
  • Patent number: 6163106
    Abstract: A color cathode ray tube having a panel glass and a funnel glass sealed with a composition comprising a low melting glass containing PbO as the main component, wherein the sealed portion is such that the weight reduction after being immersed in water at 90.degree. C. for 20 hours, is at most 1 mg/cm.sup.2, and the weight reduction after being immersed in a 10% nitric acid solution at 40.degree. C. for 20 minutes, is from 80 to 700 mg/cm.sup.2.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: December 19, 2000
    Assignee: Asahi Glass Company Ltd.
    Inventors: Tsunehiko Sugawara, Yuichi Kuroki, Hirosi Usui, Ryuichi Tanabe, Tsuneo Manabe
  • Patent number: 6136734
    Abstract: A low-fire, low-dielectric ceramic composition is disclosed. The ceramic composition comprises a mixture of finely divided particles consisting of 30-90% by volume of calcium borosilicate glass and 10-70% by volume of fillers consisting essentially of Al.sub.2 O.sub.3 and amorphous SiO.sub.2, which can be densified up to 95% at temperatures of 800-1000.degree. C. The sintered body produced thereby exhibits a dielectric constant in the range of 6-9 and a dielectric loss in the range of 0.01%-0.5% at 1 MHz. The ceramic composition can be processed with organic solvent, polymeric binder and plasticizer to produce a green sheet which is co-firable with high electrical conductivity metal such as gold, silver, silver-palladium and copper.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: October 24, 2000
    Assignee: Advanced Ceramic X Corp.
    Inventors: Jau-Ho Jean, Shih-Chun Lin
  • Patent number: 6124224
    Abstract: The present invention provides high temperature sealing glass compositions for use in producing mechanically and chemically durable electrically insulating hermetic glass seals between materials such as zirconia, alumina, fosterite, steatite, carbon steels, stainless steels, and superalloys. High temperature sealing glass compositions according to the present invention include a glass component and optional vehicles. The glass component includes one or more glass frits containing in weight percent from about 17% to about 56% BaO+SrO, from about 18% to about 60% SiO.sub.2, from about 6% to about 36% B.sub.2 O.sub.3, from about 2% to about 32% Al.sub.2 O.sub.3, from about 0% to about 25% CaO plus MgO, from about 0% to about 20% Y.sub.2 O.sub.3, from about 0% to about 7% ZrO.sub.2, from about 0% to about 3% alkali oxides, from about 0% to about 5% Co.sub.3 O.sub.4, from about 0% to about 5% NiO, and from about 0% to about 3% MoO.sub.3.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: September 26, 2000
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, Tack J. Whang, Gordon J. Roberts
  • Patent number: 6121175
    Abstract: Alkali silicate glasses are described which, in view of their good chemical stability and their optical properties and processing properties, are particularly suitable as a coating or veneering material for ceramic dental frameworks and hence for the production of all-ceramic dental restorations such as crowns or bridges.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: September 19, 2000
    Assignee: Ivoclar AG
    Inventors: Helga Drescher, Frank Martin, Volker Rheinberger, Wolfram Holand
  • Patent number: 6110569
    Abstract: The invention is a conductor paste composition comprising a conductive material that contains silver as the essential component, and an inorganic binder as dispersed in a vehicle, wherein said inorganic binder contains, in terms of oxides, from 10 to 60% by weight of lead oxide (PbO), from 5 to 15% by weight of boron oxide (B.sub.2 O.sub.3), from 2 to 15% by weight of silicon oxide (SiO.sub.2), from 0.1 to 15% by weight of manganese oxide (MnO), and from 0.1 to 80% by weight of vanadium oxide (V.sub.2 O.sub.5). The invention realizes a conductor paste for outer electrodes having excellent mountability, high reliability in mounting and excellent electric properties for inner electrode co-fired, non reciprocal devices, and also realizes non reciprocal devices comprising it.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: August 29, 2000
    Assignee: TDK Corporation
    Inventor: Katsuhiko Igarashi
  • Patent number: 6105394
    Abstract: The present invention provides lead and cadmium free glass enamel compositions. In one embodiment of the invention, glass frits include from about 0.1 percent by weight to about 15 percent by weight Nb.sub.2 O.sub.5, less than about 3 percent by weight alkali metal oxides, less than about 3 percent by weight ZnO, less than about 1 percent by weight B.sub.2 O.sub.3, and precursors from which Bi.sub.2 SiO.sub.5 can be crystallized upon firing, said precursors including Bi.sub.2 O.sub.3 and SiO.sub.2. Glass frits according to the present invention preferably further include up to about 25 percent by weight of coloring oxides, such as CeO.sub.2, Co.sub.3 O.sub.4, In.sub.2 O.sub.3, SnO, Cr.sub.2 O.sub.3, CuO, Fe.sub.2 O.sub.3, MnO.sub.2, MoO.sub.3, NiO, and V.sub.2 O.sub.5. By incorporating various amounts of coloring oxides into the compositions, the degree of crystallization and the rate at which crystallization occurs upon firing of the compositions can be controlled.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: August 22, 2000
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, Robert P. Blonski, Hasan B. Emlemdi, Gordon J. Roberts, Ivan H. Joyce
  • Patent number: 6087282
    Abstract: Porcelain compositions of the present invention possess non-greening properties and comprise one or more glass or glass-ceramic components. Additionally, an oxygen release agent is included in the compositions. The porcelain compositions may vary depending upon the specific thermal properties desired.The application temperature of the porcelain compositions ranges from about 600.degree. C. to about 930.degree. C. depending upon the method of application of the porcelain. The coefficient of thermal expansion is preferably in the range of about 11.times.10.sup.-6 /.degree. C. to about 16.times.10.sup.-6 /.degree. C. The porcelain is compatible with cores and/or substrates having coefficients of thermal expansion in the range of about 11 to about 20.times.10.sup.-6 /.degree. C.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: July 11, 2000
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Carlino Panzera, Dmitri Brodkin, Paul Panzera
  • Patent number: 6077797
    Abstract: The invention makes available for the first time pure green decoration coloring substances for high-temperature firing at least at 1000.degree. C., in particular at 1100 to 1250.degree. C., with a color hue angle h in the range of 160.degree..+-.20.degree.. The decoration coloring substance comprises chromium oxide as the pigment and one or several glass frits as glass flux, and additionally a cobalt compound from the series CoO, Co(OH).sub.2 and Co compounds forming CoO below or at the firing temperature, with the atomic ratio of Co to Cr being in the range of 0.01 to 0.35, preferably 0.15 to 0.25.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: June 20, 2000
    Assignee: Cerdec Aktiengesellschaft Keramische Farben
    Inventors: Jorg Sperlich, Katia Jackow, Stephan Ludwig, Dietrich Speer, Kai Dorer
  • Patent number: 6057037
    Abstract: The invention provides a new lead-free glass composition, a glass frit of this composition, a process for its production and also coloring preparations containing such a glass frit and the use thereof. The glass composition according to the invention contains in mol-%______________________________________ K.sub.2 O 10-17 B.sub.2 O.sub.3 10-25 TiO.sub.2 15-30 SiO.sub.2 35-55 Al.sub.2 O.sub.3 0-5 Bi.sub.2 O.sub.3 0-5 S 0-3 ______________________________________and any oxide from the group consisting of PbO, CdO, ZnO, Li.sub.2 O, Na.sub.2 O, MgO, CaO, SrO, BaO and P.sub.2 O.sub.3 which is present being present in a quantity of less than 0.5 wt-% in each case. Glass frits of this composition are very suitable for use in coloring preparations for the production of glass enamels, in particular for panes of glass for automobiles. Glass frits according to the invention can be stoved at low temperatures, exhibit good anti-sticking properties, a high resistance to acids and a diminished migration of silver.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: May 2, 2000
    Assignee: Cerdec Aktiengesellschaft Keramische Farben
    Inventors: Gerhard Tunker, Hildegard Paulus
  • Patent number: 6043171
    Abstract: The lead- and cadmium-free glass composition for glazing, enameling and decorating glass or glass-ceramic articles contains high quartz and/or keatite solid solution crystals as principal crystalline phases after crystallization and a low thermal expansion coefficient of less than 2.times.10.sup.-6 /K at temperatures between 20 and 700.degree. C. This glass composition contains Li.sub.2 O, 0 to 5% by weight; Na.sub.2 O, 0 to 5% by weight; K.sub.2 O, less than 2% by weight; MgO, 0 to 3% by weight; CaO, 0 to 4% by weight; SrO, 0 to 4% by weight; BaO, 0 to 4% by weight; ZnO, 0 to 4% by weight; B.sub.2 O.sub.3, 15 to 27% by weight; Al.sub.2 O.sub.3, 10 to 20% by weight; SiO.sub.2, 43 to 58% by weight; TiO.sub.2, 0 to 3% by weight and ZrO.sub.2, 0 to 4% by weight, Sb.sub.2 O.sub.3, 0 to 2% by weight; F, 0 to 3% by weight in exchange for oxygen and up to 30% by weight of at least one inorganic pigment resistant to a burning-in temperature on the glass or the glass-ceramics. The sum total amount of Li.sub.2 O, Na.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: March 28, 2000
    Assignee: Schott Glas
    Inventors: Friedrich Siebers, Ottmar Becker, Waldemar Weinberg, Petra Auchter-Krummel
  • Patent number: 6037041
    Abstract: The invention relates to a method of providing an encodable layer on a glass object and on the resultant product. The layer is formed by providing a paste containing glass frit, pigment and a binder, on the hot glass. As a result, the glass frit melts, causing the pigment to adhere to the glass object. The binder, which is used to render the paste spreadable, disappears from the mixture.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: March 14, 2000
    Assignee: U.S. Philips Corporation
    Inventors: Raymond J. L. Van Kooyk, Johan Bosman
  • Patent number: 6022819
    Abstract: Porcelain compositions of the present invention comprise one or more glass or glass-ceramic powder components. Additionally, one or more opacifying agents, pigments, fluorescing agents and the like may be included in the composition. Based on volume percent, 10% of the particulate in the porcelain has a particle size of less than between about 1.1 microns and about 1.5 microns, 50% of the particulate in the porcelain has a particle size of less than between about 3 and about 6 microns, 90% of the particulate in the porcelain has a particle size of less than between about 8 and about 13.5 microns, and the maximum particle size of the particulate is greater than about 20 microns and less than about 60 microns. The mean particle size is preferably in the range of about 3.0 microns to about 6.5 microns.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: February 8, 2000
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Paul Panzera, Jana Pruden, Dmitri Brodkin, Lisa M. Kaiser, Richard A. Brightly, Carlino Panzera
  • Patent number: 6004894
    Abstract: The present invention provides a porcelain enamel coating composition for use in forming a coating composition upon a metal substrate having an infrared reflectivity of at least 50% at 2.5 .mu.-microns measured with a Perkin Elmer Lambda 19 UV/VIS/NIR spectrometer with a labsphere RSA-PE 19 reflectance spectroscopy accessory. The coating composition comprises a glass component and a separate and distinct addition of cerium oxide. Preferably, the coating composition comprises from about 0.20% to about 3.0% by weight of the cerium oxide.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: December 21, 1999
    Assignee: Ferro Corporation
    Inventors: William D. Faust, Holger F. Evele
  • Patent number: 5998314
    Abstract: Disclosed are a low-temperature sinterable ceramic composition comprising 100 parts by weight of an essential component composed of from about 60 to 85% by weight of cordierite and from about 15 to 40% by weight of glass, and not larger than about 25 parts by weight of TiO.sub.2, and a monolithic ceramic substrate comprising the composition. The composition can be sintered at relatively low temperatures, and the sintered substrate has a small thermal expansion coefficient and a small dielectric constant. The temperature-dependent variation in the electrostatic capacity of the substrate is small. Preferably, the glass component in the composition is composed of about 20 to 60% by weight of SiO.sub.2, about 30 to 50% by weight of B.sub.2 O.sub.3, about 5 to 30% by weight of MgO, 0 to about 15% by weight of Al.sub.2 O.sub.3, and about 1 to 5% by weight of R.sub.2 O in which R is an alkali metal.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: December 7, 1999
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yasutaka Sugimoto
  • Patent number: 5985460
    Abstract: A coatable insulator composition for use in the formation of a green tape comprising fine inorganic micropowders composed of amorphous glass and a refractory oxide in a volatile organic solvent solution of a binder composed of a polymer substance and a plasticizer(s). A green tape obtained by coating said composition over a flexible substrate, and heating and drying this product to remove the organic solvent; and a method for forming a barrier-rib for a plasma display apparatus by sandblast etching using said green tape as an insulator layer for the barrier-rib formation. A use of a pre-formed green tape of uniform thickness in the formation of the barrier-rib of a plasma display apparatus allows the thickness uniformity of the barrier-rib to be improved and the work rationalized, which means that the plasma display apparatus can be made larger and finer, and mass production throughput will be enhanced.
    Type: Grant
    Filed: February 20, 1997
    Date of Patent: November 16, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Carl Baasun Wang, John James Felten, Hiroshi Kanda, Motohiko Tsuchiya
  • Patent number: 5976999
    Abstract: A composition which represents a new class of unleaded transparent vitreous ceramic which is described as an `Advanced or Combined Intermediate-Oxide Alkali Borosilicate. The composition comprises in combination a specially developed alkali borosilicate and a major addition selected from combinations of the group of traditionally accepted opacifiers, consisting of Zirconium, Tin, and Titanium, the said elements being present in said combination in amounts 0.5 to 43.9 wt % in terms of the Oxide form. The major addition will consist of at least two of said elements. The composition may include minor additions (.ltoreq.10 wt %) of any other element or elements which do not cause loss of transparency.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: November 2, 1999
    Assignee: Proceram
    Inventors: Philip Anthony Evans, Paul Harrison, Rolf Alfred Wirtz
  • Patent number: 5968858
    Abstract: An insulating paste comprises a glass component composed of SiO.sub.2, B.sub.2 O.sub.3 and K.sub.2 O as xSiO.sub.2 -yB.sub.2 O.sub.3 -zK.sub.2 O, where x, y and z (% by weight) fall within the area surrounded by points A (x=65, y=35, z=0), B (x=65, y=20, z=15), C (x=85, y=0, z=15) and D (x=85, y=15, z=0), and an organic vehicle. The insulating layer made of the paste has a low dielectric constant and excellent insulating properties.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: October 19, 1999
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiromichi Kawakami, Hiroji Tani