And Compound Containing Silicon-hydrogen Or Silicon-carbon Bond Patents (Class 502/116)
  • Patent number: 5244855
    Abstract: Catalyst components for the polymerization of olefins obtained by reacting a tetravalent titanium halide or halogen alcoholate and an electron-donor compound with a porous polymer support on which is supported a magnesium dihalide or a magnesium compound which does not contain Mg--C bonds and can be transformed into a dihalide, characterized in that the Mg content before and after the reaction with titanium compound ranges from 6 to 12% by weight.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: September 14, 1993
    Assignee: Himont Incorporated
    Inventors: Giampiero Morini, Enrico Albizzati
  • Patent number: 5244854
    Abstract: Catalyst components for the polymerization of olefins, obtained by reacting a tetravalent titanium halide or halogen alcoholate and an electron-donor compound with a solid comprising a porous metallic oxide containing hydroxyl groups on the surface, on which is supported a magnesium dihalide or a magnesium compound which does not contain Mg-C bonds and can be transformed into a dihalide, characterized in that the quantity of Mg supported on the oxide prior to the reaction with titanium compound, and present in the catalyst component after the reaction with the Ti compound, is from 5% to 12% weight with respect to the weight of the catalyst component.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: September 14, 1993
    Assignee: Himont Incorporated
    Inventors: Luciano Noristi, Antonio Monte
  • Patent number: 5244853
    Abstract: Catalyst components for the polymerization of an olefin, such as ethylene, are formed by reacting, in a single reaction step, an organomagnesium compound, an alkoxy silane, and a chlorinating reagent.
    Type: Grant
    Filed: July 27, 1992
    Date of Patent: September 14, 1993
    Assignee: Akzo N.V.
    Inventors: Bor-Ping E. Wang, Elliot I. Band
  • Patent number: 5238891
    Abstract: A method is disclosed for preparing an olefin polymerization catalyst of improved particle size from a solution of magnesium containing component and a transition metal containing component which is reacted with an organoaluminum halide compound. The improved particle size is provided by employing the organoaluminum halide compound in conjunction with a silicon compound, such as for example an alkyl silicate or a polysiloxane.
    Type: Grant
    Filed: June 15, 1989
    Date of Patent: August 24, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Nemesio D. Miro
  • Patent number: 5214114
    Abstract: A process for preparing an ethylene polymer which comprises polymerization of ethylene or ethylene and an .alpha.-olefin having 3 to 10 carbon atoms over a catalyst comprising the following components (A) and (B): (A) which is a solid component for a Ziegler catalyst obtained by bringing (2) into contact with (1) and bringing the contact product into contact with (3) and (4) wherein (1) is a solid catalyst component comprising (i)-(iii) where (i): MgX.sub.2, (ii): titanium tetraalkoxide and/or a polytitanate ester, (iii): a polymeric silicon compound, having a formula of ##STR1## R.sup.1 being a hydrocarbyl group, (2) is a halogenated Si compound; (3) is a halohydrocarbon; (4) is an organo-Al compound; and (B) is an organo-Al compound.An ethylene polymer having a moderately broad molecular weight distribution can be prepared in a high activity by use of the catalyst. The ethylene polymer is suited for the production of fibers or tapes.
    Type: Grant
    Filed: January 28, 1992
    Date of Patent: May 25, 1993
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Tadashi Takahashi, Junji Mayumi, Yoichi Maeda
  • Patent number: 5204304
    Abstract: A vanadium-containing catalyst is prepared as the product of admixing an inorganic oxide, inorganic phosphate or mixtures thereof, a zinc-containing composition, and a vanadium-containing composition. An auxiliary compound such as, for example, an aluminum halide compound may optionally be admixed. The catalyst may be combined with a co-catalyst such as an aluminum alkyl and, optionally, a halocarbon promotor to yield an olefin polymerization catalyst system. The resulting catalyst system exhibits high activity, excellent hydrogen response and produces a polymer having a narrow to broad molecular weight distribution with a bimodal profile. The catalyst is especially useful in ethylene homopolymerization and co-polymerization.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: April 20, 1993
    Assignee: Quantum Chemical Corporation
    Inventors: Chi-I Kuo, Michael W. Lynch
  • Patent number: 5192731
    Abstract: In accordance with the present invention, there are provided carrier-supported titanium catalyst components containing magnesium, aluminum, halogen and titanium as essential ingredients, which are obtained by a reaction of[I] a magnesium containing support obtained by previously bringing a support into contact with an organometallic compound of a metal of the Group II to IIIA of the periodic table having at least one hydrocarbon group attached directly to the metal atom or with a halogen containing compound, followed by contact with a magnesium compound in the liquid state having no reducing ability,[II] a reducing organometallic compound, and[III] a titanium compound in the liquid state, and processes for preparing the same and, at the same time, catalysts containing the above-mentioned catalyst components for use in preparing ethylene polymer and processes for preparing ethylene polymer using the catalyst for use in preparing ethylene polymer.
    Type: Grant
    Filed: October 23, 1991
    Date of Patent: March 9, 1993
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Kazumitsu Kawakita, Akinori Toyota
  • Patent number: 5182341
    Abstract: A method of polymerizing one or more 1-olefins using a catalyst system incorporating a solid catalyst component is disclosed wherein the catalyst component is prepared by contacting, in the presence of an inert liquid hydrocarbon, silica, a soluble organomagnesium compound, an SiCl.sub.4 magnesium fixing agent, an alcohol, TiCl.sub.4, and a carboxylic acid derivative, followed by extraction with a TiCl.sub.4 containing extraction liquid. The inventive catalyst system allows ready control of product molecular weight by control of hydrogen concentration in the reactor, and allows the production of high MI or MF polymers at high productivities.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: January 26, 1993
    Inventor: Albert P. Masino
  • Patent number: 5177043
    Abstract: This invention relates to a catalytic component for the polymerization of .alpha.-olefins and provides a catalytic component of magnesium support type capable of exhibiting a high stereoregularity while maintaining an improved strength as well as a high catalytic activity. The features thereof consist in a catalyst component for the polymerization of .alpha.-olefins obtained by contacting (A) a solid component comprising, as essential components, magnesium, titanium, a halogen and an electron-donating compound with (D) an olefin in the presence of (B) a trialkylaluminum and (C) a dimethoxy group-containing compound represented by the general formula R.sup.1 R.sup.2 Si(OCH.sub.3).sub.2 where R.sup.1 and R.sup.2 are, same or different, aliphatic hydrocarbon groups with 1 to 10 carbon atoms and having a volume, calculated by the quantum chemistry calculation, of 230 to 500 .ANG..sup.3 and an electron density of oxygen atoms in the methoxy group, calculated similarly, ranging from 0.685 to 0.800 A. U.
    Type: Grant
    Filed: March 22, 1991
    Date of Patent: January 5, 1993
    Assignee: Tonen Chemical Corporation
    Inventors: Naomi Koyama, Hiroyuki Furuhashi, Miyuki Usui, Tomoko Okano, Masahide Murata, Satoshi Ueki, Akira Nakano
  • Patent number: 5166280
    Abstract: An olefin polymerization catalyst comprising:(A) a solid catalyst component containing a trivalent titanium, which is represented by the composition formulaMg.sub.m Ti(OR).sub.n X.sub.p [ED].sub.q(wherein R is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen, ED is a electron donative compound, and m, n, p and q are each a number satisfying 1.ltoreq.m.ltoreq.51, 0<n.ltoreq.5, 5.ltoreq.p.ltoreq.106 and 0.2.ltoreq.q.ltoreq.2) obtained by reducing a titanium compound represented by the general formula Ti(OR.sup.1).sub.a X.sub.4-a (wherein R.sup.1 is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen atom and a is a number satisfying 0<a.ltoreq.
    Type: Grant
    Filed: September 6, 1991
    Date of Patent: November 24, 1992
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshihiro Miyoshi, Hiroyuki Shiraishi, Takeshi Ebara, Toshio Sasaki, Kiyoshi Kawai
  • Patent number: 5155078
    Abstract: In accordance with the present invention, there are provided carrier-supported titanium catalyst components containing magnesium, aluminum, halogen and titanium as essential ingredients, which are obtained by a reaction of[I] a magnesium containing support obtained by previously bringing a support into contact with an organometallic compound of a metal of the Group II to IIIA of the periodic table having at least one hydrocarbon group attached directly to the metal atom or with a halogen containing compound, followed by contact with a magnesium compound in the liquid state having no reducing ability,[II] a reducing organometallic compound, and[III] a titanium compound in the liquid state, and processes for preparing the same and, at the same time, catalysts containing the above-mentioned catalyst components for use in preparing ethylene polymer and processes for preparing ethylene polymer using the catalyst for use in preparing ethylene polymer.
    Type: Grant
    Filed: June 17, 1991
    Date of Patent: October 13, 1992
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Kazumitsu Kawakita, Akinori Toyota
  • Patent number: 5143880
    Abstract: A solid-catalyst component for use in the polymerization of .alpha.-olefins obtained byreducing a titanium compound represented by the following general formula:Ti(OR.sup.1).sub.n x.sub.4-nwherein R.sup.1 represents a hydrocarbon group having 1 to 20 carbon atoms, X represents a halogen atom and n represents a number satisyfing 0<n.ltoreq.4, with an organomagnesium compound in the presence of an organic silicon compound having Si--O bond to produce a solid product,treating the solid product with an ester compound,treating the ester-treated solid product with a mixture of an ether compound and titanium tetrachloride or with a mixture of an ether compound, titanium tetrachloride and an ester compound to obtain a trivalent titanium compound-containing solid catalyst precursor, andtreating the solid catalyst precursor with a small quantity of an olefin in the presence of an organoaluminum compound to obtain a solid catalyst component for use in the polymerization of .alpha.-olefins.
    Type: Grant
    Filed: March 11, 1991
    Date of Patent: September 1, 1992
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Takeshi Ebara, Kiyoshi Kawai
  • Patent number: 5132261
    Abstract: The present invention relates to a catalyst for the polymerization of olefins, and provides a catalyst component of magnesium support type which has a high catalytic activity as well as improved catalytic grain strength sufficient for practical use and which hardly deteriorates even after storage for a long time. The catalyst component is obtained by contacting(a) metallic magnesium with(b) a hydrocarbon represented by the general formula RX wherein R is a hydrocarbon group of 1 to 20 carbon atoms and X is a halogen atom, then contacting the resulting composition with(c) a compound represented by the general formula X.sup.1 nM(OR.sup.1).sub.m-n wherein X.sup.1 is a hydrogen atom, halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is a boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.gtoreq.0, and(d) a titanium alkoxide represented by the general formula Ti(OR.sup.2).sub.4 wherein R.sup.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: July 21, 1992
    Assignee: Tonen Corporation
    Inventors: Masahide Murata, Hiroyuki Furuhashi, Seizaburo Kanazawa, Teruo Yashiro, Masafumi Imai, Akira Nakano
  • Patent number: 5130283
    Abstract: According to the present invention, there is provided a catalyst component of metal oxide support type which has a high catalytic activity, that is, a little catalyst residue in a polymer, as well as improved catalytic grain strength sufficient for practical use and which hardly deteriorates even after storage for a long time. The catalyst component is obtained by contacting(a) a metal oxide with(b) a dihydrocarbyl magnesium, then contacting the resulting composition with(c) a compound represented by the general formula X.sup.1 .sub.n M(OR.sup.1).sub.m-n wherein X.sup.1 is a hydrogen atom, halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is a boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.gtoreq.0, and(d) a titanium alkoxide represented by the general formula Ti(OR.sup.2).sub.4 wherein R.sup.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: July 14, 1992
    Assignee: Tonen Corporation
    Inventors: Masahide Murata, Hiroyuki Furuhashi, Akira Nakano, Teruo Yashiro, Seizaburo Kanazawa, Masafumi Imai
  • Patent number: 5126302
    Abstract: A solid catalyst component, a method of making the same, a catalyst system incorporating the solid catalyst component, and a method of polymerizing one or more 1-olefins using the catalyst system are disclosed wherein the catalyst component is prepared by contacting, in the presence of an inert liquid hydrocarbon, silica, a soluble organomagnesium compound, an SiCl.sub.4 magnesium fixing agent, an alcohol, TiCl.sub.4, a carboxylic acid derivative, followed by extraction with a TiCl.sub.4 -containing extraction liquid. The inventive catalyst system allows ready control of product molecular weight by control of hydrogen concentration in the reactor, and allows the production of high MI or MF polymers at high productivities.
    Type: Grant
    Filed: April 30, 1990
    Date of Patent: June 30, 1992
    Assignee: Quantum Chemical Corporation
    Inventor: Albert P. Masino
  • Patent number: 5122490
    Abstract: A catalyst component for olefin polymerization composed of a solid component (IV) and capable of affording a supported type catalyst composed of large particles and having a sharp particle size distribution is provided,which solid component (IV) is obtained bystep A of reacting an organic Mg compound of a specified formula with a 1-20C saturated or unsaturated mono- or polyhydric alcohol C in the presence of CO.sub.
    Type: Grant
    Filed: August 1, 1991
    Date of Patent: June 16, 1992
    Assignee: Chisso Corporation
    Inventors: Toshihiro Uwai, Masami Tachibana, Teruaki Hayashida
  • Patent number: 5118648
    Abstract: Supported olefin, e.g., alpha-olefin, polymerization catalyst compositions, such as Ziegler-Natta catalysts, are modified by using porous, polymer particles having an average pore diameter of at least about 10 .ANG. as the catalyst support. The resulting catalyst composition is more active than refractory oxide-supported catalysts and it is not susceptible to deactivation by catalyst poisons, such as oxygen or water. Additionally, the polymer particles need not be calcined prior to the catalyst synthesis.
    Type: Grant
    Filed: July 9, 1990
    Date of Patent: June 2, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Allan B. Furtek, Binnur Z. Gunesin
  • Patent number: 5114896
    Abstract: This invention relates to a process for the production of a catalytic component for the polymerization of olefins, in particular, for the production of a catalytic component capable of exhibiting a high polymerization activity in the polymerization of olefins and giving a polymer containing less low molecular weight components in effective manner. This process is characterized by a process for the production of a catalytic component for the polymerization of olefins, which comprises contacting (a) metallic magnesium, (b) a halogenated hydrocarbon represented by the general formula RX wherein R is an alkyl group, ary group or cycloalkyl group having 1 to 20 carbon atoms and (c) a compound represented by the general formula X.sup.1.sub.n M(OR.sup.1).sub.m-n in which X.sup.1 is a hydrogen atom, a halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.
    Type: Grant
    Filed: April 29, 1991
    Date of Patent: May 19, 1992
    Assignee: Tonen Corporation
    Inventors: Teruo Yashiro, Seizaburo Kanazawa, Akira Nakano, Masahide Murata, Masafumi Imai
  • Patent number: 5112786
    Abstract: A catalyst for polymerization of olefin monomers, comprising Component (A) which is a solid catalytic compound obtained by subjecting at least the following three compounds to a contact reaction; Sub-component (i) which is a component for Ziegler catalysts comprising titanium, magnesium and a halogen; Sub-component (ii) which is a silicon compound represented by the formula R.sup.1 .sub.4-n SiX.sub.n wherein R.sup.1 is a hydrocarbyl group having 1 to 20 carbon atoms, X is a halogen, and n is a number in the range of 0<n.ltoreq.4, and Sub-component (iii) which is divinylbenzene, the amount of said Sub-component (iii) polymerized in the course of the contact reaction being from 0.01 to 10 g per 1 g of the Sub-component (i), and Component (B) which is an organoaluminum compound.When polymerizing .alpha.
    Type: Grant
    Filed: June 19, 1991
    Date of Patent: May 12, 1992
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventor: Takashi Fujita
  • Patent number: 5112785
    Abstract: The method of forming a catalytic component for use in the polymerization of ethylene or a copolymer of ethylene and a C.sub.3 to C.sub.12 alpha olefin in a gas-phase comprising impregnating a porous metal oxide support with at least one titanium compound, magnesium compound, and chlorine compound, and prepolymerizing ethylene or a copolymer of ethylene and a C.sub.3 to C.sub.12 alpha olefin, a least partially in suspension, in the presence of said porous metal oxide support and at least one alkylaluminum compound until a degree of prepolymerization is reached which is suitable for the subsequent gas-phase of fluidized bed polymerization, and the method of polymerizing olefins utilizing the catalysts formed by the prepolymerization.
    Type: Grant
    Filed: October 30, 1989
    Date of Patent: May 12, 1992
    Assignee: Atochem
    Inventors: Claude Brun, Auguste Cheux, Eric Barthel
  • Patent number: 5084429
    Abstract: A catalyst for use in polymerization of olefins which comprises a carrier mainly composed of a magnesium compound precipitated from a solution and a catalytic component supported on the carrier and selected from titanium halides, vanadyl halides and vanadium halides is described. The catalyst is obtained by a process which comprises: (A) mixing (a) at least one magnesium compound with (c) a saturated or unsaturated monohydric or polyhydric alcohol for reaction in dissolved state in the presence of (b) carbon dioxide in an inert hydrocarbon solvent to obtain component (A); (B) subjecting the component (A) to mixing and reaction with (d) a titanium and/or a vanadyl halide and/or a vanadium halide of the general formula, VX.sub.r (OR.sup.8).sub.4-r, and also with (e) at least one boron compound, Si compound and/or Siloxane compound thereby obtaining solid product (I); (C) reacting the solid product (I) with (f) a cyclic ether with or without R.sup.
    Type: Grant
    Filed: August 7, 1990
    Date of Patent: January 28, 1992
    Assignee: Chisso Corporation
    Inventors: Masami Tachibana, Toshihiro Uwai, Tetsuya Matsukawa, Teruaki Hayashida
  • Patent number: 5077250
    Abstract: An olefin polymerization catalyst comprising:(A) a solid catalyst component containing a trivalent titanium, which is represented by the composition formulaMg.sub.m Ti(OR).sub.n X.sub.p [ED].sub.q(wherein R is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen, ED is a electron donative compound, and m, n, p and q are each a number satisfying 1.ltoreq.m.ltoreq.51, 0<n.ltoreq.5, 5.ltoreq.p.ltoreq.106 and 0.2.ltoreq.q.ltoreq.2) obtained by reducing a titanium compound represented by the general formula Ti(OR.sup.1).sub.a X.sub.4-a (wherein R.sup.1 is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen atom and a is a number satisfying 0<a.ltoreq.
    Type: Grant
    Filed: April 24, 1990
    Date of Patent: December 31, 1991
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshihiro Miyoshi, Hiroyuki Shiraishi, Takeshi Ebara, Toshio Sasaki, Kiyoshi Kawai
  • Patent number: 5075270
    Abstract: A process for preparing a transition metal component for a catalyst system wherein a specified aluminosiloxane derivative is reacted with a monohalopenated, alkylated, or alkoxylated compound of magnesium and the reaction product is chlorinated and reacted with a transition metal; a catalyst system comprising such transition metal component and a cocatalyst selected from organometallic compounds of a metal of Groups I through III of the Periodic Table; and the process of synthesizing olefin homopolymers and copolymers utilizing such catalyst system.
    Type: Grant
    Filed: June 9, 1986
    Date of Patent: December 24, 1991
    Assignee: Atochem
    Inventors: Claude Brun, Jean-Loup Lacombe
  • Patent number: 5075396
    Abstract: A process for producing a polymer or copolymer of an olefin which comprises polymerizing or copolymerizing at least one olefin with or without a diolefin in the presence of a catalyst composed of (A) a magnesium-containing solid titanium catalyst component containing magnesium, titanium, a halogen and an electron donor as essential ingredients and (B) an organoaluminum compound catalyst component; characterized in that(1) said catalyst further comprises (C) an organic silicon compound catalyst component having an Si--O--C or Si--N--C bond, and(2) said electron donor in the catalyst component (A) is a cyclic mono- or poly-ester such as diethyl furane-3,4-dicarboxylate, di-n-butyl 3,4-dihydro-2H-pyrane-5,6-dicarboxylate, di-isobutyl pyrrole-2,3-dicarboxylic, di-n-butyl thiophene-2,3-dicarboxylate, n-octyl pyrrolidine-2,3-dicarboxylate, and so on.
    Type: Grant
    Filed: March 31, 1989
    Date of Patent: December 24, 1991
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Norio Kashiwa, Akinori Toyota, Mamoru Kioka
  • Patent number: 5064799
    Abstract: Disclosed are catalyst components for the polymerization of olefins comprising the product of the reaction of a tetravalent titanium halide or alkoxy titanium halide and an electron-donor compound with a solid obtained by the reaction of a metal oxide containing surface hydroxyls, preferably together with chemically uncombined water, with an organometallic magnesium compound used in a quantity which does not cause reduction of the titanium in the subsequent reaction with the tetravalent titanium compound.
    Type: Grant
    Filed: January 4, 1991
    Date of Patent: November 12, 1991
    Assignee: Himont Incorporated
    Inventors: Antonio Monte, Luciano Noristi
  • Patent number: 5063188
    Abstract: A catalyst component, adapted for use in the polymerization and copolymerization of ethylene, is formed by reaction of an organomagnesium compound and a tetraaalkyl silicate, contact of the resulting product with a chlorinating reagent, and treatment of the product from the previous step with liquid titanium halide.
    Type: Grant
    Filed: April 6, 1990
    Date of Patent: November 5, 1991
    Assignee: Texas Alkyls, Inc.
    Inventors: Dennis B. Malpass, Bor-Ping E. Wang
  • Patent number: 5061667
    Abstract: A catalytic component for olefin polymerization, produced by a process which comprises causing (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl group, an aryl group, or a cycloalkyl group each having 1 to 20 carbon atoms and X for a halogen atom], and (C) a compound represented by the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M for a boron, carbon, aluminum, silicon, or phorphorus atom, R.sup.1 stands for a hydrocarbon group having 1 to 20 carbon atoms, m for the valency of M, and m>n.gtoreq.
    Type: Grant
    Filed: August 29, 1990
    Date of Patent: October 29, 1991
    Assignee: Tog Nenryo Kogyo KK (Tonen Corporation)
    Inventors: Masahide Murata, Seizaburo Kanazawa, Hiroyuki Furuhashi, Kouji Maruyama, Masafumi Imai, Hiroshi Ueno
  • Patent number: 5057475
    Abstract: The invention is a supported catalyst system including an inert support material, a Group IV B transition metal component and an alumoxane component which may be employed to polymerize olefins to produce a high molecular weight polymer.
    Type: Grant
    Filed: September 13, 1990
    Date of Patent: October 15, 1991
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Jo Ann M. Canich, Gary F. Licciardi
  • Patent number: 5036147
    Abstract: A solid catalyst component and catalyst system, and method for the homopolymerization of propylene or copolymerization of a major amount of propylene with one or more other 1-olefins are disclosed. The solid catalyst component is used in combination with a complex of an alkyl aluminum cocatalyst compound and an electron donor stereoregulating agent. The solid catalyst component is prepared by reacting a silica-containing support material with a magnesium silylamide compound, an electron donor stereoregulating agent, and a halogenated tetravalent titanium compound.
    Type: Grant
    Filed: September 11, 1990
    Date of Patent: July 30, 1991
    Assignee: Quantum Chemical Corporation
    Inventors: Craig C. Meverden, Thomas J. Pullukat
  • Patent number: 5028671
    Abstract: A catalyst formed from(A) a solid titanium catalyst component containing magnesium, titanium, halogen and a polycarboxylic acid ester as essential ingredients and being obtained by contacting a magnesium compound, a titanium compound and a polycarboxylic acid ester,(B) an organoaluminum compound, and(C) an organosilicon compound represented by the following formula (1)SiR.sup.1 R.sup.2 (OR.sup.3).sub.2 (1)wherein R.sup.1 is selected from the class consisting of linear alkyl groups having at least 3 carbon atoms and arylalkyl groups in which the alkyl moiety has a secondary or tertiary alpha-carbon atom, R.sup.2 is selected from the class consisting of alkyl groups and arylalkyl groups in which the alkyl moiety has a secondary or tertiary alpha-carbon atom, and R.sup.3 is a hydrocarbon group, with the proviso that when R.sup.1 is a linear alkyl group having at least 3 carbon atoms and R.sup.2 is an alkyl group, the alkyl group for R.sup.
    Type: Grant
    Filed: November 1, 1989
    Date of Patent: July 2, 1991
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Norio Kashiwa
  • Patent number: 5023223
    Abstract: A process for producing a highly stereospecific .alpha.-olefin polymer which comprises homopolymerizing or copolymerizing an .alpha.-olefin or copolymerizing an .alpha.-olefin with ethylene by the use of a catalyst system comprising:(A) a solid catalyst component containing a trivalent titanium compound obtained by reducing a titanium compound represented by the following general formula:Ti(OR.sup.1).sub.n X.sub.4-n(R.sup.1 represents a hydrocarbon group having 1 to 20 carbon atoms, X represents a halogen atom and n represents a number satisfying 0<n.ltoreq.
    Type: Grant
    Filed: December 11, 1989
    Date of Patent: June 11, 1991
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takeshi Ebara, Toshio Sasaki, Kiyoshi Kawai
  • Patent number: 5001099
    Abstract: The present invention disclosure is directed to a catalyst comprising the reaction product of:(a) a silicon-containing compound having the structural formula R.sub.n-4 SiX.sub.n, where R is C.sub.1 -C.sub.10 hydrocarbyl; X is halogen; and n is an integer of 1 to 4;(b) a magnesiumdialkyl having the structural formula R.sup.1 R.sup.2 Mg, where R.sup.1 and R.sup.2 are the same or different and are C.sub.2 -C.sub.10 alkyl;(c) an alcohol having the structural formula R.sup.3 OH, where R.sup.3 is C.sub.1 -C.sub.10 hydrocarbyl;(d) a halide-containing metal compound, said metal selected from the group consisting of titanium, zirconium and vanadium;(e) an aluminum alkoxide having the structural formula A1(OR.sup.5).sub.3, where R.sup.5 is C.sub.2 -C.sub.
    Type: Grant
    Filed: October 25, 1989
    Date of Patent: March 19, 1991
    Assignee: Quantum Chemical Corporation
    Inventor: Javan Shelly
  • Patent number: 4983561
    Abstract: A process for producing a trivalent titanium compound-containing solid catalyst for use in the polymerization of olefins which comprises treating, with an ester compound, a solid product obtained by reducing a titanium compound represented by the following general formula: ##STR1## (R.sup.1 represents hydrocarbon group having 1 to 20 carbon atoms, X represents halogen atom, and n represents a number satisfying 0<n.ltoreq.4) with an organomagnesium compound in the presence of an organic silicon compound having Si--O bond, and thereafter treating it with a mixture of an ester compound and titanium tetrachloride.
    Type: Grant
    Filed: September 12, 1989
    Date of Patent: January 8, 1991
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Eiji Sogabe, Takeshi Ebara
  • Patent number: 4981826
    Abstract: Described is a magnesium-transition metal containing catalyst component, comprising a solid reaction product obtained by treating a solid support material in an inert solvent in any order with (A) a halogenated silane compound, (B) an alkoxy-containing magnesium compound, (C) and acyl halide, (D) at least one transition metal compound of a Group IVb-VIb or VIII metal, and optionally (E) treating the magnesium-transition metal containing product with an organometallic compound of a Group IIa, IIb, or IIIa metal. The magnesium-transition metal containing catalyst component, when employed with known Ziegler cocatalyst, provides a catalyst system which have very high catalytic activities for production of polyolefin of high bulk density. The polymerization kinetics of the catalyst system is controllable as a function of the reagent molar ratios selected for production of the magnesium-transition metal containing catalyst component.
    Type: Grant
    Filed: November 17, 1989
    Date of Patent: January 1, 1991
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Anthony N. Speca
  • Patent number: 4972034
    Abstract: A catalyst for the polymerization of olefins comprising a combination of a solid catalyst component (A) comprising a solid catalytic complex (i) containing titanium, magnesium and a halogen as the essential ingredients with an organoaluminium compound (B), wherein said solid catalyst component (A) is obtained by bringing the following ingredients (ii) and (iii) in contact with said solid catalytic complex (i):Ingredient (ii): a silicon compound represented by the general formula:R.sub.m.sup.1 X.sub.n Si(OR.sup.2).sub.4-m-nwherein R.sup.1 and R.sup.2 each stand for a hydrocarbyl residue, X denotes a halogen, and m and n are such that 0.ltoreq.m.ltoreq.3 and 0.ltoreq.n.ltoreq.3 are satisfied on condition that 0.ltoreq.m+n.ltoreq.3, andIngredient (iii): an organometallic compound selected from the group consisting of organozinc compounds and organomagnesium compounds. The catalyst makes it possible to eliminate what is called "outside electron donor" as a component for making up a final catalyst system.
    Type: Grant
    Filed: August 1, 1989
    Date of Patent: November 20, 1990
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Mitsuyuki Matsuura, Takashi Fujita
  • Patent number: 4968653
    Abstract: A solid catalyst component and catalyst system, and method for the homopolymerization of propylene or copolymerization of a major amount of propylene with one or more other 1-olefins are disclosed. The solid catalyst component is used in combination with a complex of an alkyl aluminum cocatalyst compound and an electron donor stereoregulating agent. The solid catalyst component is prepared by reacting a silica-containing support material with a magnesium silylamide compound, an electron donor stereoregulating agent, and a halogenated tetravalent titanium compound.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: November 6, 1990
    Assignee: Quantum Chemical Corporation
    Inventors: Craig C. Meverden, Thomas J. Pullukat
  • Patent number: 4960743
    Abstract: A method for the production of a catalyst carrier for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X stands for a halogen atom], and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M stands for a boron, carbon, aluminum, silicon, or phosphorus atom, R.sup.1 stands for a hydrocarbon group having 1 to 20 carbon atoms, and m stands for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied], to contact (D) a halogen-containing alcohol.
    Type: Grant
    Filed: November 18, 1988
    Date of Patent: October 2, 1990
    Assignee: Toa Nenryo Kogyo K.K.
    Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno
  • Patent number: 4950630
    Abstract: A method for the production of a catalyst component for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X stands for a halogen atom], and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M stands for a boron, carbon, aluminum, silicon, or phosphorus atom, R.sup.1 stands for a hydrocarbon group having 1 to 20 carbon atoms, and m stands for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied], to contact (d) a halogen-containing alcohol and then contact (E) an electron donor type compound and (F) a titanium compound.
    Type: Grant
    Filed: November 18, 1988
    Date of Patent: August 21, 1990
    Assignee: Toa Nenryo Kogyo, K.K.
    Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno
  • Patent number: 4940682
    Abstract: A solid catalyst component for olefin polymerization which comprises a catalyst component comprising at least titanium and chlorine fixed onto a porous substance of which the pore volume, at a pore radius in a range of from 200 to 2,000 .ANG., is 0.3 cc/g or more, said pore volume is 35% or more of the pore volume at a pore radius in a range of from 35 to 75,000 .ANG., the average particle diameter is from 5 to 300 .mu.m, the geometrical standard deviation of the particle size distribution is 2 or less and the solubility in toluene at 100.degree. C. is 30 wt. % or less.
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: July 10, 1990
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Takeshi Ebara, Kiyoshi Kawai
  • Patent number: 4916099
    Abstract: A solid catalyst component for olefin copolymerization containing trivalent titanium compound, which is obtained by reducing a titanium compound represented by the general formula Ti(OR.sup.1).sub.n X.sub.4-n (wherein R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, X is a halogen atom, and n is a number satisfying 0<n.ltoreq.4) with an organomagnesium compound in the presence of a porous carrier having a pore volume of, at pore radius of 50 to 5,000 .ANG., at least 0.2 ml/g, or in the presence of an organosilicon compound having at least one Si-O bond and the porous carrier to obtain a solid product, treating the solid product with a mixture of an ether compound and titanium tetrachloride, a catalyst system for olefin copolymerization comprising the above-mentioned solid catalyst component and an organoaluminum compound, as well as a process for olefin copolymerization using said catalyst system.
    Type: Grant
    Filed: August 29, 1988
    Date of Patent: April 10, 1990
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Yoshihiro Miyoshi, Takeshi Ebara, Kiyoshi Kawai
  • Patent number: 4900706
    Abstract: A solid catalyst component for .alpha.-olefin polymerization containing as catalyst components at least titanium, magnesium and chlorine which are impregnated into an organic porous polymer carrier having a mean particle diameter of 5 to 1,000 .mu.m and a pore volume of 0.1 ml/g or above at a pore radius of 100 to 5,000 .ANG., a catalyst system comprising at least said solid catalyst component (A) and an organoaluminum compound (B), as well as a process for producing .alpha.-olefin polymers using said catalyst system.
    Type: Grant
    Filed: March 11, 1988
    Date of Patent: February 13, 1990
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Takeshi Ebara, Hiroyuki Kora, Kiyoshi Kawai, Mituharu Yamasaki, Syozo Kawamata
  • Patent number: 4886770
    Abstract: Catalysts for the preparation of copolymers of ethylene and/or alpha-olefins and optionally dienes, are obtained by reacting an Al-alkyl with a solid catalytic component comprising:(A) a magnesium compound containing at least an Mg-halogen bond;(B) a halogenated compound of at least partly trivalent Ti or V, containing at least a Ti-OR or V-OR bond, wherein the Mg/Ti(V), halogen/Ti(V), halogen/Mg and OR/Ti(V) atomic ratios are within determined ranges; and(C) an electron-donor compound.Elastomeric copolymers endowed with improved tension set values are obtained with said catalysts.
    Type: Grant
    Filed: September 30, 1987
    Date of Patent: December 12, 1989
    Assignee: Ausimont
    Inventors: Illaro Cuffiani, Roberto Fabbri, Gian F. Margelli, Umberto Zucchini
  • Patent number: 4870043
    Abstract: A catalyst for the polymerization of olefins cmprising a combination of a solid catalyst component (A) comprising a solid catalytic complex (i) containing titanium, magnesium and a halogen as the essential ingredients with an organoaluminium compound (B), wherein said solid catalyst component (A) is obtained by bringing the following ingredients (ii) and (iii) in contact with said solid catalytic complex (i):Ingredient (ii): a silicon compound represented by the general formula:R.sub.m.sup.1 X.sub.n Si(OR.sup.2).sub.4-m-nwherein R.sup.1 and R.sup.2 each stand for a hydrocarbyl residue, X denotes a halogen, and m and n are such that 0.ltoreq.m.ltoreq.3 and 0.ltoreq.n.ltoreq.3 are satisfied on condition that 0.ltoreq.m.ltoreq.n.ltoreq.3, andIngredient (iii): an organometallic compound selected from the group consisting of organozinc compounds and organomagnesium compounds. The catalyst makes it possible to eliminate what is called "outside electron donor" as a component for making up a final catalyst system.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: September 26, 1989
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Mitsuyuki Matsuura, Takashi Fujita
  • Patent number: 4826794
    Abstract: Catalyst system, suitable for the (co)polymerization of ethylene and optionally minor amounts of 1-alkenes and/or dienes at such temperatures that the copolymer formed goes into solution, to be prepared by combining at least two components A and B, which components comprise:A. one or more magnesium compounds, one or more aluminium compounds, one or more transition metal compounds and optionally one or more halogen compounds, in such amounts that the atomic ratio of halogen to magnesium is at least 2, the atomic ratio of aluminium to transition metal is at least 3, the atomic ratio of aluminium to magnesium is at least 1, and the atomic ratio of magnesium to transition metal is at least 0.5,B. one or more organoaluminium compounds of the general formula R.sub.m.sup.1 Al X.sup.1.sub.3-m, where the symbols R.sup.1 are equal or different and represent a hydrocarbon residue with 1-20 carbon atoms and the symbols X.sup.1 are equal or different and represent a hydrogen atom, a group of the general formula --NR.sup.
    Type: Grant
    Filed: February 10, 1988
    Date of Patent: May 2, 1989
    Assignee: Stamicarbon B.V.
    Inventors: Luc M. C. Coosemans, Frans J. P. G. van den Bosch
  • Patent number: 4822763
    Abstract: A catalyst component for polymerization of olefin, comprising a contact product of a component (A) which is a solid component containing titanium having at least one OR.sup.1 group (where R.sup.1 represents a hydrocarbon residue) and magnesium and a halogen as the essential components; a component (B) which is an acid halide compound; a component (C) which is a compound having an OR.sup.2 group (where R.sup.2 represents a hydrocarbon residue or hydrogen atom); and a component (D) which is a halide compound of silicon. When an olefin is polymerized by use of this as the transition metal component of a Ziegler type catalyst, an olefin polymer with high activity and high I.I and excellent polymer properties can be obtained.
    Type: Grant
    Filed: June 18, 1987
    Date of Patent: April 18, 1989
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Mitsuyuki Matsuura, Takashi Fujita
  • Patent number: 4814312
    Abstract: A method for the production of a catalyst component for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X for a halogen atom], and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M for a boron, carbon, silicon, aluminum, or phosphorus atom, R.sup.1 for a hydrocarbon group having 1 to 20 carbon atoms, and m for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied], to contact (D) a halogen-containing alcohol and then contact (E) an electron donor type compound and (F) a titanium compound.
    Type: Grant
    Filed: December 14, 1987
    Date of Patent: March 21, 1989
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno
  • Patent number: 4814311
    Abstract: A method for the production of a catalyst component for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX, wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X for a halogen atom, and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n, wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M for a boron, carbon, silicon, aluminum, or phosphorus atom, R.sup.1 for a hydrocarbon group having 1 to 20 carbon atoms, and m for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied, to contact (D) a halogen-containing alcohol and then contact (E) a titanium compound.
    Type: Grant
    Filed: December 14, 1987
    Date of Patent: March 21, 1989
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno
  • Patent number: 4814313
    Abstract: A method for the production of a catalyst carrier for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X for a halogen atom, and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M for a boron, carbon, silicon, aluminum, or phosphorus atom, R.sup.1 for a hydrocarbon group having 1 to 20 carbon atoms, and m for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied, to contact (D) a halogen-containing alcohol.
    Type: Grant
    Filed: December 14, 1987
    Date of Patent: March 21, 1989
    Assignee: TOA Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno
  • Patent number: 4806433
    Abstract: A solid catalyst component containing a trivalent titanium compound, obtained by reducing a titanium compound represented by the general formula Ti(OR.sup.1).sub.n X.sub.4-n (wherein R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, X is a halogen atom, and n is a number satisfying 0<n.ltoreq.4) with an organomagnesium compound in the presence of an alcohol compound and/or a phenol compound to obtain a solid product and then treating the solid product with a mixture of an ether compound and titanium tetrachloride; a catalyst system comprising:(A) said solid catalyst component, and(B) an organoaluminum compound; and a process for producing an olefin polymer, which comprises homopolymerizing an olefin or copolymerizing olefins using said catalyst system.
    Type: Grant
    Filed: May 11, 1987
    Date of Patent: February 21, 1989
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Takeshi Ebera, Kiyoshi Kawai, Akinobu Shiga
  • Patent number: 4771023
    Abstract: Olefin polymers are produced by a process which comprises homopolymerizing or copolymerizing olefins in the presence of a catalyst system comprising:(A) a solid catalyst component containing a trivalent titanium compound, which is obtained by reducing a titanium compound represented by the general formula Ti(OR.sup.1).sub.n X.sub.4-n (wherein R.sup.1 is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen atom and n is a number satisfying 0<n.ltoreq.4) with an organo magnesium compound and then treating the resulting solid product with a mixture of an ether compound and titanium tetrachloride, and(B) an organo aluminum compound.The above-mentioned reducing of a titanium compound with an organo magnesium compound may be performed in the presence of an organo silicon compound having Si--O bonds.
    Type: Grant
    Filed: June 11, 1986
    Date of Patent: September 13, 1988
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Masaaki Katao, Kiyoshi Kawai, Akinobu Shiga