And Divalent Metal Oxide (e.g., Oxides Of Zinc, Cadmium, Beryllium, Alkaline Earth Metal, Magnesium, Etc.) Patents (Class 501/69)
  • Publication number: 20110091704
    Abstract: A process for producing a plate glass for a display device having a thickness of at most 1.5 mm by a float process, wherein the plate glass comprises, as represented by mole percentage based on the following oxides, from 67 to 75% of SiO2, from 0 to 4% of Al2O3, from 7 to 15% of Na2O, from 1 to 9% of K2O, from 6 to 14% of MgO and from 0 to 1.5% of ZrO2, has a total content of SiO2 and Al2O3 of from 71 to 75%, has a total content Na2O+K2O of Na2O and K2O of from 12 to 20%, and has a content of CaO of less than 1% if contained.
    Type: Application
    Filed: September 22, 2010
    Publication date: April 21, 2011
    Applicant: Asahi Glass Company, Limited
    Inventors: Shusaku AKIBA, Kazutaka Hayashi
  • Publication number: 20110086241
    Abstract: The provided are a glass for a magnetic recording medium substrate permitting the realization of a magnetic recording medium substrate affording good chemical durability and having an extremely flat surface, a magnetic recording medium substrate comprised of this glass, a magnetic recording medium equipped with this substrate, and methods of manufacturing the same. Glasses for a magnetic recording medium substrate are, glass I comprised of an oxide glass, comprising, denoted as mass percentages: Si 20 to 40 percent, Al 0.1 to 10 percent, Li 0.1 to 5 percent, Na 0.1 to 10 percent, K 0 to 5 percent (where the total content of Li, Na, and K is 15 percent or less), Sn 0.005 to 0.6 percent, and Ce 0 to 1.2 percent; the Sb content is 0 to 0.1 percent; and not comprising As or F; glass II comprised of oxide glass, comprising, as converted based on the oxide, denoted as molar percentages: SiO2 60 to 75 percent, Al2O3 1 to 15 percent, Li2O 0.1 to 20 percent, Na2O 0.
    Type: Application
    Filed: March 18, 2009
    Publication date: April 14, 2011
    Applicant: HOYA CORPORATION
    Inventors: Yoichi Hachitani, Kinobu Osakabe
  • Publication number: 20110071011
    Abstract: To provide crystallizable glass that is less likely to be devitrified even when formed into shape by a float process, causes no breakage during a forming step and a crystallization step and is capable of precipitating LAS-based crystals as main crystals by subjecting the glass to heat treatment after being formed into shape, and crystallized glass obtained by crystallizing the crystallizable glass. The crystallizable glass of the present invention is characterized by substantially containing neither As2O3 nor Sb2O3 and having a composition of, in percent by mass, 55.0 to 73.0% SiO2, 17.0 to 27.0% Al2O3, 2.0 to 5.0% Li2O, 0 to 1.5% MgO, 0 to 1.5% ZnO, 0 to 1.0% Na2O, 0 to 1.0% K2O, 0 to 3.8% TiO2, 0 to 2.5% ZrO2, 0 to 0.6% SnO2, and 2.3 to 3.8% TiO2+ZrO2.
    Type: Application
    Filed: April 17, 2009
    Publication date: March 24, 2011
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Tai Fujisawa, Shingo Nakane
  • Publication number: 20110071012
    Abstract: Glass comprising, as represented by mole percentage based on the following oxides, from 50 to 75% of SiO2, from 1 to 15% of Al2O3, from 6 to 21% of Na2O, from 0 to 15% of K2O, from 0 to 15% of MgO, from 0 to 20% of CaO, from 0 to 21% of ?RO (wherein R is Mg, Ca, Sr, Ba and/or Zn), from 0 to 5% of ZrO2, from 1.5 to 6% of Fe2O3, and from 0.1 to 1% of Co3O4.
    Type: Application
    Filed: August 18, 2010
    Publication date: March 24, 2011
    Applicant: Asahi Glass Company, Limited
    Inventors: Yuki Kondo, Hiroyuki Ohkawa, Makoto Sano, Kazutaka Hayashi, Shusaku Akiba
  • Publication number: 20110059836
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Applicant: IVOCLAR VIVADENT AG
    Inventors: Elke Apel, Wolfram Höland, Marcel Schweiger, Christian van t'Hoen, Harald Bürke, Volker M. Rheinberger
  • Publication number: 20110045961
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp less than the breakdown temperature Tbreakdown of zircon.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 24, 2011
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson
  • Patent number: 7892999
    Abstract: A float glass for a display substrate, characterized in that its composition consists essentially of, as represented by mass % based on oxide, from 52 to 62% of SiO2, from 5 to 15% of Al2O3, from more than 0% to 9% of MgO, from 3 to 12% of CaO, from 9 to 18% of SrO, from 0 to 13% of BaO, from 25 to 30% of MgO+CaO+SrO+BaO, from 6 to 14% of Na2O+K2O+Li2O, from 0 to 6% of ZrO2 and from 0 to 1% of SO3, the temperature of glass melt corresponding to the viscosity of 102 dPa·s is at most 1,520° C., the temperature of glass melt corresponding to the viscosity of 104 dPa·s is at most 1,120° C., the glass transition temperature is at least 610° C., and the specific gravity is at most 2.9.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: February 22, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Tetsuya Nakashima, Kei Maeda
  • Publication number: 20110017297
    Abstract: Sodium containing aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points?535° C., for example, ?570° C., thermal expansion coefficients of from 8 to 9 ppm/° C., as well as liquidus viscosities in excess of 50,000 poise. As such they are ideally suited for being formed into sheet by the fusion process.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 27, 2011
    Inventors: Bruce Gardiner Aitken, James Edward Dickingson, JR., Timothy J. Kiczenski
  • Patent number: 7875566
    Abstract: A method of making refractory alkaline earth silicate fibers from a melt, including the use as an intended component of alkali metal to improve the mechanical properties of the fiber in comparison with a fiber free of alkali metal.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: January 25, 2011
    Assignee: The Morgan Crucible Company PLC
    Inventors: Craig John Freeman, Gary Anthony Jubb
  • Publication number: 20110014475
    Abstract: Provided is a tempered glass, which has a compressive stress layer on a surface thereof, comprising, in terms of mol %, 40 to 80% of SiO2, 5 to 15% of Al2O3, 0 to 8% of B2O3, 0 to 10% of Li2O, 5 to 20% of Na2O, 0.5 to 20% of K2O, 0 to 10% of MgO, and 8 to 16.5% of Al2O3+MgO, wherein the glass has, in terms of a molar ratio, a (Li2O+Na2O+K2O)/Al2O3 ratio of 1.4 to 3, an Na2O/Al2O3 ratio of 1 to 3, and an MgO/Al2O3 ratio of 0 to 1, and is substantially free of As2O3, PbO, and F.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 20, 2011
    Inventor: Takashi Murata
  • Patent number: 7871703
    Abstract: A glass composition for chemical tempering includes oxides in wt % ranges of: SiO2 60 to 75; Al2O3 18 to 28; Li2O 3 to 9; Na2O 0 to 3; K2O 0 to 0.5; CaO 0 to 3; MgO 0 to 3; ZrO2 0 to 3; where MgO+CaO is 0 to 6 wt %; Al2O3+ZrO2 is 18 to 28 wt %, and Na2O+K2O is 0.05 to 3.00 wt %. The glass has a log 10 viscosity temperature in the temperature range of 1328° F. (720° C.) to 1499° F. (815° C.); a liquidus temperature in the temperature range of 2437° F. (1336° C.) to 2575° F. (1413° C.), and a log 7.6 softening point temperature in the temperature range of 1544° F. (840° C.) to 1724° F. (940° C.). The chemically tempered glass has, among other properties, an abraded modulus of rupture of 72 to 78 KPSI, and a modulus of rupture of 76 to 112 KPSI.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 18, 2011
    Assignee: Schott AG
    Inventors: Larry J. Shelestak, George B. Goodwin, Amarendra Mishra, James M. Baldauff
  • Patent number: 7867933
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: January 11, 2011
    Assignee: Ivoclar Vivadent AG
    Inventors: Elke Apel, Wolfram Holand, Marcel Schweiger, Christian Ritzberger, Harald Burke, Volker M. Rheinberger
  • Publication number: 20110003483
    Abstract: To provide a glass plate for display panels which has a low 8203 content and a low compaction and which can be used as a glass substrate for large TFT panels. A glass plate for display panels, which comprises, as a glass matrix composition as represented by mass% based on oxide: SiO2 50.0 to 73.0, Al2O3 6.0 to 20.0, B2O3 0 to 2.0, MgO 4.2 to 9.0, CaO 0 to 6.0, SrO 0 to 2.0, BaO 0 to 2.0, MgO+CaO+SrO+BaO 6.5 to 11.3, Li2O 0 to 2.0, Na2O 2.0 to 18.0, K2O 0 to 13.0, and Li2O +Na2O+K2O 8.0 to 18.0, and has a heat shrinkage (C) of at most 20 ppm.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 6, 2011
    Applicant: Asahi Glass Company, Limited
    Inventors: Manabu NISHIZAWA, Yuya Shimada, Yuichi Kuroki, Kei Maeda
  • Publication number: 20100331164
    Abstract: Sealing materials for use with membrane supports, and in particular to sealing materials that can be used to form a glassy coating on the exterior surface of a membrane support to prevent gases from entering or exiting the support via the support's exterior walls.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Lisa Ann Lamberson, Robert Michael Morena
  • Patent number: 7846859
    Abstract: A colored glass has a formula of R?20—RO—SiO2, wherein R? is an alkali metal element and R is an alkaline earth metal element. The colored glass comprises between 0.01 and 1% by weight of molybdenum expressed as MoO3 and between 0.01 and 2.5% by weight of sulfur expressed as SO3. The colored glass further comprises between 7.8 and 14% by weight of potassium expressed as K2O and between 0.68 and 5.42% by weight of sodium expressed as Na2O. The sum of the concentrations of potassium and sodium expressed as K2O and Na2O is between 11 and 17% by weight.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: December 7, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jean-Sebastien Straetmans, Simon Flink, Theodorus Herman Ketelaar, Raoul Hendrinkus Elisabeth Maria Martens
  • Publication number: 20100300535
    Abstract: Sodium-containing aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points ?540° C., thermal expansion coefficient of from 6.5 to 9.5 ppm/° C., as well as liquidus viscosities in excess of 50,000 poise. As such they are ideally suited for being formed into sheet by the fusion process.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, JR., Timothy J. Kiczenski, Michelle Diane Pierson-Stull
  • Patent number: 7838452
    Abstract: An ultraviolet ray transmitting glass composition including the following components, in terms of mass % or mass ppm: 60 to 79% SiO2; 0 to 1% B2O3; exceeded 0% but not more than 20% Al2O3; 0 to 10% Li2O; 5 to 20% Na2O; 0 to 15% K2O; 0 to 10% MgO; 0 to 10% CaO; 0 to 15% SrO; 0 to 2% refining agent; 2 to 20 ppm T-Fe2O3 (in which T-Fe2O3 denotes a total iron oxide content obtained by converting all of iron compounds into Fe2O3); and 0 to 200 ppm TiO2. The ultraviolet ray transmitting glass composition is suitable for a glass article, such as a bioanalytical device that is used for analysis using ultraviolet rays.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: November 23, 2010
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Junji Kurachi, Koji Fujita, Haruki Niida, Akihiro Koyama
  • Patent number: 7839088
    Abstract: A glass composition of the present invention is oxide glass and has a composition that satisfies: 60 wt %<B2O3<78 wt %, 15 wt %<ZnO?24 wt %, 6 wt %?R2O?16 wt %, 1 wt %?MO<17 wt %, and 0 wt %?SiO2?10 wt %, where R denotes at least one selected from Li, Na, and K, and M indicates at least one selected from Mg, Ca, Sr, and Ba. A display panel of the present invention is formed using such a glass composition of the present invention.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: November 23, 2010
    Assignee: Panasonic Corporation
    Inventors: Osamu Inoue, Shinya Hasegawa, Yasuhiko Nakada, Tsutomu Koshizuka
  • Patent number: 7823417
    Abstract: A method of forming high strength glass fibers in a refractory lined glass melter is disclosed. The refractory lined melter is suited to the batch compositions disclosed for the formation high modulus, and high-strength glass fibers. The glass composition for use in the method of the present invention is up to about 70.5 Weight % SiO2, 24.5 weight % Al2O3, 22 weight % alkaline earth oxides and may include small amounts of alkali metal oxides and ZrO2. Oxide based refractories included alumina, chromic oxide, silica, alumina-silica, zircon, zirconia-alumina-silica and combinations thereof. By using oxide based refractory lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers using a platinum lined melting furnace. Fibers formed by the present invention are also disclosed.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: November 2, 2010
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas A. Hoffmann, Peter B. McGinnis
  • Publication number: 20100273631
    Abstract: The present invention relates to a process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66%? MgO 3-8% Na2O 7-15%? K2O 0-3% Li2O 0-12%? CaO 0-10%? BaO 0-15%? Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The invention also relates to the reinforced glass-ceramics obtained.
    Type: Application
    Filed: January 16, 2009
    Publication date: October 28, 2010
    Applicant: EUROKERA S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Publication number: 20100255350
    Abstract: To provide glass for an information recording medium substrate, which is excellent in the acid resistance and weather resistance. Glass for an information recording medium substrate, which comprises, as represented by mol % based on the following oxides, from 61 to 72% of SiO2, from 3 to 12% of Al2O3, from 0 to 14.3 of Li2O, from 0 to 22% of Na2O, from 0 to 22% of K2O, from 4 to 13% of MgO, from 0 to 6% of TiO2 and from 0 to 5% of ZrO2, provided that the total content of Li2O, Na2O and K2O (R2O) is from 8 to 22%, the ratio of the content of Li2O to R2O (Li2O/R2O) is at most 0.52, the ratio of the content of Na2O to R2O (Na2O/R2O) is at least 0.35, or the ratio of the content of K2O to R2O (K2O/R2O) is at least 0.45.
    Type: Application
    Filed: March 16, 2010
    Publication date: October 7, 2010
    Applicant: Asahi Glass Company, Limited
    Inventors: Jun ENDO, Tatsuo Nagashima, Tetsuya Nakashima, Manuel Diaz Reyes
  • Patent number: 7799713
    Abstract: Glass batch compositions for the formation of high-modulus, and high-strength glass fibers as well as fibers suitable for use as textile and reinforcements are disclosed. Fibers formed of the composition are especially suitable for use in high-strength, low-weight applications such as windmill blades and high strength and modulus applications where strength and stiffness are required in the composite. The glass composition is up to about 70.5 weight % SiO2, about 24.5 weight % Al2O3, about 22 weight % alkaline earth oxides and may include small amounts of alkali metal oxides and ZrO2. Fiberglass-reinforced composite articles such as windmill blades are also disclosed.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: September 21, 2010
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas A. Hofmann, Peter B. McGinnis
  • Patent number: 7786035
    Abstract: A glass composition which is reduced in the amount of residual bubbles and is produced using smaller amounts of an environmentally unfriendly component such as arsenic oxide and antimony oxide. This glass composition contains, in terms of mass %: 40-70% SiO2; 5-20% B2O3; 10-25% Al2O3; 0-10% MgO; 0-20% CaO; 0-20% SrO; 0-10% BaO; 0-0.5% Li2O; 0-1.0% Na2O; 0-1.5% K2O; and 0-1.5%, excluding 0%, Cl, Li2O+Na2O+K2O exceeding 0.06%. The glass composition can be produced suitably using, for example, a chloride as part of the raw glass materials.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: August 31, 2010
    Assignee: AvanStrate Inc.
    Inventors: Shoichi Kishimoto, Haruki Niida, Akihiro Koyama, Yukihito Nagashima
  • Publication number: 20100216625
    Abstract: A glass for laser processing that is processed through laser beam irradiation, wherein the glass for laser processing has a composition that satisfies the following relationships: 40?M[NFO]?70; 5?(M[TiO2])?45; and 5?M[NMO]?40, where M[NFO], M[TiO2], and M[NMO] denote the content by percentage of network forming oxides (mol %), that of TiO2 (mol %), and that of network modifying oxides (mol %), respectively. With this structure, a glass for laser processing is obtained in which not only the vicinity of the surface thereof but also the inner portion thereof can be laser-processed.
    Type: Application
    Filed: May 6, 2010
    Publication date: August 26, 2010
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Masanori SHOJIYA, Hirotaka KOYO, Keiji TSUNETOMO
  • Publication number: 20100210442
    Abstract: A method is provided for separating or dividing strengthened glass articles, particularly strengthened glass sheets, into at least two pieces, one of which has a predetermined shape and/or dimension. A flaw is initiated in the glass at a depth that is greater than the depth of the strengthened surface layer of the glass, and a vent extending from the flaw is created at a vent depth that is greater than the depth of and outside the strengthened surface layer to at least partially separate the glass. In one embodiment, the vent is generated by treating the glass with a laser to heat the glass to a temperature in a range from about 50° C. below the strain point of the glass up to a temperature between the strain point and the anneal point of the glass. A glass article having at least one strengthened surface and at least one edge having an average edge strength of at least 200 MPa is also described.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 19, 2010
    Inventors: Anatoli Anatolyevich Abramov, Sinue Gomez, Sergio Tsuda
  • Publication number: 20100209685
    Abstract: The invention relates to a low-radiation cover glass for radiation-sensitive sensors, with low intrinsic ?-radiation, in particular for use with semiconductor technology. The glass includes a glass composition, selected from the following: aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, in particular borosilicate glass that is devoid of alkali, with a TiO2 content of >0.1-10% by weight, in particular 1-8% by weight.
    Type: Application
    Filed: October 2, 2006
    Publication date: August 19, 2010
    Applicant: Schott AG
    Inventors: Andreas Weber, Holger Wegener, Reinhard Kassner, Peter Brix
  • Patent number: 7767603
    Abstract: A network former and a glass modifier are formed and maintained by using basalt rock ore, and the crystallization and binding of basalt fiber are inhibited The heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. Basalt fiber material having basalt rock as a raw material to which one or more kinds of oxide selected from Al2O3, SiO2, CaO, and MgO is added, and basalt fiber material having two kinds of basalt rock containing different amounts of elements as raw materials are provided.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: August 3, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nakagawa Sangyo Co., Ltd.
    Inventors: Sumio Kamiya, Isao Tanaka, Kazumi Imamura, Hironori Sasaki, Noriaki Nakagawa
  • Publication number: 20100190630
    Abstract: To provide a glass plate for a substrate, which contains no B2O3 and which can be used as a glass plate for an LCD panel. A glass plate for a substrate, which contains substantially no B2O3, which comprises, as a glass matrix composition as represented by mass % based on oxide of SiO2: 68 to 80, Al2O3: 0.1 to 5, MgO: 9.5 to 12, CaO+SrO+BaO: 0 to 2, and Na2O+K2O 6 to 14, and which has a density of at most 2.45 g/cm3, an average coefficient of thermal expansion from 50 to 350° C. of at most 75×10?7/° C., a glass transition point of at least 600° C. and a brittleness of at most 6.5 ?m?1/2.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Manabu Nishizawa, Yuya Shimada, Junichiro Kase
  • Patent number: 7754630
    Abstract: An optical glass for the manufacture of large transmission optics, such as lenses having a thickness of 100 millimeters or more, comprises 35 to 70 wt.-% SiO2, 17 to 35 wt.-% Al2O3, 3 to 17 wt.-% P2O5, 0 to 6 wt.-% Li2O, 0.5 to 4 wt.-% MgO, 0.5 to 3 wt.-% ZnO, a maximum of 1 wt.-% CaO, a maximum of 0.5 wt.-% BaO, 0.5 to 6 wt.-% TiO2, 0.5 to 3 wt.-% ZrO2, 0 to 1 wt.-% Na2O, 0 to 1 wt.-% K2O, a maximum of 1 wt.-% of refining agents (As2O3, SP2O3) and a maximum of 500 ppm of other contaminants. The glass composition may be equal to the composition of the glass ceramic Zerodur® and allows to manufacture large transmission optics in a cost-effective way, has a maximum of transmittance which is in the range of a He—Ne lasers and has a CTE of about 3·10?6/K.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: July 13, 2010
    Assignee: Schott AG
    Inventors: Thorsten Doehring, Ina Mitra
  • Patent number: 7754631
    Abstract: To provide an alkali-free glass substrate, which has a high Young's modulus, a low linear expansion coefficient, a high strain point and a low density, does not devitrify in the float forming process and is excellent in acid resistance. An alkali-free glass substrate, which contains neither alkali component nor BaO and consists essentially of, as represented by mol % based on oxide, from 57.0 to 65.0% of SiO2, from 10.0 to 12.0% of Al2O3, from 6.0 to 9.0% of B2O3, from 5.0 to 10.0% of MgO, from 5.0 to 10.0% of CaO and from 2.5 to 5.5% of SrO, provided that MgO+CaO+SrO is from 16.0 to 19.0%, MgO/(MgO+CaO+SrO)?0.40, and B2O3/(SiO2+Al2O3+B2O3)?0.12; wherein Young's modulus ?75 GPa; the linear expansion coefficient at from 50 to 350° C. is from 30×10?7/° C. to 40×10?7/° C.; the strain point ?640° C.; the temperature T2 (the viscosity ? satisfies log ?=2)?1,620° C.; the temperature T4 (the viscosity ? satisfies log ?=4)?1,245° C.; the devitrification temperature ?T4; and weight loss per unit area is at most 0.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 13, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Terutaka Maehara, Manabu Nishizawa, Junichiro Kase, Syuji Matsumoto
  • Publication number: 20100167091
    Abstract: According to one aspect of the present invention, provided is glass for use in substrate for information recording medium, which comprises, denoted as molar percentages, a total of 70 to 85 percent of SiO2 and Al2O3, where SiO2 content is equal to or greater than 50 percent and Al2O3 content is equal to or greater than 3 percent; a total of equal to or greater than 10 percent of Li2O, Na2O and K2O; a total of 1 to 6 percent of CaO and MgO, where CaO content is greater than MgO content; a total of greater than 0 percent but equal to or lower than 4 percent of ZrO2, HfO2, Nb2O5, Ta2O5, La2O3, Y2O3 and TiO2; with the molar ratio of the total content of Li2O, Na2O and K2O to the total content of SiO2, Al2O3, ZrO2, HfO2, Nb2O5, Ta2O5, La2O3, Y2O3 and TiO2 ((Li2O+Na2O+K2O)/(SiO2+Al2O3+ZrO2+HfO2+Nb2O5+Ta2O5+La2O3+Y2O3+TiO2)) being equal to or less than 0.28.
    Type: Application
    Filed: June 8, 2007
    Publication date: July 1, 2010
    Applicant: HOYA CORPORATION
    Inventors: Kazuo Tachiwana, Yoichi Hachitani, Xuelu Zou, Mikio Ikenishi, Kinobu Osakabe
  • Publication number: 20100160141
    Abstract: Disclosed are a glass substrate for an information recording medium, having excellent scratch resistance and a light weight and having high fracture toughness, the glass substrate having a fragility index value, measured in water, of 12 ?m?1/2 or less or having a fragility index value, measured in an atmosphere having a dew point of ?5° C. or lower, of 7 ?m?1/2 or less, or the glass substrate comprising, by mol %, 40 to 75% of SiO2, 2 to 45% of B2O3 and/or Al2O3 and 0 to 40% of R?2O in which R? is at least one member selected from the group consisting of Li, Na and K), wherein the total content of SiO2, B2O3, Al2O3 and R?2O is at least 90 mol %, and a magnetic information recording medium comprising a magnetic recording layer formed on the glass substrate.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 24, 2010
    Applicant: HOYA CORPORATION
    Inventors: Mikio Ikenishi, Atsuko Morita, Xuelu Zou
  • Patent number: 7727917
    Abstract: A glass composition for chemical tempering includes oxides in wt % ranges of: SiO2 60 to 75; Al2O3 18 to 28; Li2O 3 to 9; Na2O 0 to 3; K2O 0 to 0.5; CaO 0 to 3; MgO 0 to 3; ZrO2 0 to 3; where MgO+CaO is 0 to 6 wt %; Al2O3+ZrO2 is 18 to 28 wt %, and Na2O+K2O is 0.05 to 3.00 wt %. The glass has a log 10 viscosity temperature in the temperature range of 1328° F. (720° C.) to 1499° F. (815° C.); a liquidus temperature in the temperature range of 2437° F. (1336° C.) to 2575° F. (1413° C.), and a log 7.6 softening point temperature in the temperature range of 1544° F. (840° C.) to 1724° F. (940° C.). The chemically tempered glass has, among other properties, an abraded modulus of rupture of 72 to 78 KPSI, and a modulus of rupture of 76 to 112 KPSI.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: June 1, 2010
    Assignee: Schott AG
    Inventors: Larry J. Shelestak, George B. Goodwin, Amarendra Mishra, James M. Baldauff
  • Patent number: 7727918
    Abstract: An optical glass that contains Si, Al, Mg, and O is provided. The optical glass contains Si in an amount of 40% or more and 60% or less, in cation percent, Al in an amount of 10% or more and 35% or less, in cation percent, and Mg in an amount of 20% or more and 35% or less, in cation percent. In the optical glass, the total amount of Si, Al, and Mg is 99.5% or more, in cation percent. Furthermore, the optical glass contains Fe and Na each in an amount of 0.01 wtppm or less and has a transmittance to a light having a wavelength of 248 nm of 40% or more at a thickness of 5 mm.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomohiro Watanabe, Taihei Mukaide, Hidenosuke Itoh
  • Patent number: 7710656
    Abstract: The transparent polycrystalline optoceramic has single crystallites and at least 95 percent by weight of the single crystallites have a cubic pyrochlore or fluorite structure. The optoceramic is composed of an oxide of stoichiometry: A2+xByDzE7 wherein 0<x<1, 0<y<2, 0<z<1.6 and 3x+4y+5z=8; wherein A is at least one trivalent rare earth cation; B is at least one tetravalent cation; D is at least one pentavalent cation; and E comprises at least one divalent anion. Refractive, diffractive or transmissive optical elements are made with these optoceramics.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 4, 2010
    Assignee: Schott AG
    Inventors: Ulrich Peuchert, Yvonne Menke
  • Patent number: 7709081
    Abstract: The invention relates to porous bioglass and to the preparation method thereof. More specifically, the invention relates to a solid, porous crystalline or partially-crystalline composition containing at least SiO2, Ca<SB>O</SB>, Na2O, and P2O5, comprising micropores and macropores. The invention is characterised in that: the pore ratio varies between 50% and 80%, preferably between 60 and 75%, and is measured using the geometric method; the average diameter of the macropores varies between 100 and 1250 micrometers, preferably between 150 and 300 micrometers; the average diameter of the micropores is less than or equal to 5 micrometers; and the compression strength varies between 7 MPa and 70 MPa. The invention also relates to the method of preparing one such composition and to such a composition treated with a physiological liquid having an ionic composition similar to that of human plasma. The invention also relates to an implant which is made from one such composition.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: May 4, 2010
    Assignee: Institut National des Sciences Appliques (INSA)
    Inventors: Rachid Zenati, Gilbert Fantozzi, Jerome Chevalier, Mourad Arioua
  • Patent number: 7709406
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 4, 2010
    Assignee: Corning Incorporation
    Inventors: Lauren Kay Cornelius, Adam James Ellison, Shari Elizabeth Koval
  • Publication number: 20100099546
    Abstract: The invention relates to a transparent and essentially colorless ?-quartz glass-ceramic material which is free of TiO2, As2O3, Sb2O3 and phosphates; articles formed from said glass-ceramic material; lithium aluminosilicate glasses, precursors for said glass-ceramic material; and methods of producing said glass-ceramic material and said articles formed from said glass-ceramic material.
    Type: Application
    Filed: November 29, 2006
    Publication date: April 22, 2010
    Inventors: Bruce G. Aitken, Marie Jacqueline Monique Comte, Lothar Wondraczek
  • Patent number: 7700682
    Abstract: A glass filler for a polycarbonate resin, whereby the refractive index of the glass filler can be improved to the same level as a polycarbonate resin, and the transparency of a molded product after reinforced with such a filler can be maintained without coloration, and a polycarbonate resin composition employing such a filler, are provided.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: April 20, 2010
    Assignee: Asahi Fiber Glass Company, Limited
    Inventor: Keiji Sekine
  • Publication number: 20100087307
    Abstract: An object of the invention is to obtain a glass substrate having high mechanical strength by reconciling suitability for ion exchange and devitrification proof in a glass. The strengthened glass substrate of the invention is a strengthened glass substrate having a compression stress layer in the surface thereof, the glass substrate having a glass composition including, in terms of % by mass, 40-70% of SiO2, 12-25% of Al2O3, 0-10% of B2O3, 0-8% of Li2O, 6-15% of Na2O, 0-10% of K2O, 13-20% of Li2O+Na2O+K2O, 0-3.9% of MgO, 0-5% of CaO, 0-5% of ZnO, 0-6% of ZrO2, and 0-5% of SrO+BaO, the value of (MgO+ZrO2+ZnO)/(MgO+ZrO2+ZnO+Al2O3) in terms of mass proportion being from 0.25 to 0.45. The above-mentioned strengthened glass can be produced by melting raw glass materials mixed together so as to result in the given glass composition, forming the melt into a sheet by an overflow downdraw process, and then conducting an ion exchange treatment to form a compression stress layer in the glass sheet surface.
    Type: Application
    Filed: June 3, 2008
    Publication date: April 8, 2010
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takashi Murata, Hiroki Yamazaki
  • Patent number: 7687420
    Abstract: The invention relates to a tempered glass comprising, in terms of mass percent, SiO2: 60 to 80%; Al2O3: 3 to 18%; B2O3: 0 to 7%; Li2O: 0.01 to 10%; Na2O: 4 to 16%; K2O: 0 to 15%; and R?O (wherein R?O indicates a total content of alkaline earth metal oxides): 0 to 5%, wherein a value of (Li2O+Al2O3)/(Na2O+K2O) in terms of molar ratio is within a range of 0.1 to 2, and wherein a surface of the tempered glass is treated to form a compressive stress layer.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: March 30, 2010
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 7687419
    Abstract: A glass substrate used as a substrate of an information recording medium such as a magnetic disk, magneto-optical disk, DVD, or MD, and a glass composition used to make such a glass substrate, contains the following glass ingredients: 40 to 70% by weight of SiO2; 1 to 20% by weight of Al2O3; 0 to 10% by weight, zero inclusive, of B2O3; SiO2+Al2O3+B2O3 accounting for 60 to 90% by weight; a total of 3.0 to 15% by weight of R2O compounds, where R=Li, Na, and K; a total of 2.0 to 15% by weight of R?O compounds, where R=Mg, and Zn; and a total of 1.0 to 20% by weight of MOx (TiO2+ZrO2+LnxOy), where LnxOy represents at least one compound selected from the group consisting of lanthanoid metal oxides, Y2O3, Nb2O5, and Ta2O5. Here, the following condition is fulfilled: 0.070<(total content of R?O compounds)/(SiO2+Al2O3+B2O3)<0.200.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: March 30, 2010
    Assignee: Konica Minolta Opto, Inc.
    Inventor: Hideki Kawai
  • Patent number: 7674736
    Abstract: The invention relates to a glass for dental applications which can be used as a glazing material of dental restorations and resists high temperatures, and thus does not tend to flow.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 9, 2010
    Assignee: Ivoclar Vivadent, AG
    Inventors: Diana Tauch, Harald Bürke, Volker M. Rheinberger
  • Patent number: 7670975
    Abstract: To provide an alkali free glass which is suitable as a glass substrate for LCD and has few defects of bubbles and an undissolved starting material, and a process for producing an alkali free glass which can readily lower the defects in bubbles and an undissolved starting material. An alkali free glass with a matrix composition comprising SiO2, Al2O3, B2O3, MgO, CaO, SrO and BaO and containing substantially no alkali metal oxide, of which the temperature at which the viscosity becomes 102 dPa·s, is at most 1,600° C. and which contains sulfur in an amount of from 0.001 to 0.1% as calculated as SO3, as represented by the mass percentage, per 100% of the total amount of the above matrix composition, and a process for producing a glass which comprises preparing a starting material and melting it so that a sulfate be incorporated to the starting material in an amount of from 0.01 to 5% as calculated as SO3, as represented by the mass percentage, per 100% of the total amount of the above matrix composition.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: March 2, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Suzuki, Manabu Nishizawa, Seiji Miyazaki, Junichiro Kase, Kei Maeda
  • Patent number: 7670976
    Abstract: The present invention relates to a glass substrate composition comprising SiO2 55˜70 wt %, Al2O3 0˜1 wt %, ZrO2 0.1˜5 wt %, Na2O 0.1˜5 wt %, K2O 7˜13 wt %, MgO 7˜14 wt %, CaO 0˜4 wt %, SrO 7˜12 wt % and SO3 0.01˜0.5 wt %. The glass substrate prepared by using the above composition shows less thermal deformation at a baking process under a high temperature since the strain point of the glass is at least 570° C., does not have such disadvantages as increase of fuel cost and short life cycle of refractories resulted from less than 1460° C. of melting point, and has 80˜95×10?7/° C. of thermal expansion coefficient in the temperature range of 50˜350° C. Therefore, the glass according to the present invention is suitable as a substrate.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 2, 2010
    Assignee: KCC Corporation
    Inventors: Jin Hyuk Lee, Si Moo Lee, Jae Wook Lee
  • Publication number: 20100047521
    Abstract: The invention relates to glass articles suitable for use as electronic device housing/enclosure or protective cover which comprise a glass material. Particularly, a housing/enclosure/cover comprising an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf, (6) a Young's Modulus ranging between about 50 to 100 GPa; (7) a thermal conductivity of less than 2.0 W/m° C., and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Inventors: Jaymin Amin, Matthew John Dejneka, Linda Ruth Pinckney, Katherine Rose Rossington, Robert Sabia
  • Patent number: 7666511
    Abstract: An alkali aluminosilicate glass that is chemically strengthened and has a down-drawable composition. The glass has a melting temperature less than about 1650° C. and a liquidus viscosity of at least 130 kpoise and, in one embodiment, greater than 250 kpoise. The glass undergoes ion exchange at relatively low temperatures to a depth of at least 30 ?m.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: February 23, 2010
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Sinue Gomez
  • Publication number: 20100040812
    Abstract: Flat glass composition comprising the following (expressed as percentages by weight): SiO2 60 75%; Al2O3 0 5%; Na2O 10 18%; K2O 0 5.5%; CaO 0 5%; MgO 0-2%; SO3 0 1%; Fe2O3 (total iron)>0.01%; TiO2 0-1% and one or both of: SrO 0-15%; BaO 0-15% with the proviso that the summed amount of SrO and BaO is greater than 4%. A preferred composition comprises: SiO2 65-74%; Al2O3 0-3%; Na2O 13 16%; K2O 0-2%; CaO 1-4.9%; MgO 0-2%; SO3 0-1%; Fe2O3 (total iron)>0.01%; TiO2 0 1%; BaO 4-10%; SrO 0-5%, wherein the summed amount of the alkaline earth metal constituents is in the range 10-13% and the summed amount of the alkali metal constituents is in the range 14-16%. The ferrous level of the glass may be greater than or equal to 28%, its performance in a thickness of 5 mm or less may be greater than or equal to 29 at LTA?70%, and greater than or equal to 27 at LTA?75%, and its liquidus temperature may be less than or equal to 980° C.
    Type: Application
    Filed: March 20, 2008
    Publication date: February 18, 2010
    Applicant: PILKINGTON GROUP LIMITED
    Inventors: John Buckett, Keith Haughey, Neil Mcsporran
  • Patent number: 7661277
    Abstract: As a jig material to use under plasma reaction for producing semiconductors, the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 16, 2010
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Tatsuhiro Sato, Nobumasa Yoshida, Mamoru Endo
  • Patent number: RE41127
    Abstract: An aluminosilicate glass having a composition consisting essentially of, as calculated in weight percent on an oxide basis, of 58-70% SiO2, 12-22% Al2O3, 3-15% B2O3, 2-12% CaO, 0-3% SrO, 0-3% BaO, 0-8% MgO, 10-25% MCSB (i.e., MgO+CaO+SrO+BaO), and SrO and BaO in combination being less than 3%.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: February 16, 2010
    Assignee: Corning Incorporated
    Inventor: Jeffrey T. Kohli