Component B Metal Is Other Than Titanium Or Vanadium Patents (Class 502/117)
  • Patent number: 8461365
    Abstract: A metallocene complex by which high uptake efficiency of ethylene and/or ?-olefin can be obtained compared with the conventional metallocene catalyst, and robber component having high molecular weight can be polymerized, and polymerization method of olefin. Metallocene complex (metallocene complex having furyl or thienyl group in which substituent exists at 5-position of indenyl ring, and substituent may exist at 2-position of indenyl ring, and the like) represented by the general formula [II], the catalyst for olefin polymerization characterized by comprising said metallocene complex, and polymerization method of olefin characterized that polymerization or copolymerization of olefin is carried out using said polymerization catalyst for olefin, and the like.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: June 11, 2013
    Assignee: Japan Polypropylene Corporation
    Inventors: Masato Nakano, Hideshi Uchino, Naoshi Iwama, Masami Kashimoto, Tomohiro Kato
  • Patent number: 8461280
    Abstract: A multimodal linear low density polyethylene polymer having a final density of 900 to 940 kg/m3, and containing at least one ?-olefin comonomer in addition to ethylene comprising: (A) 30 to 60 wt % of a lower molecular weight component being an ethylene homopolymer or a copolymer of ethylene and at least one ?-olefin; and (B) 70 to 40 wt % of a higher molecular weight component being a copolymer of ethylene and at least one ?-olefin, said ?-olefin being the same or different from any ?-olefin used in component (A) but with the proviso that both components (A) and (B) are not polymers of ethylene and butane alone; wherein the multimodal LLDPE has a dart drop of at least 700 g; and wherein components (A) and (B) are obtainable using a Ziegler-Natta catalyst.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: June 11, 2013
    Assignee: Borealis Technology Oy
    Inventors: Virginie Eriksson, Marjo Vaananen, Markku Vahteri, Thomas Garoff, Petri Rekonen, Jari Hatonen, Siw Bodil Fredriksen, Katrin Nord-Varhaug, Marit Seim, Jorunn Nilsen, Irene Helland
  • Publication number: 20130144024
    Abstract: Disclosed herein is a method for separating from the reactor effluent of an olefin oligomerization procedure those catalyst materials and polymeric by-products which can cause difficulties in the downstream processing of such effluent. Polymer by-products and catalyst in the effluent are separated from reaction products by flash vaporization utilizing an in-situ hot solvent which is contacted with the effluent and serves as the heating medium to promote this flash vaporization step. Subsequent processing of a liquid portion of the effluent which is left after flash vaporization involves recovery of catalyst and polymeric by-products therefrom in a steam stripping vessel. Also disclosed is a multiple reactor system which can be used for continuous trimerization of ethylene to 1-hexene while at the same time washing polymeric by-products from one of the reactors in the series using a wash oil solvent.
    Type: Application
    Filed: March 9, 2010
    Publication date: June 6, 2013
    Inventors: James R. Lattner, Michael W. Weber, Jimmy L. Tardy, Howard G. Large, Peter N. Loezos, Randy L. Foster, Jason D. Davis
  • Patent number: 8455386
    Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: June 4, 2013
    Assignee: Total Research & Technology Feluy
    Inventor: Abbas Razavi
  • Publication number: 20130116113
    Abstract: Provided are a catalyst composition comprising a main catalyst (A) and a promoter (B), wherein the main catalyst (A) is a complex represented by Formula (1): MLnK1xK2yK3z ??(1) (wherein M is one transition metal selected from groups 8 to 10 elements; L is a cyclopentadienyl base ligand containing; K1 to K3 are anionic or neutral ligands which are different from each other; n is an integer of 0 to 2; x, y and z each are an integer including 0, and a sum thereof is 1 to 7); and the promoter (B) is a compound (a) reacted with the main catalyst (A) to form a cationic compound, used for a high molecular weight addition copolymer of a norbornene compound having a polar group, a process for producing the copolymer using the above catalyst composition, and a film of the above copolymer.
    Type: Application
    Filed: July 25, 2011
    Publication date: May 9, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Shojiro Kaita, Olivier Tardif
  • Publication number: 20130102745
    Abstract: The present invention provides a catalyst composition and a method for producing an olefin polymer using the catalyst composition. The catalyst composition is prepared by bringing (A) a transition metal compound, (B) a solid boron compound capable of forming an ion pair with the component (A), (C) an organometallic compound and (D) a compound represented by the following general formula (XIV) and/or the following general formula (XV) into contact with each other in a hydrocarbon solvent, and enables a high catalyst concentration. Z5R14R15??(XIV) Z6R14R15R16??(XV) [In the formulae, Z5 represents an oxygen atom, etc.; Z6 represents a nitrogen atom, etc.; R14 to R16 each independently represent an organic group, and at least one of those organic groups is an organic group having at least 3 carbon atoms, and R14 to R16 may bond to each other to form a ring.
    Type: Application
    Filed: May 25, 2011
    Publication date: April 25, 2013
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Minoru Yabukami, Masami Kanamaru, Takenori Fujimura, Yutaka Minami
  • Publication number: 20130085060
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 4, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: CHEVRON PHILLIPS CHEMICAL COMPANY LP
  • Publication number: 20130079478
    Abstract: The invention relates to a new catalyst component for the polymerization of olefins comprising a compound of formula CyLMZp, wherein M is a Group 4-6 metal, Z is an anionic ligand, p is the number of anionic ligands, Cy is a mono- or poly-substituted cyclopentadienyl-type ligand and L is a guanidinate ligand of the formula wherein: each A is independently selected from nitrogen or phosphorus and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals. The invention also relates to a catalyst system for the polymerization of olefins and a process for the polymerization of at least one olefin having 2 to 20 carbon atoms.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 28, 2013
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Alexandra LeBlanc
  • Publication number: 20130066128
    Abstract: The present invention describes a novel catalytic composition comprising at least one nickel complex, said complex being obtained from a mixture comprising at least one nickel precursor A with at least one imino-imidazole ligand B and a method of oligomerization of olefins using said catalytic composition.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 14, 2013
    Applicant: IFP Energies nouvelles
    Inventors: Pierre-Alain BREUIL, Adrien BOUDIER, Lionel MAGNA, Helene OLIVIER-BOURBIGOU
  • Patent number: 8394902
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 12, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Renuka N. Ganesh, Dmitry V. Uborsky, Ilya S. Borisov, Ivan V. Pruss, Alexander Z. Voskoboynikov
  • Publication number: 20130059991
    Abstract: A stereoselective olefin polymerization catalyst contains a complex represented by Formula (1): wherein n is 2 or 3; R1 and R2 are independently an optionally substituted alkyl group or a halogen atom; L is a ligand represented by CH2R3, a halogen atom, OR4, or NR5R6; R3 is a hydrogen atom, an aromatic group, or a trialkylsilyl group; R4 is a lower alkyl group having 1 to 6 carbon atoms; and R5 and R6 are independently a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms. A method for manufacturing stereoselective polyolefin, includes polymerizing an olefin in the presence of the catalyst. The present invention provides a catalyst which enables highly isoselective polymerization generating a polymer having significantly high molecular weight and also can prepare stereoselective polyolefin with a narrow dispersity (Mw/Mn) or with a sharp molecular weight distribution, and provides a method for manufacturing stereoselective polyolefin with the catalyst.
    Type: Application
    Filed: February 10, 2011
    Publication date: March 7, 2013
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, NATIONAL UNIVERSITY CORPORATION SAITAMA UNIVERSITY
    Inventors: Akihiko Ishii, Norio Nakata, Tomoyuki Toda, Tsukasa Matsuo
  • Publication number: 20130053523
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.
    Type: Application
    Filed: October 30, 2012
    Publication date: February 28, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Chevron Phillips Chemical Company LP
  • Patent number: 8383754
    Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: February 26, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
  • Publication number: 20130035463
    Abstract: Catalyst systems and methods for making and using the same. The catalyst system can include a single site catalyst compound, a support comprising fluorinated alumina, and an aluminoxane. The aluminoxane can be present in an amount of about 10 mmol or less per gram of the support.
    Type: Application
    Filed: February 18, 2011
    Publication date: February 7, 2013
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Kevin J. Cann, C. Jeff Harlan, Wesley R. Mariott, Lixin Sun, Daniel P. Zilker, JR., F. David Hussein, Phuong A. Cao, John H. Moorhouse, Mark G. Goode
  • Publication number: 20130035462
    Abstract: A catalyst for homopolymerization of ethylene or copolymerization of ethylene and an ?-olefin comprises a complex represented by Formula (1): wherein n is 2 or 3; R1 and R2 are independently an optionally substituted alkyl group or a halogen atom; L is a ligand represented by CH2R3, a halogen atom, OR4, or NR5R6; R3 is a hydrogen atom, an aromatic group, or a trialkylsilyl group; R4 is a lower alkyl group having 1 to 6 carbon atoms; and R5 and R6 are independently a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms. A method for manufacturing an ethylenic polymer involves homopolymerization of ethylene or copolymerization of ethylene and an ?-olefin in the presence of the catalyst. The present invention provides a highly active tetradentate post-metallocene complex for ethylenic polymerization and a method for manufacturing the ethylenic polymer using the catalyst containing the complex.
    Type: Application
    Filed: February 10, 2011
    Publication date: February 7, 2013
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, NATIONAL UNIVERSITY CORPORATION SAITAMA UNIVERSITY
    Inventors: Akihiko Ishi, Norio Nakata, Tomoyuki Toda
  • Publication number: 20130035458
    Abstract: The present invention discloses catalyst compositions employing silicon-bridged metallocene compounds with bulky substituents. Methods for making these silicon-bridged metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY, LP
    Inventors: Joel L. Martin, Qing Yang, Max P. McDaniel, Jim B. Askew
  • Patent number: 8367786
    Abstract: This invention relates to the oligomerisation of olefinic compounds in the presence of an oligomerisation catalyst activated in two stages by two catalyst activators According to the invention there is provided a process for activating an oligomerisation catalyst by contacting the catalyst with i) a first activator component selected from the group consisting of the aluminoxanes and a mixture of at least one aluminoxane and at least one organylaluminium compound, and ii) a second activator component which is an organylaluminium compound, the process being characterised therein that the oligomerisation catalyst is first contacted with one of the first activator component or second activator component, and the resulting mixture is thereafter contacted with the other of the first activator component or second activator component.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: February 5, 2013
    Assignee: Sasol Technology (PTY) Limited
    Inventors: John Thomas Dixon, David Hedley Morgan, Hulisani Maumela, Palesa Nongodlwana, Johannes Alexander Willemse
  • Publication number: 20130023632
    Abstract: A catalyst system obtainable with a process comprising the following steps: i) contacting a Zirconium compound of formula (I) ZrX4??(I) wherein X, equal to or different from each other, is a halogen atom, a R, OR, SR, NR2 or PR2 group wherein R is a linear or branched, cyclic or acyclic, C1-C40-alkyl, C2-C40 alkenyl, C2-C40 alkynyl, C6-C40-aryl, C7-C40-alkylaryl or C7-C40-arylalkyl radical; or two X groups can be joined together to form a divalent R? group wherein R? is a C1-C20-alkylidene, C6-C20-arylidene, C7-C20-alkylarylidene, or C7-C20-arylalkylidene divalent radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; with one or more boron compounds having Lewis acidity wherein the molar ratio between the boron compound and the compound of formula (I) ranges from 0.9 to 100; ii) adding the reaction mixture obtained in step i) to a support.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Inventors: Sandor NAGY, Karen L. Neal-Hawkins
  • Publication number: 20130018156
    Abstract: A solid particulate catalyst free from an external carrier comprising: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR'2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-alkyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 independently is hydrogen or a linear or branched C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms from groups 14-16 of the Periodic Table of the Elements; each R2 and R3 taken together form a 4-7 membered ring condensed to the benzene ring of the indenyl moiety, said ring optionally containing heteroatoms from groups 14-16, each atom forming said ring being optionally substituted with at least one R18 radical; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1
    Type: Application
    Filed: December 21, 2010
    Publication date: January 17, 2013
    Applicant: BOREALIS AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
  • Patent number: 8343888
    Abstract: Precursor cations of A and B elements of an ABO3 perovskite in aqueous solution are formed as an ionic complex gel with citric acid or other suitable polybasic carboxylic acid. The aqueous gel is coated onto a desired catalyst substrate and calcined to form, in-situ, particles of the crystalline perovskite as, for example, an oxidation catalyst on the substrate. In one embodiment, a perovskite catalyst such as LaCoO3 is formed on catalyst supporting cell walls of an extruded ceramic monolith for oxidation of NO in the exhaust gas of a lean burn vehicle engine.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 1, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Kevin A Dahlberg
  • Publication number: 20120329966
    Abstract: Provided are a supported metallocene catalyst, a method for preparing the same and a method for preparing polyolefin using the same. The supported metallocene catalyst prepared by incorporating a metallocene compound having a ligand substituted with alkoxide or aryloxide into a conventional supported metallocene catalyst and incorporating a borate compound as a second co-catalyst exhibits considerably superior catalyst activity and easily controls molecular weight distribution, as compared to the conventional metallocene-supported catalyst.
    Type: Application
    Filed: March 8, 2011
    Publication date: December 27, 2012
    Inventors: Hyuck-Ju Kwon, San-Ak Hwang, Dong-Gil Lee, Churl-Young Park
  • Patent number: 8329833
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: December 11, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Patent number: 8324337
    Abstract: A catalyst, co-catalyst, and/or chain transfer agent is added at a time after initiation of an addition polymerization reaction to produce a polymer product with a widened molecular weight distribution relative to having all of the components in the original reaction mixture. The catalyst, co-catalyst, or chain transfer agent may be added discretely or continuously to the reaction to produce a product with a bimodal, trimodal, or other broadened molecular weight distribution.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: December 4, 2012
    Assignee: Novomer Inc.
    Inventor: Scott D. Allen
  • Publication number: 20120302715
    Abstract: The invention relates to the field of producing polymers and copolymers of olefin oligomers produced by a trimerization reaction of olefin monomers. There is disclosed a process which comprises producing olefin oligomers with the aid of a trimerization catalyst system prepared using UHF irradiation for activating individual components of the trimerization catalyst system. The use of the trimerization catalyst system thus improved and having increased activity provides for increased effectiveness in the production of olefin oligomers from ethylene or other olefin monomers, inter alia, at a low pressure of ethylene. The olefin oligomers thus produced are then polymerized or copolymerized using processes known in the art. The technical effect consists in increasing the effectiveness of the production of olefin oligomers which are then used in a polymerization or copolymerization reaction.
    Type: Application
    Filed: September 30, 2010
    Publication date: November 29, 2012
    Inventors: Timur Mikhailovich Zilbershtein, Maxim Vladimirovich Lipskikh, Alexei Alexandrovich Nosikov, Georgy Viktorovich Nesyn
  • Publication number: 20120296055
    Abstract: Disclosed is an improved process for production of relatively gel free high cis-1,4-polybutadiene by polymerizing 1,3-butadiene monomer in presence of organocobalt-alkyl aluminum catalysts and a cycloalkane solvent system, the improvement comprising conducting said process in a predetermined sequence avoiding alkyl or alkoxy substituted benzene as polymerization regulator.
    Type: Application
    Filed: January 14, 2011
    Publication date: November 22, 2012
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Maiti Madhuchhanda, Jasra Rakshvir
  • Publication number: 20120271018
    Abstract: The present invention provides imino carbene compounds and their derivatives, catalyst compositions containing these compounds in combination with an activator, and polymerization processes using these catalyst compositions to polymerize one or more olefins.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 25, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Rex E. Murray, LeGrande Mancel Slaughter, III, Dipesh Prema, Jinhui Chen
  • Publication number: 20120264897
    Abstract: The invention provides a catalyst system comprising: A) cobalt II carboxylate, and B) at least one co-catalyst of the following Structure A wherein n is from 1 to 10, preferably from 1 to 6, and more preferably from 1 to 4; each R is independently an alkyl. The invention also provides a catalyst system comprising: A) cobalt II carboxylate; and B) the reaction product of at least the following components: i) trialkyl aluminum, ii) dialkyl aluminum chloride, iii) water, and wherein the molar ratio of aluminum to chloride (Al:Cl) is less than 1 (preferably 0.7 to 0.2), the molar ratio of water to aluminum (H2O:Al) is from 0.5 to 0.92 (preferably from 0.55 to 0.75), and the molar ratio of trialkyl aluminum to dialkyl aluminum chloride from 0.5 to 5 (preferably from 1 to 5). The invention also provides a catalyst complex comprising the following: a) CoR?(2-?)Cl(x), wherein x is from 0.01 to 1, preferably from 0.1 to 1; and R? is a carboxylate; b) (n?m)R2R3AlCl.
    Type: Application
    Filed: December 1, 2010
    Publication date: October 18, 2012
    Inventor: Thomas D. Ruehmer
  • Publication number: 20120259081
    Abstract: A supported catalyst system comprising a phosphinimine ligand containing catalyst on a porous inorganic support treated with a metal salt has improved reactor continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 11, 2012
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Lee Douglas Henderson, Peter Phung Minh Hoang, Ian Ronald Jobe, Xiaoliang Gao
  • Publication number: 20120259070
    Abstract: A dual catalyst system comprising a phosphinimine ligand containing catalyst and phenoxide ligand (preferably a salicylaldimine) on a support treated with a metal salt has improved reactor continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Application
    Filed: March 26, 2012
    Publication date: October 11, 2012
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Lee Douglas Henderson, Peter Phung Minh Hoang, Ian Ronald Jobe, Xiaoliang Gao
  • Publication number: 20120259080
    Abstract: A supported catalyst system comprising a phosphinimine ligand containing catalyst on an alumina support treated with a metal salt has improved reactor continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Application
    Filed: March 26, 2012
    Publication date: October 11, 2012
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Lee Douglas Henderson, Peter Phung Minh Hoang, Ian Ronald Jobe, Xiaoliang Gao
  • Publication number: 20120238712
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 20, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Rex E. MURRAY, William B. BEAULIEU, Qing YANG, Errun DING, Gary L. GLASS, Alan L. SOLENBERGER, Steve J. SECORA
  • Patent number: 8268945
    Abstract: A catalyst component for ethylene polymerization, comprising an organic silicon compound of the formula (I), below wherein R1 is chosen from C3-C20 aliphatic hydrocarbyl groups, and is substituted with at least one substituent chosen from halogens, C1-C6 acyloxy groups, epoxy, amino, C1-C6 alkylamino groups, di(C1-C6 alkyl)amino groups, C1-C6 alkoxy groups, and oxo group; R2, R3 and R4, which may be the same or different, are each chosen from C1-C10 aliphatic hydrocarbyl, C3-C10 alicyclic hydrocarbyl, C6-C10 aryl, C7-C10 aralkyl, and C7-C10 alkaryl groups. A process for preparing the catalyst component and an active catalyst comprising the catalyst component and useful in polymerization, such as ethylene polymerization.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 18, 2012
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Taoyi Zhang, Junling Zhou, Hongtao Wang, Zifang Guo, Qingqiang Gou, Hongxu Yang, Ruixia Li, Shiyuan Xu
  • Publication number: 20120232235
    Abstract: The present invention discloses catalyst compositions employing transition metal complexes with a thiolate ligand. Methods for making these transition metal complexes and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 13, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Mark L. Hlavinka
  • Patent number: 8247342
    Abstract: A highly active supported chromium catalyst composition for ethylene and other olefins polymerization and also for ethylene copolymerization with efficient incorporation of comonomer, produces polymers with superior spherical morphology, improved bulk density and almost 0% fines. The catalyst composition component includes at least one chromium compound, mainly chromium acetylacetonate, or chromium hexaflouroacetonylacetonate, or chromium diethylmalonate. One magnesium compound, or aluminum compound, metal alkoxy compound and defined polymer particles mainly chloromethylated cross linked styrene-DVB copolymer or polyvinylchloride. The catalyst composition, when used in conjunction with an organoaluminum compound or a mixture of organoaluminum compounds, can be used for olefin polymerization to produce medium or high density polyethylene and copolymers of ethylene with alpha-olefins having about 3 to 18 carbon atoms.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 21, 2012
    Inventor: Abdullah Saad N. Al-Arifi
  • Publication number: 20120184431
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Also disclosed is a method for economically preparing a butyl-branched ethylene polymer, even under high temperature conditions, by using said transition metal complex as an ethylene trimerization catalyst, and polymerizing ethylene in the presence of an olefin polymerization catalyst that is obtained by bringing an olefin copolymerization catalyst and an activating co-catalytic component into contact with one another. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 19, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Takahiro Hino, Taichi Senda, Masaya Tanimoto
  • Publication number: 20120149854
    Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 14, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: REX E. MURRAY, KUMUDINI C. JAYARATNE, QING YANG, JOEL L. MARTIN, GARY L. GLASS
  • Publication number: 20120130086
    Abstract: This invention relates to a chromium complex compound for selective ethylene oligomerization including a chiral ligand, and to a method of selectively preparing 1-hexene or 1-octene from ethylene using the same.
    Type: Application
    Filed: March 3, 2010
    Publication date: May 24, 2012
    Applicants: SK GLOBAL CHEMICAL CO., LTD., SK INNOVATION CO., LTD.
    Inventors: Tack-Kyu Han, Sang-Ook Kang, Sung-Kwan Kim
  • Publication number: 20120129683
    Abstract: The invention provides a polymerization catalyst produced by bringing components (A) to (D) into contact with one another in a hydrocarbon solvent at 30 to 60° C., wherein the component (A) is a transition metal compound, the component (B) is a solid boron compound capable of forming an ion pair with component (A), the component (C) is an organoaluminum compound, and the component (D) is one or more unsaturated hydrocarbon compounds selected from among an ?-olefin, an internal olefin, and a polyene; and the amounts of component (B) and component (C) are 1.2 to 4.0 mol and 5.0 to 50.0 mol, respectively, on the basis of 1 mol of component (A), which catalyst exhibits high activity and can be readily supplied to a polymerization reaction system. The invention also provides a method of storing the polymerization catalyst at 0 to 35° C.
    Type: Application
    Filed: June 10, 2010
    Publication date: May 24, 2012
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Masami Kanamaru, Takenori Fujimura, Minoru Yabukami
  • Publication number: 20120123078
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerisation properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 17, 2012
    Inventors: Yong Ho Lee, Manseong Jeon, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho, Jong-Sang Park, Joon-Hee Cho, Hyeon-Gook Kim, EunKyoung Song, Seon-Kyoung Kim, Dae-Sik Hong
  • Publication number: 20120116034
    Abstract: A procatalyst carrier system which includes one or more paraffinic solvents, one or more paraffin-insoluble procatalysts, and optionally one or more cocatalysts wherein the carrier system is in the form of a slurry is provided. Also provided is a process including selecting one or more paraffin-insoluble organometallic procatalysts; adding the one or more procatalysts to a sufficient quantity of paraffinic solvent to form a slurry of the one or more procatalysts in the paraffinic solvent; introducing one or more first cocatalysts into a polymerization reactor; and introducing the slurry into the polymerization reactor; a reaction product of the process and articles made from the reaction product.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: DOW GLOBAL TECHNOLOGIES, INC.
    Inventors: Thomas Oswald, Ian M. Munro
  • Publication number: 20120108771
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for succinate-containing Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity along with broadened molecular weight distribution.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Applicant: Fina Technology, Inc.
    Inventors: Kenneth P. Blackmon, Joseph L. Thorman, Shabbir Ahmedbhai Malbari, Michael Wallace
  • Publication number: 20120101239
    Abstract: The present invention relates to a process for preparing an activating support for metallocene complexes in the polymerisation of olefins comprising the steps of: I) providing a support consisting in particles formed from at least one porous mineral oxide; II) optionally fixing the rate of silanols on the surface of the support; III) functionalising the support with a solution containing a metallic salt; IV) heating the functionalised support of step c) under an inert gas or hydrogen; V) oxidising the support of step IV by treatment under N2O and then under oxygen; VI) retrieving an active support having a controlled number of OH groups. That activating support is used to activate a metallocene catalyst component for the polymerisation of olefins.
    Type: Application
    Filed: April 29, 2010
    Publication date: April 26, 2012
    Applicants: Centre National de la Rescherche Scientifique, TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Gaëlle Pannier, Christophe Boisson, Roger Spitz
  • Publication number: 20120088890
    Abstract: The present invention provides polymerization processes utilizing an ansa-metallocene catalyst system for the production of olefin polymers. Polymers produced from the polymerization processes have properties that vary based upon the presence or the absence of hydrogen and/or comonomer in the polymerization process.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Richard M. Buck, Qing Yang, Albert P. Masino, Christopher E. Wittner
  • Patent number: 8143183
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: March 27, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Publication number: 20120071615
    Abstract: The present invention relates to a binuclear metallocene compound having a new structure that is able to offer various selectivities and activities for copolymers, a preparation method thereof, and a method for preparing a polyolefin using the binuclear metallocene compound.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 22, 2012
    Applicant: LG Chem, Ltd.
    Inventors: Kyoung-Chan Lim, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho
  • Publication number: 20120071616
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization.
    Type: Application
    Filed: March 25, 2011
    Publication date: March 22, 2012
    Inventors: John R. Hagadorn, Renuka N. Ganesh, Dmitry V. Uborsky, Ilya S. Borisov, Ivan V. Pruss, Alexander Z. Voskoboynikov
  • Publication number: 20120065346
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).
    Type: Application
    Filed: May 27, 2010
    Publication date: March 15, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Publication number: 20120058886
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: November 3, 2011
    Publication date: March 8, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Publication number: 20120058288
    Abstract: A polyethylene based resin exhibiting excellent moldability and durability and having an excellent balance between impact resistance and stiffness; and a hollow plastic molded article using the foregoing resin, which exhibits excellent moldability, durability and barrier properties and has an excellent balance between impact resistance and stiffness, are provided. The polyethylene based resin satisfies the following requirements (1) to (4): (1) a high-load melt flow rate (HLMFR) is from 1 to 100 g/10 min; (2) a density is from 0.940 to 0.960 g/cm3; (3) a strain hardening parameter ?max of elongational viscosity is from 1.05 to 1.50; and (4) a rupture time in a full notch tensile creep test and a density satisfy the following relational expression (A): log (rupture time)??355×(density)+337.6 (A).
    Type: Application
    Filed: June 26, 2009
    Publication date: March 8, 2012
    Applicant: JAPAN POLYETHYLENE CORPORATION
    Inventors: Yuuichi Kuzuba, Takashi Monoi, Ritsuya Matsumoto, Kouichi Ogawa, Satoshi Kanazawa, Takaaki Hattori
  • Patent number: 8124557
    Abstract: Provided are a supported metallocene catalyst which has excellent supporting efficiency due to an interaction between a cocatalyst supported on a carrier and a metallocene compound substituted with a functional group that can function as a Lewis base, such as acetal, ketal, tert-alkoxy alkyl, benzyloxy alkyl, substituted benzyloxy alkyl, monothioacetal, or monothioketal, and a method of polymerizing an olefin using the supported metallocene catalyst. In the supported metallocene catalyst, the metallocene catalyst is strongly bound to the carrier due to a Lewis acid-base interaction between the metallocene compound and the cocatalyst, and thus the metallocene catalyst is not separated from the carrier during the polymerization of polyolefin in a slurry or gas phase method. Thus, fouling is prevented and the prepared polymer has a good particle shape and a high apparent density. Thus, the supported metallocene catalyst can be suitably used in a conventional slurry or gas phase polymerization process.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: February 28, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Eun Jung Lee, Ki Soo Lee, Sangwoo Lee, Seungwhan Jung, Jong Joo Ha, Choong Hoon Lee