Including Phosphorus Or Sulfur Or Compound Containing Nitrogen Or Phosphorus Or Sulfur Patents (Class 502/155)
  • Patent number: 8084385
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a bridged cyclopentadienyl complex that incorporates a monoanionic hydroxylamido or hydrazido ligand fragment. Suitable complexes have the structure: wherein M is a Group 4 metal; Z is a divalent linking group; X is N or O; each of R1 and R2 is independently C1-C4 alkyl or C6-C10 aryl; R1 and R2 can be joined together; n is 0 when X is O, and n is 1 when X is N; each Y is independently halide, alkyl, dialkylamido, aryl, or aralkyl. A modeling approach is used to identify particular valuable complexes, each of which incorporates a readily synthesized cyclopentadienyl precursor.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 27, 2011
    Assignee: Equistar Chemicals, L.P.
    Inventors: Sandor Nagy, Reynald Chevalier
  • Publication number: 20110313111
    Abstract: An ethylene copolymer, a catalyst system suitable to prepare the ethylene copolymer, and a process to prepare such ethylene copolymer are described. The use of the ethylene copolymer as impact modifier in polyethylene and as compatibilizer in a polymer blend are also described. The ethylene copolymer has a density from 0.855 g/cm3 to 0.910 g/cm3, a polydispersity Mw/Mn lower than 3.5, comprises at least one first ethylene polymer component and at least one second ethylene polymer component having different comonomer contents so as to show at least two predetermined CRYSTAF peak temperatures.
    Type: Application
    Filed: February 16, 2010
    Publication date: December 22, 2011
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Fabiana Fantinel, Shahram Mihan, Volker Dolle, Andreas Maus
  • Publication number: 20110306740
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a bridged cyclopentadienyl complex that incorporates a monoanionic hydroxylamido or hydrazido ligand fragment. Suitable complexes have the structure: wherein M is a Group 4 metal; Z is a divalent linking group; X is N or O; each of R1 and R2 is independently C1-C4 alkyl or C6-C10 aryl; R1 and R2 can be joined together; n is 0 when X is O, and n is 1 when X is N; each Y is independently halide, alkyl, dialkylamido, aryl, or aralkyl. A modeling approach is used to identify particular valuable complexes, each of which incorporates a readily synthesized cyclopentadienyl precursor.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Inventors: Sandor Nagy, Reynald Chevalier
  • Publication number: 20110305999
    Abstract: The present disclosure relates to the modifier of combustion of solid, liquid and gaseous fuels, in particular wood, natural gas, coal, mazout and other hydrocarbons, in power boilers, in closed or open chambers, wherein it contains from 10 to 30 wt. % of water, from 20 to 80 wt. % of at least one aliphatic alcohol, from 5 to 15 wt. % of carbamide or its derivatives, and from 5 to 15 wt. % of monoacetylferrocene. Object of the disclosure is also a method of modifying process of combustion of the above-mentioned fuels and a use of the modifier of fuel combustion.
    Type: Application
    Filed: April 1, 2009
    Publication date: December 15, 2011
    Inventor: Marek Majcher
  • Publication number: 20110306741
    Abstract: This invention relates to the synthesis of substituted tetrahydroindenyls and the use of the synthesised complexes in the homo- and co-polymerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 15, 2011
    Applicants: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Alexander Z. Voskoboynikov, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Abbas Razavi
  • Publication number: 20110301310
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 8, 2011
    Inventors: John R. Hagadorn, Matthew S. Bedoya
  • Publication number: 20110294972
    Abstract: The invention relates to transition metal complexes comprising a metal of group 3, 4, or 6 of the Periodic Table of the Elements and one, or two mono-anionic triazole ligands It has been found that these transition metal complexes which comprise at least one triazole fragment having a substituent with an unsaturated fragment are suitable as precatalysts for the polymerization of olefins. In these complexes one carbon atom of the unsaturated fragment is bound directly or via a bridge to a triazole group and the other carbon atom is bound to the transition metal. The complexes are useful as catalysts for olefin polymerization, a catalyst system comprising these complexes and a process for the polymerization of olefins under the use of the catalyst system.
    Type: Application
    Filed: May 18, 2011
    Publication date: December 1, 2011
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Reynald Chevalier, Sandor Nagy
  • Publication number: 20110288249
    Abstract: Halogen substituted metallocene compounds are described and comprise one or more monocyclic or polycyclic ligands that are pi-bonded to the metal atom and include at least one halogen substituent directly bonded to an sp2 carbon atom at a bondable ring position of the ligand, wherein the or at least one ligand has one or more ring heteroatoms in its cyclic structure. When combined with a suitable activator, these compounds show activity in the polymerization of olefins, such as ethylene and propylene.
    Type: Application
    Filed: November 22, 2010
    Publication date: November 24, 2011
    Inventors: Alexander Z. VOSKOBOYNIKOV, Alexey N. Ryabov, Mikhail V. Nikulin, Alexander V. Lygin, Dmitry V. Uborsky, Catalina I. Coker, Jo Ann M. Canich
  • Patent number: 8058461
    Abstract: This invention relates to transition metal compounds, catalyst systems comprising said compounds and polymerization processes using such catalyst systems, where the transition metal compound is represented by the formula: This invention also relates to process to produce such compounds.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Mikhail V. Nikulin, Aleksey A. Tsarev, Andrey F. Asachenko, Alexander V. Babkin, Garth R. Giesbrecht, Jo Ann M. Canich
  • Publication number: 20110275773
    Abstract: A process for cationically polymerizing olefin monomers in a reaction mixture includes the step of contacting olefin monomers and a catalytically effective amount of an initiating composition containing (A) a heterogeneous perfluoroaryl substituted Lewis acid coinitiator selected from the group consisting of open chain and cyclic aluminoxane compounds or Group 13 perfluoroaryl Lewis acid compounds of formula (III) and (B) an initiator selected from the group consisting of (i) organic compounds, (ii) halogens, (iii) interhalogens; (iv) Brönsted acids, (v) boron halides; (vi) silicon compounds; and (vii) germanium compounds. A novel initiator system is further disclosed.
    Type: Application
    Filed: May 6, 2010
    Publication date: November 10, 2011
    Inventor: Stewart P. Lewis
  • Patent number: 8053605
    Abstract: The present invention relates to a catalyst composition that includes a triphenylphosphine ligand, a monodentate phosphine ligand, a monodentate phosphine oxide ligand, and a transition metal catalyst, and a hydroformylation process using the same. In the hydroformylation process using the catalyst composition according to the present invention, the high catalytic activity can be obtained, and the selectivity (N/I selectivity) in respects to normal- or iso-aldehyde can be desirably controlled.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jae-Hui Choi, Dong-Hyun Ko, Sung-Shik Eom, Sang-Gi Lee, Moo-Ho Hong, O-Hark Kwon
  • Patent number: 8048973
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido group is introduced is coordinated, a catalyst composition including the same, and an olefin polymer using the catalyst composition. The transition metal complex has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, a sterically hindered monomer can easily approach the transition metal complex. By using a catalyst composition including the transition metal complex, a linear low density polyolefin copolymer having a high molecular weight and a very low density polyolefin copolymer having a density of 0.910 g/cc or less can be produced in a polymerization of monomers having large steric hindrance. Further, the reactivity for the olefin monomer having large steric hindrance is excellent.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 1, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun Jung Lee, Seungwhan Jung, Boram Lee, Jung A Lee, Bun Yeoul Lee
  • Patent number: 8044225
    Abstract: A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: October 25, 2011
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Yaofeng Chen
  • Patent number: 8044245
    Abstract: Optically active 2-sulfonyloxy-1-phenylethanol derivative of formula (II) can be prepared easily and selectively by the method of the present invention using an asymmetric reduction of an ?-sulfonyloxy acetophenone compound with a rhodium catalyst having petamethylcyclopentadienyl group and a hydrogen donor, and the compound of formula (II) obtained in the inventive method exhibits a higher e.e. (enantiomer excess) value than that of the products in the conventional methods.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: October 25, 2011
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kee-In Lee, Do-Min Lee
  • Publication number: 20110257351
    Abstract: To provide an industrially useful ?-olefin.((meth)acrylic acid)-based olefin copolymer having both a high molecular weight and a high comonomer content, a catalyst component capable of realizing a production of two different kinds of ?-olefin.((meth)acrylic acid)-based olefin copolymers, and a production process using the catalyst. An ?-olefin.((meth)acrylic acid)-based olefin copolymer is produced by using a metal complex complexed with a ligand represented by the following formula (Y is phosphorus or arsenic) for a catalyst composition.
    Type: Application
    Filed: November 20, 2009
    Publication date: October 20, 2011
    Applicants: Japan Polypropylene Corporation, Japan Polyethylene Corporation
    Inventors: Minoru Kobayashi, Hideshi Uchino, Kazuhiro Yamamoto, Toshiaki Egashira, Hiroyuki Shimizu, Tetsuya Morioka
  • Patent number: 8039416
    Abstract: The invention provides: a polycondensation catalyst for polyester production, which contains titanium atoms, alkaline earth metal atoms and phosphorus atoms, has high reactivity and excellent long-term storage stability, can be easily produced industrially, and has an advantage in cost; a polyester resin obtained with the catalyst; and a molded article. These are: a polymerization catalyst for polyester production containing titanium atoms, alkaline earth metal atoms and phosphorus atoms and having a specific constitution; a polyester resin obtained with the catalyst; and a molded article.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: October 18, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Michio Higashijima, Yutaka Yatsugi, Naoki Yukita, Motohiro Munakata
  • Patent number: 8039417
    Abstract: The invention relates to a liquid catalyst solution containing a polycondensation catalyst for polyester production, which contains titanium atoms, alkaline earth metal atoms and phosphorus atoms, has high reactivity and excellent long-term storage stability, can be easily produced industrially, and has an advantage in cost.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 18, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Michio Higashijima, Yutaka Yatsugi, Naoki Yukita, Motohiro Munakata
  • Publication number: 20110251362
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 transition metal complex which comprises at least one monoanionic R1N—XR2 ligand, where X is O or S, and each of R1 and R2 is independently alkyl, aryl, arylalkyl, alkylaryl, or trialkylsilyl. The complexes are readily made from R1NH—XR2 precursors and are often useful as catalyst components without further purification. The catalysts have good activities, incorporate comonomers well, and provide polymers with high molecular weight.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Inventors: Sandor Nagy, Reynald Chevalier
  • Patent number: 8022007
    Abstract: The present invention relates to a ligand and its use in a catalyst for the oligomerization of olefinic monomers, the ligand having the general formula (II); P(R1)(R2)—P(R4)?N(R3)??(II) wherein: the R1 group is selected from a hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl group; the R2 group is selected from a hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl group; the R3 is selected from hydrogen, a hydrocarbyl group, a substituted hydrocarbyl group, a heterohydrocarbyl group, a substituted heterohydrocarbyl group, a silyl group or derivative thereof; the R4 group is an optionally substituted alkylenedioxy, alkylenedimercapto or alkylenediamino structure which is bound to the phosphorus atom through the two oxygen, sulphur or nitrogen atoms of the alkylenedioxy, alkylenedimercapto or alkylenediamino structure or an optionally substituted arylenedioxy, arylenedimercapto or arylenediamino structure which is bound to the pho
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: September 20, 2011
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Quoc An On, Johan Paul Smit, Arie Van Zon
  • Patent number: 8008224
    Abstract: The invention relates to ruthenium alkylidene complexes having an N-heterocyclic carbene ligand comprising a 5-membered heterocyclic ring having a carbenic carbon atom and at least one nitrogen atom contained within the 5-membered heterocyclic ring, wherein the nitrogen atom is directly attached to the carbenic carbon atom and is substituted by a phenyl ring, and wherein the phenyl ring has a hydrogen at either or both ortho positions and is substituted at at least one ortho or meta position. The invention also relates to an olefin metathesis reactions and particularly to the preparation of tetra-substituted cyclic olefins via a ring-closing metathesis.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: August 30, 2011
    Assignees: Materia, Inc., California Institute of Technology
    Inventors: Jacob Berlin, Robert H. Grubbs, Yann Schrodi, Ian C. Stewart
  • Patent number: 8008414
    Abstract: An organoantimony compound represented by the formula (1), processes for producing polymers with use of the compound, and polymers wherein R1 and R2 are C1-C8 alkyl, aryl, substituted aryl or an aromatic heterocyclic group, R3 and R4 are each a hydrogen atom or C1-C8 alkyl, and R5 is aryl, substituted aryl, an aromatic heterocyclic group, oxycarbonyl or cyano.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: August 30, 2011
    Assignees: Otsuka Chemical Co., Ltd., Japan Science and Technology Agency
    Inventors: Shigeru Yamago, Biswajit Ray, Takashi Kameshima, Kazuhiro Kawano
  • Patent number: 8003743
    Abstract: A process for preparing 1-butene polymers comprising polymerizing 1-butene and optionally ethylene, propylene or higher alpha-olefin, in the presence of a catalyst system obtainable by contacting: a) metallocene compound of formula (I): wherein: M is a transition metal; p is an integer from 0 to 3; X, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon group; L is a divalent C1-C40 hydrocarbon radical; R1 is a C1-C40 hydrocarbon radical; T1, is a moiety of formula (IIa) or (IIb): wherein R2 and R3, are C1-C40 hydrocarbon radicals or they can form together a C3-C7-membered ring; R4 is C1-C40 hydrocarbon radicals; T2 and T3, are a moiety of formula (IIIa) or (IIIb): wherein R6 and R7, equal to or different from each other, are hydrogen atoms or C1-C40 hydrocarbon radicals; R5 is a hydrogen atom or a C1-C40 hydrocarbon radicals; with the proviso that if T1 is a moiety of formula (IIa) at least one between T2 and T3 is a moiety of formula (IIIb), and if T1 is a moiety of formula
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 23, 2011
    Assignee: Basell Poliolefine Italia, S.R.L.
    Inventors: Luigi Resconi, Friederike Morhard
  • Patent number: 7998895
    Abstract: Transition metal complexes of selected monoanionic phosphine ligands, which also contain a selected Group 15 or 16 (IUPAC) element and which are coordinated to a Group 3 to 11 (IUPAC) transition metal or a lanthanide metal, are polymerization catalysts for the (co)polymerization of olefins such as ethylene and ?-olefins, and the copolymerization of such olefins with polar group-containing olefins. These and other nickel complexes of neutral and monoanionic bidentate ligands copolymerize ethylene and polar comonomers, especially acrylates, at relatively high ethylene pressures and surprisingly high temperatures, and give good incorporation of the polar comonomers and good polymer productivity. These copolymers are often unique structures, which are described.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: August 16, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Lin Wang, Elisabeth M. Hauptman, Lynda Kaye Johnson, Elizabeth Forrester McCord, Stephan J. McLain, Ying Wang
  • Patent number: 7994355
    Abstract: The present invention relates to metallocene-based phosphine ligands having chirality at phosphorus and at least one other element of chirality (planar chirality and/or chirality at carbon); and to the use of such ligands in asymmetric transformation reactions to generate high enantiomeric excesses of formed compounds. A method for the preparation of ligands according to the invention involving the conversion of the ortho-lithiated substituted metallocene to a phosphine chiral at phosphorus is also disclosed.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: August 9, 2011
    Assignee: Solvias AG
    Inventors: Wei-Ping Chen, John Whittall
  • Patent number: 7994087
    Abstract: A class of catalysts with unusually high activity for polymerizing vinyl monomers such as acrylates, methacrylates and styrene is described. The catalysts consists of a metal halide such as CuBr and FeBr2 ligated with multidentate amine-based ligands, for example N,N,N?,N?-tetra[(2-pyridal)methyl]ethylenediamine, and additives. The additives, which are tertiary amine compounds, can greatly increase the catalytic activity. The complex is capable of catalyzing a living polymerization reaction at a concentration of the complex below about 0.1 mol %.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: August 9, 2011
    Assignee: Wyoming Research Products Center
    Inventors: Maciej Radosz, Youqing Shen, Huadong Tang
  • Patent number: 7989565
    Abstract: Process for making a copolymer by copolymerising (1) ethylene with (2) at least one comonomer selected from aliphatic C3-C20 alpha-olefins and (3) 5-ethylidene-2-norbornene, including contacting the monomer with a catalyst comprising a transition metal compound having the following Formula A, and an activating quantity of a suitable activator of the formula shown herein, wherein Z comprises a five-membered heterocyclic group, the five membered heterocyclic group containing at least one carbon atom, at least one nitrogen atom and at least one other hetero atom selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being selected from nitrogen and carbon; M is a metal from Group 3 to 11 of the Periodic Table or a lanthanide metal; E1 and E2 are divalent groups independently selected from (i) aliphatic, hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon, (v) heterocyclic groups and (vi) heterosubstituted derivatives of said groups
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: August 2, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, David John Jones, Grant Berent Jacobsen, Richard James Long
  • Publication number: 20110177493
    Abstract: A molecular sensor is provided that contains at least one carbon nanotube suspended on a suitable support structure. In one aspect, at least one receptor is attached to a surface of the suspended carbon nanotube. Also provided are methods of detecting an analyte in a sample by contacting a sample suspected of containing the analyte with the molecular sensor of this invention under suitable conditions that favor binding of the analyte to the receptor and detecting any analyte bound to the receptor, if present.
    Type: Application
    Filed: February 13, 2009
    Publication date: July 21, 2011
    Inventor: Jennifer Lu
  • Patent number: 7977269
    Abstract: Novel ?-diimine metal complexes, particularly iron complexes, having a phenyl sulfidyl or substituted phenyl sulfidyl metal complexing group are disclosed. The ?-diimine metal complexes having a phenyl sulfidyl or substituted phenyl sulfidyl metal complexing group are produced by forming one of the ?-diimine metal complex imine bonds in the presence of a metal salt or an ?-acylimine metal complex. The ?-diimine metal complexes having phenyl sulfidyl or substituted phenyl sulfidyl metal complexing group are useful for polymerizing or oligomerizing olefins.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: July 12, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Michael Carney
  • Patent number: 7972987
    Abstract: The present invention relates to a novel cyclopentadienyl compound, a fourth group transition metal compound having the cyclopentadienyl compound, a method of preparing the fourth group transition metal compound, a method of preparing an olefin polymer by using the fourth group transition metal compound, and an olefin polymer prepared by using the method.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: July 5, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jung-A Lee, Bo-Ram Lee, Eun-Jung Lee, Seung-Whan Jung, Choong-Hoon Lee
  • Patent number: 7968487
    Abstract: Novel phosphine-free non-ionic single catalysts, and method for making such catalysts, for the homo-polymerization and copolymerization of olefins such as ethylene, ?-olefins and functionalized olefins without the use of additional co-activators, are disclosed. These phosphine-free non-ionic single catalysts are also active for co-polymerization of olefins with monomers with polar functionalities. The catalyst of this invention comprise of a late transition metal with a chelating monoanionic ligand, an R group and a neutral 2 electron donor ligand. Catalysts are prepared by the oxidative addition of benzylhalide (halide=Cl, Br or I) to an appropriate metal source in the presence of a stabilizing agent, such as nitrogen based ligands, followed by the addition of the deprotonated form of the chelating ligand.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 28, 2011
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Rene' Rojas
  • Publication number: 20110152486
    Abstract: This invention relates to a supported nonmetallocene catalyst for olefin polymerization, which is produced by directly reacting a nonmetallocene ligand with a catalytically active metallic compound on a carrier through an in-situ supporting process. The process according to this invention is simple and feasible, and it is easy to adjust the load of the nonmetallocene ligand on the porous carrier. The supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, even in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts desirable polymer morphology and a high bulk density.
    Type: Application
    Filed: October 15, 2008
    Publication date: June 23, 2011
    Inventors: Yuefeng Gu, Chuanfeng Li, Xiaoli Yao, Zhonglin Ma, Bo Liu, Feng Guo, Yaming Wang, Jiye Bai, Shaohui Chen, Xiaoqiang Li
  • Patent number: 7960555
    Abstract: Versatile Group VIII metathesis catalysts, as can be used in a range of polymerization reactions and other chemical methodologies.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: June 14, 2011
    Assignee: University of Massachusetts
    Inventor: Todd S. Emrick
  • Patent number: 7956138
    Abstract: This invention relates to a catalyst system comprising: an activator, such as an aluminum alkyl, alumoxane or combinations thereof; a first catalyst precursor prepared by contacting compound (I) represented by the formula: with an optionally substituted alkyl or optionally substituted aryl alcohol; wherein Z—O is a support material, where O is oxygen and Z is Si, Ti, Al, Sn, Fe, Ga, Zr, B, Mg or Cr; each X is, independently, nitrogen, oxygen phosphorous, or sulfur, provided that both X's are not each oxygen; each n is, independently, 1 or 2, provided the total of n=3; each R is, independently, an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group, provided at least one R group is an aryl or substituted aryl group; and a second catalyst precursor, wherein the second catalyst precursor is a metallocene compound. This invention also relates to the use of the above catalyst system to polymerize olefins and other monomers.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: June 7, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Matthew William Holtcamp
  • Patent number: 7956003
    Abstract: The present invention discloses catalyst components based on ferricinium ligands, their method of preparation and their use in the polymerisation of olefins.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 7, 2011
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifiqaue (CNRS)
    Inventors: Cyril Revault, Olivier Lavastre, Sabine Sirol
  • Publication number: 20110130562
    Abstract: In one embodiment, the present application discloses mixtures comprising (a) water in an amount of at least 1% wt/wt of the mixture; (b) a transition metal catalyst; and (c) one or more solubilizing agents; and methods for using such mixtures for performing transition metal mediated bond formation reactions.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 2, 2011
    Inventor: Volker Berl
  • Publication number: 20110130532
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition including the compound and an olefin polymer prepared using the same. The metallocene compound and the catalyst composition can be used for preparing the olefin polymer with high copolymerization degree and high molecular weight. Particularly, the block copolymer with high heat resistance can be prepared by using the metallocene compound, and the olefin polymer with high melting point (Tm) can be obtained, even if co-monomer is used at an increased amount in preparation of olefin polymer.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 2, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Young-Chul WON, Sung-Ho CHUN, Dai-Seung CHOI, Dong-Woo YOO, Bun-Yeoul LEE
  • Patent number: 7947622
    Abstract: Nanohybrid sol-gel materials, based on silica organically modified (ormosil) and doped with the ruthenium species tetra-n-propylammonium perruthenate (TPAP) are highly efficient catalysts for the selective oxidation of alcohols to carbonyls with oxygen at low pressure, in organic solvents as well as in carbon dioxide in supercritical state. Novel, highly active and stable materials are the fluorinated ormosils. Optimal conditions for the preparation and use thereof in liquid-phase as well as in supercritical CO2 were set by studying the structure-activity relationships of the materials, with particular reference to the surface hydrophobic/hydrophilic properties and to the textural ones.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 24, 2011
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Mario Pagliaro, Rosaria Ciriminna
  • Publication number: 20110112303
    Abstract: A process for preparing the S or R enantiomer of a compound of formula A, the process comprising subjecting a compound of formula B to asymmetric hydrogenation in the presence of a chiral transition metal catalyst and a source of hydrogen, wherein X is CH2, oxygen, or sulphur; R1, R2 and R3 are the same or different and signify hydrogens, halogens, alkyl, alkyloxy, hydroxy, nitro, alkylcarbonylamino, alkylamino, or dialkylamino group; and R4 is alkyl or aryl, wherein the transition metal catalyst comprises a chiral ligand having the formula wherein p is from 1 to 6, and Ar means aryl group; wherein the term alkyl means hydrocarbon chains, straight or branched, containing from one to six carbon atoms, optionally substituted by aryl, alkoxy, halogen, alkoxycarbonyl or hydroxycarbonyl groups; the term aryl means an aromatic or heteroaromatic group, optionally substituted by alkyloxy, halogen, or nitro group; and the term halogen means fluorine, chlorine, bromine, or iodine.
    Type: Application
    Filed: March 17, 2009
    Publication date: May 12, 2011
    Applicant: BIAL - PORTELA & CA, S.A.
    Inventors: David Alexander Learmonth, Alexander Beliaev, Wenge Li
  • Publication number: 20110111950
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Publication number: 20110105705
    Abstract: The invention relates to a metallocene supported catalyst composition and a process for the preparation of polyolefin using the same. A metallocene supported catalyst composition according to the invention is prepared by bringing a compound of a group IV transition metal into contact with an inorganic or organic porous carrier treated with an ionic compound. Advantages of a metallocene supported catalyst composition of the invention include an increase in the catalyst activity during polymerization of slurry and an olefin compound in the vapor phase even at a low content of metallocene metal components within the carrier, and an improvement in solving process problems such as fouling, sheeting, plugging or the like.
    Type: Application
    Filed: March 26, 2009
    Publication date: May 5, 2011
    Applicant: SK ENERGY CO., LTD.
    Inventors: Seungyeol Han, Myungahn Ok, Young-Soo Ko, Chang-il Lee
  • Publication number: 20110098425
    Abstract: This invention relates to Group 4 catalyst compounds containing di-anionic tridentate nitrogen/oxygen based ligands. The catalyst compounds are useful, with or without activators, to polymerize olefins, particularly a-olefins, or other unsaturated monomers. Systems and processes to oligomerize and/or polymerize one or more unsaturated monomers using the catalyst compound, as well as the oligomers and/or polymers produced therefrom are also provided.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Garth R. Giesbrecht, Timothy M. Boller, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Mikhail V. Nikulin, Alexey A. Tsarev
  • Publication number: 20110098496
    Abstract: Novel group 6 organometallic compounds are obtained by reaction of at least one boron compound comprising at least one hydroxy, sulfhydryl or amino function with at least one compound of a group 6 transition metal. These compounds are used in a catalytic composition utilized in an olefin metathesis method.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 28, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Ludovic Chahen, Mikael Berthod, Helene Olivier-Bourbigou
  • Publication number: 20110098431
    Abstract: This invention relates to Group 4 dialkyl compounds supported by a pyridyl-amido-aryl (“PAA”), an anisole-amido-aryl (“AAA”), a phenoxy-amido-pyridyl (“PAPY”), an anisole-amido-phenoxy (“AAP”) or a anisole-amido-phenoxy (“AAP”) tridentate ligand. Such compounds can polymerize olefins, such as ethylene.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Garth R. GIESBRECHT, Timothy M. Boller, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Mikhail V. Nikulin, Alexey A. Tsarev
  • Publication number: 20110098429
    Abstract: This invention relates to Group 4 catalyst compounds containing di-anionic tridentate nitrogen/oxygen based ligands. The catalyst compounds are useful, with or without activators, to polymerize olefins, particularly a-olefins, or other unsaturated monomers. Systems and processes to oligomerize and/or polymerize one or more unsaturated monomers using the catalyst compound, as well as the oligomers and/or polymers produced therefrom are also provided.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Garth R. Giesbrecht, Timothy M. Boller, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Mikhail V. Nikulin, Alexey A. Tsarev
  • Publication number: 20110098497
    Abstract: Novel group 6 organometallic compounds, supported on anions by means of at least one covalent metal-oxygen bond, are obtained by reaction of at least one borate or aluminate comprising at least one hydroxy group with at least one compound of a group 6 transition metal. These compounds are used in a catalytic composition utilized in an olefin metathesis method.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 28, 2011
    Applicant: IFP Energies nouvelles
    Inventors: Ludovic Chahen, Mikaël Berthod, Vinciane Kelsen, Yves Chauvin, Helene Olivier-Bourbigou, Christophe Vallee
  • Publication number: 20110098430
    Abstract: This invention relates to Group 4 catalyst compounds containing di-anionic tridentate nitrogen/oxygen based ligands. The catalyst compounds are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. Systems and processes to oligomerize and/or polymerize one or more unsaturated monomers using the catalyst compound, as well as the oligomers and/or polymers produced therefrom are also provided.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Garth R. GIESBRECHT, Timothy M. Boller, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Mikhail V. Nikulin, Alexey A. Tsarev
  • Publication number: 20110098427
    Abstract: Group 4 catalyst compounds containing di-anionic tridentate nitrogen/oxygen based ligands are provided. The catalyst compounds are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. Systems and processes to oligomerize and/or polymerize one or more unsaturated monomers using the catalyst compound, as well as the oligomers and/or polymers produced therefrom are also provided.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Garth R. Giesbrecht, Timothy M. Boller, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Mikhail V. Nikulin, Alexey A. Tsarev
  • Publication number: 20110092358
    Abstract: The present invention relates to a mixture which can be used as vulcanization accelerator, to a process for producing the mixture and to use of the mixture, to vulcanizates which comprise the said mixtures or which comprise corresponding individual constituents of the mixture, and also to vulcanizates which are produced with use of the said mixture.
    Type: Application
    Filed: July 30, 2010
    Publication date: April 21, 2011
    Applicant: RHEIN CHEMIE RHEINAU GMBH
    Inventors: Martin Säwe, Dietmar Hoff, Willi Grieshaber, Harald Kleinknecht
  • Patent number: 7928256
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido group is introduced is coordinated, a catalyst composition including the same, and an olefin polymer using the catalyst composition. The transition metal complex has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, a sterically hindered monomer can easily approach the transition metal complex. By using a catalyst composition including the transition metal complex, a linear low density polyolefin copolymer having a high molecular weight and a very low density polyolefin copolymer having a density of 0.910 g/cc or less can be produced in a polymerization of monomers having large steric hindrance. Further, the reactivity for the olefin monomer having large steric hindrance is excellent.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: April 19, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun Jung Lee, Seungwhan Jung, Boram Lee, Jung A. Lee, Bun Yeoul Lee
  • Publication number: 20110086970
    Abstract: Reactor grade thermoplastic polyolefins with high flowability and excellent surface quality comprising (A) 40-90 wt % of a propylene homo- or copolymer matrix with an MFR in accordance with ISO 1 133 (230° C., 2.16 kg load) of >200 g/10 min and (B) 2-30 wt % of an elastomeric ethylene-propylene copolymer having an intrinsic viscosity IV (according to ISO 1628 with decalin as solvent) of ?2.8 dl/g and an ethylene content of >50 to 80 wt % and (C) 8-30 wt % of an elastomeric ethylene-propylene copolymer having an intrinsic viscosity IV (according to ISO 1628 with decalin as solvent) of 3.0-6.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 14, 2011
    Applicant: Borealis AG
    Inventors: Christelle Grein, Klaus Bernreitner