Organic Compound Contains Metal (e.g., Na-o-ethyl, Etc.) Patents (Class 502/171)
  • Publication number: 20090171042
    Abstract: The present invention relates to novel and unique catalyst particles, a method for preparing same, the use of the catalyst particles for polymerization reactions and methods of controlling the catalyst particle morphology.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 2, 2009
    Inventors: Peter Denifl, Timo Leinonen
  • Publication number: 20090156761
    Abstract: Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: October 26, 2007
    Publication date: June 18, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20090148673
    Abstract: A polycarbodiimide polymer that is reversibly switchable between two distinct optical orientations is described. The polymer is useful in forming devices such as filters, storage media, actuators, and displays. Methods of making and using such polymers are also described.
    Type: Application
    Filed: December 30, 2008
    Publication date: June 11, 2009
    Applicant: North Carolina State University
    Inventors: Bruce M. Novak, Hong-Zhi Tang
  • Publication number: 20090131614
    Abstract: A supported polymerisation catalyst system comprises: (a) a polymerisation catalyst, (b) a cocatalyst, and (c) a porous support, and is characterised in that the porous support has been pretreated with (i) a chemical dehydration agent and (ii) a hydroxy compound wherein the hydroxy compound is not a cocatalyst or component thereof. The preferred polymerisation catalyst is a transition metal compound for example a metallocene and by use of the supported catalyst systems improved activity may be achieved.
    Type: Application
    Filed: June 1, 2006
    Publication date: May 21, 2009
    Inventor: Sergio Mastroianni
  • Publication number: 20090105433
    Abstract: Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Michel Daumerie, Kenneth P. Blackmon, William Gauthier, Jun Tian, Joseph Thorman
  • Patent number: 7511110
    Abstract: Polyorganosiloxane compositions crosslinkable by addition of Si-bonded hydrogen to aliphatic carbon-carbon multiple bonds which have extended pot life or are preparable as storage stable one component compositions including latent catalysts of specific platinum complexes.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: March 31, 2009
    Assignee: Wacker Chemie AG
    Inventor: Armin Fehn
  • Publication number: 20090069603
    Abstract: The invention relates to a process for hydrogenating oligonitriles which have at least two nitrile groups in the presence of a catalyst which, before commencement of the hydrogenation, is pretreated by contacting with a compound A which is selected from alkali metal carbonates, alkaline earth metal carbonates, ammonium carbonate, alkali metal hydrogencarbonates, alkaline earth metal hydrogencarbonates, ammonium hydrogencarbonate, alkaline earth metal oxocarbonates, alkali metal carboxylates, alkaline earth metal carboxylates, ammonium carboxylates, alkali metal dihydrogenphosphates, alkaline earth metal dihydrogenphosphates, alkali metal hydrogenphosphates, alkaline earth metal hydrogenphosphates, alkali metal phosphates, alkaline earth metal phosphates and ammonium phosphate, alkali metal acetates, alkaline earth metal acetates, ammonium acetate, alkali metal formiates, alkaline earth metal formiates, ammonium formiate, alkali metal oxalates, alkaline earth metal oxalates and ammonium oxalate.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 12, 2009
    Applicant: BASF SE
    Inventors: Thilo Hahn, Martin Ernst, Johann-Peter Melder
  • Patent number: 7501373
    Abstract: Embodiments of the present invention are directed to a polymerization catalyst used to produce polyester. The catalyst comprises at least one metal-containing component, excluding antimony or germanium, and an organic compound component, containing at least one moiety of Ar—O— or Ar—N<, where Ar represents an aryl group.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: March 10, 2009
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Shoichi Gyobu, Hiroaki Taguchi
  • Publication number: 20090036298
    Abstract: Catalysts components for the polymerization of ethylene comprising Ti, Mg, halogen, ORI groups, where RI is a C1-C12 hydrocarbon group optionally containing heteroatoms, having specific relationship among ORI/Ti and Mg/Ti molar ratio and characterized by a specific SS-NMR pattern are particularly useful for preparing narrow MWD crystalline ethylene polymers.
    Type: Application
    Filed: March 15, 2006
    Publication date: February 5, 2009
    Applicant: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Isabella Camurati, Tiziano Dall'Occo, Dario Liguori, Gianni Vitale
  • Publication number: 20090023580
    Abstract: An object of the present invention is to provide a catalyst composition containing a perovskite-type composite oxide which exhibits a satisfactory catalytic performance over a long time even in a high temperature atmosphere and has a stable quality in which Rh and/or Pt dissolves to form a solid solution at a high rate. To achieve the object described above, in the present invention the catalyst composition is prepared to comprise an Rh-containing perovskite-type composite oxide represented by the following general formula (I) and/or a Pt-containing perovskite-type composite oxide represented by the following general formula (II) and a thermostable oxide optionally containing a noble metal.
    Type: Application
    Filed: February 17, 2006
    Publication date: January 22, 2009
    Applicants: DAIHATSU MOTOR CO., LTD., CATALER CORPORATION
    Inventors: Hirohisa Tanaka, Kiyotomi Mitsumori, Isao Tan, Ichiro Takahashi, Mari Uenishi, Nobuhiko Kajita, Masashi Taniguchi, Kazuya Naito, Mareo Kimura, Keiichi Narita, Akimasa Hirai, Hiromasa Suzuki, Satoshi Matsueda, Hiroki Nagashima, Yoshinori Ishii, Norihiko Aono
  • Publication number: 20090023579
    Abstract: Disclosed is a novel asymmetric ligand which can be synthesized by a short process at low cost and is capable of exhibiting higher catalytic activity and enantioselectivity than the conventional ligands derived from sugars. Also disclosed are a method for producing such an asymmetric ligand, and a catalyst using such an asymmetric ligand. Specifically disclosed is a ligand represented by the general formula I below or the like. (In the formula, R1 and R2 independently represent 0-5 substituents; X represents P, As or N; m represents an integer of 0-7; n represents an integer of 0-3; A1-A4 independently represent hydrogen, fluorine, chlorine, bromine, benzoyl or acetyl, or alternatively A2 and A3 combine together to form a ring.
    Type: Application
    Filed: March 2, 2007
    Publication date: January 22, 2009
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Masakatsu Shibasaki, Motomu Kanai, Ikuo Fujimori, Kenzo Yamatsugu, Shin Kamijo
  • Publication number: 20080319234
    Abstract: A promoter can have utility in selective heterogeneous oxidation of arylalkyl hydrocarbons such as, for example, cyclohexyl benzene and/or sec-butyl benzene to form hydroperoxides. The promoter can include the product of contacting a solid support comprising a metal oxide surface and an iron compound. The solid support can include, for example, titanium dioxide and/or an iron oxide such as magnetite and can have magnetic susceptibility. A method for the oxidation of arylalkyl hydrocarbons to form hydroperoxides can include contacting 16 an arylalkyl hydrocarbon with oxygen in the presence of the promoter under catalytic oxidation conditions to form arylalkyl hydroperoxide, which can then be converted to phenol via cleavage 26. The method can include recovery 22 of the promoter from the arylalkyl hydroperoxide and can further include recycling the recovered promoter to the contacting 16. Where the solid support has magnetic susceptibility, the recovery 22 can include magnetic separation of the promoter.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Inventors: Matthew W. Holtcamp, Renuka N. Ganesh, Tan-Jen Chen, Jihad M. Dakka
  • Publication number: 20080312389
    Abstract: The invention is directed to a process for the preparation of a catalyst component wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2-x and each Alk, independently represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor. The invention also relates to a polymerization catalyst comprising the catalyst component and furthermore the invention relates to the polymerization of an olefin in the presence of the polymerization catalyst comprising the catalyst component.
    Type: Application
    Filed: November 11, 2005
    Publication date: December 18, 2008
    Inventors: Yves Johann Elizabeth Ramjoie, Sergei Andreevich Sergeev, Mark Vlaar, Vladimir Aleksandrovich Zakharov, Gennadii Dimitrievich Bukatov
  • Publication number: 20080306219
    Abstract: An olefin polymerization catalyst having (A) a transition metal compound (2a) or (3a) and (B) at least one compound selected from (B-1) an organometallic compound, (B-2) an organoaluminum oxy compound and (B-3) a compound capable of forming an ion pair by reacting with the transition metal compound (A).
    Type: Application
    Filed: August 4, 2008
    Publication date: December 11, 2008
    Inventors: Shigenobu IKENAGA, Keiji OKADA, Hiroshi TAKAYASU, Norihide INOUE, Naritoshi HIROTA, Hiromu KANEYOSHI, Munehito FUNAYA, Koji KAWAI, Nobuo KAWAHARA, Shinichi KOJOH, Norio KASHIWA, Ryoji MORI
  • Publication number: 20080299342
    Abstract: Catalyst for the polymerization and/or copolymerization of olefins which has a chromium content of from 0.01 to 5% by weight, based on the element in the finished catalyst, is supported on a finely divided inorganic support and is obtainable by concluding calcination at temperatures of from 350 to 1050° C. and has a zinc content of from 0.01 to 10% by weight, based on the element in the finished catalyst.
    Type: Application
    Filed: June 9, 2005
    Publication date: December 4, 2008
    Applicant: BASELL POLYOLEFINE GMGH
    Inventors: Martin Schneider, Jan Gohre, Rainer Karer, Wolfgang Rohde, Anke Bold, Martin Lux, Ernst Fischer, Christoph Kiener
  • Patent number: 7456127
    Abstract: An organoaluminum reaction product of A.) a ligand of the formula I, wherein R1 represents an alkyl, aryl, arylalkyl, or alkylaryl group, a C3-24 silyl group, or hydrogen, R2, R3, R4, R5, R6, R7, R12, and R13 are the same or different and represent an alkyl, aryl, arylalkyl, or alkylaryl group, a C3-24 silyl group, halide, or hydrogen, with the proviso that at least one of the groups R4 and R13 represents hydrogen, R8 represents an alkoxy, alkyl, aryl, arylalkyl, or alkylaryl group, a C3-24 silyl group, halide, hydroxyl radical, or hydrogen, E represents O, S, Se, or Te, and n is an integer from 1 to 4, and B.) an aluminum compound of formula AlR9R10R11, wherein R9 and R10 are the same or different and represent C1-20 alkyl, aryl, arylalkyl, or alkylaryl group, or hydrogen, and R11 is a C1-20 alkyl, aryl, arylalkyl, alkylaryl or alkoxy group, hydrogen, or halogen is useful as a polymerization catalyst, particularly for the homopolymerization or copolymerization of an alkylene oxide.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 25, 2008
    Inventors: Ioana Annis, Eric P. Wasserman
  • Publication number: 20080281059
    Abstract: A magnesium compound represented by the formula (I): Mg(OC2H5)2?n(OR1)n ??(I) where R1 is CmH2m+1 (where m is an integer of from 3 to 10), and n is a numerical value satisfying 0<n<0.35; a solid catalyst component for olefin polymer using the magnesium compound; a catalyst for olefin polymer; and methods of producing olefin copolymers such as a propylene-based random copolymer and propylene-based block copolymer by using the catalyst for olefin polymer.
    Type: Application
    Filed: April 19, 2005
    Publication date: November 13, 2008
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Nobuhiro Yabunouchi, Takehito Konakazawa, Takanori Sadashima, Kiyokazu Katayama, Kenji Tanaka, Hideaki Noda
  • Publication number: 20080242533
    Abstract: The present invention provides a method for producing a catalyst comprising the steps of: producing a metal salt solution containing salts of one or more metals; dispersing the metal salt solution, an organic matter and a porous carrier made of one or more metal oxides in a solvent to form a composite complex comprising one or more metal ions having 10 to 50,000 atoms, the organic matter bonded to the metal ions, and simultaneously make the composite complex carried on the porous carrier; and calcining the carrier having the composite complex carried thereon. The method may further comprise a step of reducing the metal ions on the porous carrier by reducing the carrier, after the step of making the composite complex carried on the carrier.
    Type: Application
    Filed: March 22, 2005
    Publication date: October 2, 2008
    Inventor: Masayuki Saito
  • Patent number: 7429684
    Abstract: A process for preparing ?-olefins from ethylene wherein the ?-olefins are substantially free of olefins having greater than 12 carbon atoms comprises contacting ethylene under oligomerization conditions with a 2,6-bis(phenylimino) pyridyl metal halide catalyst in which the metal is Fe, Ni, Co or Pd.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: September 30, 2008
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Abhimanyu O. Patil, Stephen Zushma
  • Patent number: 7429549
    Abstract: Rubbery polymers made by anionic polymerization can be coupled with tin halides or silicon halides to improve the characteristics of the rubber for use in some applications, such as fire treads. In cases where the rubbery polymer was synthesized utilizing a polar modifier it is difficult to attain a high level of coupling. This invention is based upon the unexpected finding that coupling efficiency can be significantly improved by conducting the coupling reaction in the presence of a lithium salt of a saturated aliphatic alcohol, such as lithium t-amylate. This invention discloses a process for coupling a living rubbery polymer that comprises reacting the living rubbery polymer with coupling agent selected from the group consisting of tin halides and silicon halides in the presence of a lithium salt of a saturated aliphatic alcohol.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: September 30, 2008
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu
  • Publication number: 20080234447
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Publication number: 20080234125
    Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.
    Type: Application
    Filed: June 2, 2008
    Publication date: September 25, 2008
    Inventors: Yongqing Zhang, Stephen J. Golden
  • Publication number: 20080227935
    Abstract: The invention relates to methods for producing cesium hydroxide solutions during which: cesium-containing ore is disintegrated with sulfuric acid while forming a cesium aluminum sulfate hydrate, which is poorly soluble at low temperatures; the formed cesium alum is separated away in the form of a solution from the solid ore residues; the aluminum is precipitated out of the cesium alum solution while forming a cesium sulfate solution; the formed cesium sulfate solution is reacted with barium hydroxide or stontium hydroxide while forming a cesium hydroxide solution, and; the formed cesium hydroxide solution is concentrated and purified.
    Type: Application
    Filed: March 24, 2006
    Publication date: September 18, 2008
    Inventors: Bernd Hirthe, Bernd Proft, Jochen Winkler, Udo Blumenthal, Gerhard Fink, Klaus Hauschild
  • Patent number: 7425520
    Abstract: A supported catalyst for hydrogenating nitro groups of halonitro compounds manufactured from a support, a solvent, and one or more types of organometallic complexes. The organometallic complexes have the formula: wherein, R1-R6 are independently an R, OR, OC(?O)R, halogen, or combination thereof, where R stands for an alkyl or aryl group; Y1-Y4 are independently an O, S, N, or P atom; and M is a metal atom. The supported catalysts show much higher selectivity and activity when used to hydrogenate nitro groups on halonitro aromatic compounds than catalyst currently being used for such hydrogenation.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: September 16, 2008
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Changkun Liu, Bing Zhou
  • Publication number: 20080214386
    Abstract: Provided are a solid catalyst which gives a cyclic carbonate at a high yield and a high selectivity, which is stable and which may be readily separated after reaction; and a method of industrially advantageous, inexpensive and safe production of a cyclic carbonate by the use of the catalyst. The catalyst contains an inorganic solid substance having a surface modified with an ionic substance containing a Group 15 element; or contains an ionic substance containing a Group 15 element, and an inorganic solid substance. The modifying group for surface modification of an inorganic solid substance is an ionic substance containing a Group 15 element. The ionic substance containing a Group 15 element is at least one substance selected from organic phosphonium salts, organic ammonium salts, organic arsonium salts and organic antimonium salts.
    Type: Application
    Filed: March 1, 2005
    Publication date: September 4, 2008
    Inventors: Toshikazu Takahashi, Tsutomu Watahiki, Hiroyuki Yasuda, Toshiyasu Sakakura
  • Publication number: 20080214388
    Abstract: Methods are provided to prepare a catalyst system that includes at least one titanium compound, at least one magnesium compound, at least one electron donor compound, at least one activator compound, and at least one silica support material, the at least one silica support material having a median particle size in the range of from 20 to 50 microns with no more than 10% of the particles having a size less than 10 microns and no more than 10% of the particles having a size greater than 50 microns and average pore diameter of at least ?220 angstroms.
    Type: Application
    Filed: April 17, 2008
    Publication date: September 4, 2008
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Maria A. Apecetche, Phuong A. Cao, Michael D. Awe, Ann M. Schoeb-Wolters, Ryan W. Impelman
  • Publication number: 20080206562
    Abstract: The disclosure relates to metal nanoparticle compositions and methods of making such nanoparticle compositions that are useful for the production of electrically conductive features and catalysts.
    Type: Application
    Filed: January 12, 2008
    Publication date: August 28, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Galen D. Stucky, Nanfeng Zheng
  • Patent number: 7414099
    Abstract: Embodiments of the present invention include a method of polymerizing olefins comprising contacting olefins with a catalyst composition made by the process of combining a hindered polyalicyclic alkyl catalyst precursor with a particulate inorganic oxide for a deposition time greater than 2 hours to form a catalyst composition. Embodiments of the present invention also include catalyst compositions comprising a hindered polyalicyclic alkyl catalyst precursor made by the process of combining the hindered polyalicyclic alkyl catalyst precursor with a particulate inorganic oxide for a deposition time greater than 2 hours to form the catalyst composition.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: August 19, 2008
    Assignee: Univation Technologies, LLC
    Inventors: Maria A. Apecetche, John Moorhouse, Mark G. Goode, Ronald S. Eisinger, Kevin J. Cann
  • Patent number: 7399822
    Abstract: (Salph or methoxy salph) Co (initiating ligand) catalyze homopolymerizing rac-PO to produce pure highly isotactic PPO and rac-1-butylene oxide to produce pure isotactic poly(butylene oxide). A product is unfractionated isotactic PPO of m-dyad content >81%, normally at least 99%.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 15, 2008
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Geoffrey W. Coates, Scott D. Allen, Claire Cohen, Kathryn Peretti, Hiroharu Ajiro
  • Publication number: 20080132404
    Abstract: A process for producing various organic carbonates by performing transesterification and disproportionation reactions in dual vapor/liquid phase mode preferably in the presence of solid catalyst composition selected from the group consisting of oxides, hydroxides, oxyhydroxides or alkoxides of two to four elements from Group IV, V and VI of the Periodic Table supported on porous material which has surface hydroxyl groups and the method of reactivating catalyst deactivated by polymer deposition by contacting the deactivated catalyst with a solution of hydroxy containing compound in a solvent such as benzene or THF.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 5, 2008
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Publication number: 20080125555
    Abstract: A catalyst for olefin polymerization of the present invention includes a solid titanium catalyst component (I) including titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom, and an organometal compound catalyst component (II). When this catalyst for olefin polymerization is used, an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Application
    Filed: July 26, 2007
    Publication date: May 29, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Publication number: 20080103040
    Abstract: The invention relates to a catalytic composition comprising: a first component which is at least a component with one or more metals from groups 3A, 4A, 5A, 6A, 7A, 8, 1B, 2B, 3B, 4B; and a second component selected from (1) at least one ionic liquid which consists of a compound formed by cations and anions and which is a liquid at ambient temperature, (ii) a matrix to which the first component is bound or on which it is supported, and (iii) a combination of the two. The invention relates to the use of said catalytic composition in a method for the insertion of carbon dioxide into an organic compound and, preferably, a compound selected from epoxides, acetals and orthoesters. The invention also relates to catalytic compositions comprising said metallic compounds.
    Type: Application
    Filed: August 24, 2005
    Publication date: May 1, 2008
    Inventors: Mercedes Alvaro Rodriguez, Esther Carbonell Llopis, Avelino Corma Canos, Hermenegildo Garcia Gomez
  • Patent number: 7358209
    Abstract: A transition metal complex having the following Formula (A): wherein the monovalent groups R1 and R2 are —Ra, —ORb, —NRcRd, and —NHRe: the monovalent groups Ra, Rb, Rc, Rd and Re, and the divalent group R3 are (i) aliphatic hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon (v) heterocyclic groups and (vi) heterosubstituted derivatives of said groups (i) to (v); M is a Group (3) to (11) or lanthanide metal; E is phosphorus or arsenic; X is an anionic group, L is a neutral donor group; n is (1) or (2), y and z are independently zero or integers, such that the number of X and L groups satisfy the valency and oxidation state of the metal M. n is preferably (2) and the two resulting R1 groups are preferably linked.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 15, 2008
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, Grant Berent Jacobsen, David John Jones, Richard James Long
  • Patent number: 7321037
    Abstract: A photosensitizer dye is provided. The photosensitizer dye contains a Ru complex represented by the following formula (1): wherein Y1 and Y2 independently represent hydrogen atom (H), lithium (Li), sodium (Na) or tetra-alkyl ammonium groups (as represented by the following general formula (2)). wherein A, B, C and D independently represents CmH2m+1 (m=1˜6).
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: January 22, 2008
    Assignee: National Central University
    Inventors: Chun-Guey Wu, Chia-Yuan Chen, Shi-Jhang Wu
  • Patent number: 7314844
    Abstract: A process for cyanating an aldehyde is provided. The process comprises reacting the aldehyde with: i) a cyanide source which does not comprise a Si—CN bond or a C—(C?O)—CN moiety; and ii) a substrate susceptible to nucleophilic attack not comprising a halogen leaving group; in the presence of a chiral catalyst. Preferably, the chiral catalyst is a chiral vanadium or titanium catalyst. The cyanide source is preferably an alkali metal cyanide and the substrate susceptible to nucleophilic attack not comprising a halogen leaving group is a carboxylic anhydride.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: January 1, 2008
    Assignees: King's College London, Nesmeyanov Institute of Organoelement Compounds
    Inventors: Michael North, Yuri Belokon
  • Patent number: 7301025
    Abstract: Compounds of the formula wherein M is either (1) a metal ion having a positive charge of +p wherein p is an integer which is at least 2, said metal ion being capable of forming a compound with at least two chromogen moieties, or (2) a metal-containing moiety capable of forming a compound with at least two chromogen moieties, z is an integer representing the number of chromogen moieties associated with the metal and is at least 2, and R1, R2, R3, R4, R5, R6, R7, a, b, c, d, Y, Q?, A, and CA are as defined herein.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: November 27, 2007
    Assignee: Xerox Corporation
    Inventors: Jeffery H. Banning, Bo Wu, James M. Duff, Wolfgang G. Wedler, Jule W. Thomas, Jr., Randall R. Bridgeman
  • Patent number: 7288500
    Abstract: A supported catalyst for hydrogenating nitro groups of halonitro compounds manufactured from a support, a solvent, and a plurality of organometallic complexes. The organometallic complexes have the formula: wherein, R1-R6, are independently an R, OR, OC(?O)R, halogen, or combination thereof, where R stands for an alkyl or aryl group; Y1-Y4 are independently an O, S, N, or P atom; and M is a metal atom. The supported catalysts show much higher selectivity and activity when used to hydrogenate nitro groups on halonitro aromatic compounds than catalyst currently being used for such hydrogenation.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: October 30, 2007
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Changkun Liu, Bing Zhou
  • Patent number: 7279537
    Abstract: There are provided a transition metal complex of formula (1): wherein M represents an element of Group 6 of Periodic Table of Elements, A and A? are the same or different, and represent a substituted or unsubstituted C1-10 alkylene group or the like, Y represents a substituted or unsubstituted C1-10 alkyl group, or the like, X1 and X2 are the same or different, and represent a hydrogen atom, a halogen atom, a substituted or unsubstituted C1-10 alkyl group, or an amino group disubstituted with C1-20 hydrocarbon, and n1 is an integer of 0 to 3, an olefin polymerization catalyst obtained by combining a transition metal complex with an organic aluminum or aluminoxane, a polymerization catalyst further containing a boron compound, and a process for producing olefin polymer using the polymerization catalyst.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 9, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yuka Otomaru, Hidenori Hanaoka, Takayuki Higashii
  • Patent number: 7276463
    Abstract: A catalyst having a high catalyst activity, which enables the production of an ?-olefin polymer improved in stereoregularity by decreasing an amorphous component, and a production method for the ?-olefin polymer, are developed. Described are a catalyst for polymerizing ?-olefin comprising a combination of (A) a solid catalyst component containing magnesium, titanium and a halogen as an essential component, which may contain if necessary, a silicon compound, an organoaluminum compound, and an electron donor; (B) an organoaluminum compound; and (C) a compound containing a C(?O)N bond such as an amide or an urea; which may further contain if necessary, (D) a silicon compound or a diether compound; and a production method for an ?-olefin polymer using the same.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: October 2, 2007
    Assignee: Japan Polypropylene Corporation
    Inventors: Toshihiko Sugano, Kouji Nakayama, Shigeyuki Matsunami
  • Patent number: 7268250
    Abstract: A highly efficient process is provided for producing an optically active compound having high optical purity by an asymmetric reaction using as a catalyst a transition metal complex having an optically active nitrogen-containing compound as an asymmetric ligand.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: September 11, 2007
    Assignee: Kanto Kagaku Kabushiki Kaisha
    Inventors: Masahito Watanabe, Kunihiko Murata, Takao Ikariya
  • Patent number: 7247687
    Abstract: This invention relates to a transition metal compound represented by the formula LMX wherein M is a Group 3 to 11 metal L is a bulky bidentate or tridentate neutral ligand that is bonded to M by two or three heteroatoms and at least one heteroatom is nitrogen; X is a substituted or unsubstituted catecholate ligand provided that the substituted catecholate ligand does not contain a 1,2-diketone functionality.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Vladimir Kuzunich Cherkasov, Michael Paviovich Bubnov, Nikolay Olegovich Druzhkov, Valentina Nikolavena Glushakova, Irina Alexandrovna Teplova, Nina Aleksandrovna Skorodumova, Gleb Arsent′evich Abakumov, Cynthia A. Ballinger, Kevin R. Squire, Jo Ann Marie Canich, Enock Berluche, Lisa Saunders Baugh, Donald Norman Schulz, Baiyi Zhao
  • Patent number: 7241714
    Abstract: Ligands, compositions, metal-ligand complexes and arrays with substituted bridged bis-biaromatic ligands, and methods of making and using the same, are disclosed that are useful in the catalysis of transformations such as the polymerization of monomers into polymers. The catalysts have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, propylene or styrene. The catalysts also polymerize propylene into isotactic polypropylene.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 10, 2007
    Assignee: Symyx Technologies, Inc.
    Inventors: Thomas R. Boussie, Oliver Brümmer, Gary M. Diamond, Anne M. LaPointe, Margarete K. Leclerc, Cynthia Micklatcher, Pu Sun, Xiaohong Bei
  • Patent number: 7241715
    Abstract: New ligands and compositions with bridged bis-aromatic ligands are disclosed that catalyze the polymerization of monomers into polymers. These catalysts with metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, propylene or styrene. The catalysts also polymerize propylene into isotactic polypropylene.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 10, 2007
    Assignee: Symyx Technologies, Inc.
    Inventors: Thomas R. Boussie, Oliver Brümmer, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, James A. W. Shoemaker
  • Patent number: 7211534
    Abstract: A magnesium halide support material for a polyolefin catalysts is disclosed. The magnesium halide of present invention is prepared by reacting magnesium with an alkylhalide in a non-polar hydrocarbon solvent. Preparation of the support does not require the use electron donating solvents and therefore does not require extensive washing to remove the solvent from the support.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: May 1, 2007
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Honglan Lu, Gapgoung Kong, Zhongyang Liu, Chih-Jian Chen
  • Patent number: 7208437
    Abstract: A catalyst is synthesized by a method in which a catalytic metal such as platinum or another noble metal is dispersed onto a support member. A transition metal macrocycle is also adsorbed onto the support, and the support is heat treated so as to at least partially pyrolyze the macrocycle and anchor the transition metal to the support. The catalytic metal is alloyed with the transition metal either during the pyrolysis step, or in a separate step. The catalyst has significant utility in a variety of applications including use as an oxygen reduction catalyst in fuel cells.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: April 24, 2007
    Assignee: T/J Technologies, Inc.
    Inventors: Devon Renock, Intae Bae, Pu Zhang, Timothy K. Sendek, Elizabeth Mueller, Hanwei Lei
  • Patent number: 7208642
    Abstract: A production process and a catalyst are provided, which can be less decreased in activity of the catalyst even when CO2, water and the like are present in the starting material and/or the reaction system, and which can produce a formic ester or a methanol at a low temperature and a low pressure. The present invention relates to a process for producing methanol, comprising reacting carbon monoxide with an alcohol in the presence of an alkali metal-type catalyst, and/or an alkaline earth metal-type catalyst to produce a formic ester, wherein a hydrogenolysis catalyst of formic ester and hydrogen are allowed to be present together in the reaction system to hydrogenate the produced formic ester and thereby obtain a methanol.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: April 24, 2007
    Assignee: Nippon Steel Corporation
    Inventors: Kaoru Fujimoto, Noritatsu Tsubaki, Kenichiro Fujimoto
  • Patent number: 7196032
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 14 to Group 16 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: March 27, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Patent number: 7169875
    Abstract: A composition suitable for use as a catalyst for the reaction of an isocyanate compound or prepolymer thereof with an alcohol to form a polyurethane comprises a mixture of (a)an organometallic compound selected from: (i) a compound of formula M(RO)4, where M is titanium, zirconium, hafnium, aluminium, cobalt or iron or a mixture of these metals and OR is the residue of an alcohol ROH in which R comprises an (optionally substituted) C1-30 cyclic, branched or linear, alkyl, alkenyl, aryl or alkyl-aryl group or a mixture thereof, or; (ii) a complex of titanium, zirconium and/or hafnium and an acetoacetate ester and (b) a coordinating compound selected from a ketone, aldhehyde, carboxylic acid, sulphonic acid, nitride or an imine. An isocyanate composition containing a catalyst of the claimed composition is also described.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: January 30, 2007
    Assignee: Johnson Matthey PLC
    Inventor: Bruno Frederic Stengel
  • Patent number: 7135428
    Abstract: A catalyst solution for the anionic polymerization of lactones and/or lactams comprises a salt of at least one compound of the general formula I In this formula (I), R1 is H or an aliphatic, cycloaliphatic or aromatic radical with 1 to 12 C atoms which can also have heteroatoms or hetero groups, the radical R2, which is the same or different, is H, halogen, C1–C5-alkyl, ethoxy or wherein said solvation agent S comprises N-methylpyrrolidone, N-octylpyrrolidone, N-cyclohexylpyrrolidone, N-octylcaprolactam, tetrabutyl urea or mixtures thereof methoxy, and n=1, 2 or 3, and wherein the salt is dissolved in an aprotic solvation agent S.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: November 14, 2006
    Assignee: Ems-Chemie AG
    Inventors: Eduard Schmid, Heinz Hoff, Ornulf Rexin
  • Patent number: 7115539
    Abstract: A metal compound obtained by a process comprising the step of contacting, in a specific ratio, a compound represented by the formula M1L1r, a compound represented by the formula R1s?1TH, and a compound represented by the formula R24?nJ(OH)n; a catalyst component for addition polymerization comprising the metal compound; a catalyst for addition polymerization using the catalyst component; and a process for producing an addition polymer using the catalyst.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: October 3, 2006
    Assignee: Sumitomo Chemical Company Limited
    Inventors: Kazuo Takaoki, Hideki Oshima, Makoto Satoh