Molybdenum Containing Patents (Class 502/206)
  • Patent number: 6562752
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 13, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6509289
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: January 21, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6497849
    Abstract: This invention relates to a process for purifying a heteropolyacid which comprises: subjecting an aqueous solution comprising (i) the heteropolyacid and (ii) salt impurities to at least one liquid/liquid extraction step with an organic solvent, characterized in that the organic solvent comprises a dihydrocarbyl ether having at least 5 carbon atoms.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: December 24, 2002
    Assignee: BP Chemicals Limited
    Inventors: Martin Philip Atkins, Benjamin Patrick Gracey, James Noel Martin Hegarty, Mark Royston Smith
  • Patent number: 6432867
    Abstract: Sulfided catalysts produced by sulfurizing supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, wherein the catalyst is brought into contact with at least one source of elemental sulfur e.g. flowers of sulfur in an atmosphere of at least one reducing gas other than hydrogen e.g. carbon monoxide. The catalyst is suitable for converting hydrocarbon-containing feeds, such as hydrocracking and hydrotreatment.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: August 13, 2002
    Assignee: Insitut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Publication number: 20010044376
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Application
    Filed: December 14, 2000
    Publication date: November 22, 2001
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Patent number: 6316382
    Abstract: The invention concerns a process for sulphurizing supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB, group VB and group VIB, said process being characterized in that said catalyst is pre-reduced with at least one reducing gas other than hydrogen before sulphurizing said catalyst. The invention also concerns the sulfide catalysts obtained by the process of the present invention as well as the use of the sulfide catalyst in a process for hydrocracking and hydrotreatment of hydrocarbon-containing feeds.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 13, 2001
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Publication number: 20010004627
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor-phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Application
    Filed: December 5, 2000
    Publication date: June 21, 2001
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6242378
    Abstract: The invention concerns a process for sulphurising supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, said process being characterized in that said catalyst is sulphurised using a mixture containing at least one source of elemental sulphur and at least one source of carbon in an autogenous or inert atmosphere. Also disclosed are sulphurised catalysts obtained by the process of the invention, the use of the catalysts in processes for hydrocracking and hydrotreatment of hydrocarbon-containing feeds.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 5, 2001
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6231750
    Abstract: The invention provides a hydrocracking catalyst comprising at least one mineral matrix, at least one beta zeolite, at least one group VB element or at least one mixed sulphide phase comprising sulphur, optionally at least one group VIB or group VIII element, optionally at least one element selected from the group formed by silicon, boron or phosphorous, and optionally at least one group VIIA element.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 15, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6149799
    Abstract: The invention concerns a catalyst for hydrorefining and hydroconverting hydrocarbon feeds, comprising a mixed sulphide comprising at least two elements selected from elements with an atomic number selected from the group formed by the following numbers: 3, 11, 12, 19 to 33, 37, to 51, 55 to 83, 87 to 103, characterized in that the mixed sulphide results from a combination of at least one element the sulphide of which has a bond energy between the metal and sulphur of less than 50.+-.3 kcal/mol (209.+-.12 kJ/mol) and at least one element the sulphide of which has a bond energy between the metal and sulphur of more than 50.+-.3 kcal/mol (209.+-.12 kJ/mol), the mixed sulphide thus having a mean bond energy between the metal and sulphur which is in the range 30 to 70 kcal/mol (125 to 293 kJ/mol).
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: November 21, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Pascal Raybaud, Herve Toulhoat, Slavik Kasztelan
  • Patent number: 6090745
    Abstract: The invention provides a method for preparing catalysts, containing metals of groups VI and VIII on a carrier. The metals of groups VI and VIII metals are introduced in the form of a compound of formula M.sub.x A B.sub.12 O.sub.40 in which M is cobalt and/or nickel, A is phosphorus, silicon and/or boron, B is molybdenum and/or tungsten and x is 2 or more, 2.5 or more, or 3 or more depending on whether A is respectively phosphorus, silicon or boron. The catalysts thus obtained are useful for hydro-treating hydrocarbon feedstocks.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: July 18, 2000
    Assignee: Elf Antar France
    Inventors: Jean-Luc DuBois, Edmond Payen, Michel Fournier, Pascal Blanchard, Anne Griboval
  • Patent number: 6051528
    Abstract: An amorphous alloy catalyst containing nickel and phosphorus comprising a porous carrier, a Ni--P amorphous alloy supported on the carrier, and a pre-supported catalytic component for inducing and catalyzing the formation of the Ni--P amorphous alloy onto the carrier. In a preferred embodiment, the catalyst contains 0.15-30 wt % of Ni, based on the total weight of the catalyst, 0.03-10 wt % of P, based on the total weight of the catalyst, 0.01-3.5 wt % of B, based on the total weight of the catalyst. The nickel exists in the form of Ni--P or Ni--B amorphous alloy, the atomic ration Ni/P in the Ni--P amorphous alloy is in range of 0.5-10, the atomic ratio Ni/B in the Ni--B amorphous alloy is in range of 0.5-10. The catalyst may further comprise from 0.01 to 20 wt % of a metal additive (M), based on the total weight of the catalyst. The metal additive (M) refers to one or more metal elements, except Ni, which can be reduced from the corresponding salt into its elemental form.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: April 18, 2000
    Assignees: China Petro-Chemical Corporation, Research Institue of Petroleum Processing Sinopec
    Inventors: Aizeng Ma, Wanzhen Lu, Enze Min
  • Patent number: 6034027
    Abstract: Disclosed is a catalyst having the general formula ##STR1## where Q is a ligand containing the ring ##STR2## R is hydrogen, N(R').sub.2, OR', or R', each R' is independently selected from alkyl from C.sub.1 to C.sub.10, aryl from C.sub.6 to C.sub.15, alkaryl C.sub.7 to C.sub.15, and aralkyl from C.sub.7 to C.sub.15, each X is independently selected from hydrogen, halogen, alkoxy from C.sub.1 to C.sub.10, dialkylamino from C.sub.1 to C.sub.10, methyl, ##STR3## each R.sub.1 is independently selected from halogen, alkoxy from C.sub.1 to C.sub.10, and R', L is ##STR4## Q, or X, where one .pi.-ligand can be bridged to second .pi.-ligand, B is an optional base, "n" is 0 to 5, and M is a Group 3-10 metal.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: March 7, 2000
    Assignee: Equistar Chemicals, LP
    Inventors: Ramesh Krishnamurti, Sandor Nagy, Bradley P. Etherton
  • Patent number: 6013597
    Abstract: An oxide catalyst comprising the elements Mo, V and Nb with small amounts of phosphorus, boron, hafnium, Te and/or As. The modified catalyst provides both higher selectivity and yield of acetic acid in the low temperature oxidation of ethane with molecular oxygen-containing gas. A process for the higher selective production of acetic acid by the catalytic oxidation of ethane with oxygen, in the presence of the improved catalyst.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: January 11, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Mohammed H. Al-Hazmi, Edouard Mamedov
  • Patent number: 5948243
    Abstract: A composition comprises a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component and a support component which comprises aluminum, zirconium, and a borate. A process for making the composition comprises the steps of (1) contacting an aluminum salt, a zirconium salt, and an acidic boron compound under a condition sufficient to effect the production of a support component comprising aluminum, zirconium, and borate and (2) combining a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component with the support component. Also disclosed are processes for removing organic sulfur compounds or organic nitrogen compounds, or both, from hydrocarbon-containing fluids which comprise contacting a hydrocarbon-containing fluid, with a hydrogen-containing fluid, in the presence of a catalyst composition.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: September 7, 1999
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 5851946
    Abstract: The invention relates to the use of intramolecularly stabilized organometallic compounds as components in coordination catalyst systems, corresponding coordination catalyst systems and processes for the preparation of polymers by coordination polymerization of unsaturated hydrocarbons by catalysed metathesis of alkenes and alkynes using such coordination catalyst systems.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: December 22, 1998
    Assignee: Merck Patent Gesellschaft mit Beschrankter Haftung
    Inventors: Ludwig Pohl, Eike Poetsch, Hans-Ludwig Hirsch, Herbert Schumann, Karin Weiss
  • Patent number: 5817593
    Abstract: This invention includes catalysts comprising rhenium (atomic number 75), nickel, cobalt, boron and copper and/or ruthenium impregnated on a support material and a process for preparing said catalyst, said process comprising (i) impregnating a mixture of metals comprising rhenium, cobalt, copper and/or ruthenium, boron and nickel on a support material selected from the group consisting of alpha-alumina, silica, silica-alumina, kieselguhrs or diatomaceous earths, and silica-titanias; and (ii) activating said catalyst by heating the catalyst in the presence of hydrogen at an effective temperature preferably in the range of about 150.degree. C. to about 500.degree. C. for a sufficient period preferably of from about 30 minutes to about 6 hours.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: October 6, 1998
    Assignee: The Dow Chemical Company
    Inventors: Dane Chang, Fred A. Sherrod
  • Patent number: 5609750
    Abstract: A catalyst composition for converting hydrocarbons in a hydrotreatment process (hydrodesulfurization and/or hydrodenitrogenization) and simultaneously cracking them, containing an alumina-silica-alumina carrier built up from alumina and silica-alumina, on which hydrogenation metals, such as molybdenum, nickel, and/or cobalt, have been provided and which also contains a catalytically active amount of boron, generally in the range of 1 to 20 wt. %. The invention also relates to a process for the preparation of such a catalyst, with boron being provided ahead of the Group VIII component. The carrier material used may be made up of mixtures of alumina and amorphous silica-alumina or of mixtures of alumina and silica-coated alumina. The catalyst composition is highly suitable for converting vacuum gas oil into middle distillate oils by hydrotreating.
    Type: Grant
    Filed: April 26, 1994
    Date of Patent: March 11, 1997
    Assignee: Akzo Nobel NV
    Inventors: Pieter J. Nat, Jacob L. de Booys, Johannes W. F. M. Schoonhoven
  • Patent number: 5494875
    Abstract: A carrier suitable for preparing a catalyst for hydrofining hydrocarbon oils which has a high ability to eliminate metals contained in the hydrocarbon oils and an improved metal tolerance as well as said catalyst are provided.The carrier of the present invention is an alumina-containing carrier which shows a peak at 2.theta. of 27.degree. in the powder X-ray diffraction pattern when carrying Mo and Co or one or more other metals selected from among metals of the groups VIA and VIII in the periodic table together with Mo and Co.
    Type: Grant
    Filed: July 13, 1993
    Date of Patent: February 27, 1996
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Kazushi Usui, Shigenori Nakashizu, Kentarou Ishida, Eiko Kogure
  • Patent number: 5472929
    Abstract: A reversible heat-sensitive recording medium comprising a reversible heat-sensitive recording layer containing a resin matrix and an organic low molecular weight material, and an overcoat layer, wherein an intermediate layer comprising an ultraviolet ray-crosslinkable or electron beam-crosslinkable resin as a main component is provided between the reversible heat-sensitive recording layer and the overcoat layer.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: December 5, 1995
    Assignee: Nitto Denko Corporation
    Inventors: Yasushi Inoue, Yoshihiro Hieda, Masaaki Kishimoto
  • Patent number: 5438028
    Abstract: A method of enhancing the activity of a catalyst for the hydroprocessing of hydrocarbons, comprising:(a) applying a modifying element dissolved in a solvent onto the surface of a finished catalyst;(b) drying said modified finished catalyst to remove all free solvent from said catalyst;(c) optionally, heating said dried, modified finished finished catalyst at a temperature of about 120.degree. C. to about 1000.degree. C. at a rate of 1.degree.-20.degree. C. per minute, and holding said dried catalyst at a temperature of about 120.degree. C. to about 1000.degree. C. up to 48 hours to provide an enhanced finished catalyst; and(d) recovering said enhanced finished catalyst.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: August 1, 1995
    Assignee: Texaco Inc.
    Inventors: Jeffrey G. Weissman, Elaine C. DeCanio, Thomas G. C. Nelson, Denise C. Tebbens
  • Patent number: 5422326
    Abstract: When a catalyst for producing methacrylic acid is prepared by shaping a catalyst component represented by the general formula P.sub.a Mo.sub.b V.sub.c X.sub.d Y.sub.e Z.sub.f O.sub.g wherein P, Mo, V, X, Y, Z, a, b, c, d, e, f and g are as defined in the specification, a catalyst capable of giving methacrylic acid in high yield is provided by adding one or more organic high-molecular weight compounds with an average particle size of 0.01-10 .mu.m, and carrying out heat treatment before use as a catalyst.
    Type: Grant
    Filed: February 8, 1993
    Date of Patent: June 6, 1995
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Toru Kuroda, Motomu Ohkita
  • Patent number: 5366945
    Abstract: There is provided a catalyst comprising a heteropoly acid, such as phosphotungstic acid, supported on a mesoporous crystalline material, such as M41S. A particular form of this M41S support is designated as MCM-41. There is also provided a method for preparing this catalyst by impregnating the heteropoly acid on the support. There is also provided a process for using this catalyst to catalyze acid catalyzed reactions, such as the isomerization of paraffins and the alkylation of aromatics.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: November 22, 1994
    Assignee: Mobil Oil Corp.
    Inventors: Charles T. Kresge, David O. Marler, Gayatri S. Rav, Brenda H. Rose
  • Patent number: 5364825
    Abstract: Multimetal oxide compositions of the formula I[X.sup.1.sub.a X.sup.2.sub.b O.sub.x ].sub.p [X.sup.3.sub.c X.sup.4.sub.d X.sup.5.sub.e X.sup.6.sub.f X.sup.7.sub.g X.sup.2.sub.h O.sub.y ].sub.q(I)whereX.sup.1 is bismuth, tellurium, antimony, tin and/or copper,X.sup.2 is molybdenum and/or tungsten,X.sup.3 is an alkali metal, thallium and/or samarium,X.sup.4 is an alkaline earth metal, nickel, cobalt, copper, manganese, zinc, tin, cadmium and/or mercury,X.sup.5 is iron, chromium, cerium and/or vanadium,X.sup.6 is phosphorus, arsenic, boron and/or antimony,X.sup.7 is a rare-earth metal, titanium, zirconium, niobium, tantalum, rhenium, ruthenium, rhodium, silver, gold, aluminum, gallium, indium, silicon, germanium, lead, thorium and/or uranium,a is from 0.01 to 8,b is from 0.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: November 15, 1994
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Peter Neumann, Hans Martan, Hermann Petersen, Walter Doerflinger
  • Patent number: 5324702
    Abstract: Compositions comprising certain metal-containing materials distributed interactively on a deboronated HAMS-1B crystalline borosilicate molecular sieve which are useful for catalytically oxidizing or oxidatively dehydrogenating organic compounds such as alkanes, aromatics, and alkyl-substituted aromatics are described. Alkanes are oxidatively dehydrogenated to olefins, and an aromatic compound such as benzene can be oxidized by nitric and/or nitrous oxide to largely phenol or largely nitrobenzene depending upon the oxidation temperature. When the compound is a methylaromatic, oxidation produces an aromatic aldehyde. Alkyl groups larger than methyl oxidatively dehydrogenate to alkenyl groups.
    Type: Grant
    Filed: December 16, 1992
    Date of Patent: June 28, 1994
    Assignee: Amoco Corporation
    Inventors: Jin S. Yoo, Mark S. Kleefisch, John A. Donohue
  • Patent number: 5300472
    Abstract: A catalyst for the selective reduction of nitrous oxide with ammonia contains, in addition to titanium oxide as component (A), at least one oxide of W, Si, B, Al, P, Zr, Ba, Y, La, Ce and at least one oxide of Y, Nb, Mo, Fe, Cu as component (B), whereby the atomic ratio between the elements of components (A) and (B) amounts to 1:0.001 up to 1. The catalyst can be obtained by kneading reactive titanium oxide with a high specific surface of predominantly anatase with the substances of component (B) or their preliminary stages, adding processing agents, winding up with a homogeneous kneaded mass, extruding the latter, drying the extrudate and calcining in air at 300.degree.-800.degree. C.
    Type: Grant
    Filed: December 31, 1992
    Date of Patent: April 5, 1994
    Assignee: Degussa Aktiengesellschaft
    Inventors: Reinhold Brand, Bernd Engler, Wolfgang Honnen, Edgar Koberstein, Johannes Ohmer
  • Patent number: 5212136
    Abstract: New catalyst compositions comprise sulfated and calcined mixtures of (1) a support comprising an oxide or hydroxide of a Group IV-A element, (2) an oxide or hydroxide of molybdenum, and (3) an oxide or hydroxide of a Group I-B, II-B, III-A, III-B, IV-B, V-A or VI-A metal other than molybdenum or a metal of the Lanthanide Series of the Periodic Table. A process for alkylation of acyclic saturated compounds with acyclic unsaturated compounds utilizing such catalyst compositions.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: May 18, 1993
    Assignee: Sun Company, Inc (R&M)
    Inventors: Howard P. Angstadt, Elmer J. Hollstein, Chao-Yang Hsu
  • Patent number: 5206201
    Abstract: A catalyst for the production of a substituted benzaldehyde by catalytic vapor-phase oxidation of a substituted toluene, which catalyst has as a catalytically active substance being composed of an oxide represented by the general formula III:V.sub.a Mo.sub.b X.sub.c Y.sub.d O.sub.e (III)wherein V, Mo, and O are respectively for vanadium, molybdenum, and oxygen, X is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium, and thallium, Y is at least one element selected from the group consisting of niobium, tantalum, phosphorus, antimony, bismuth, tellurium, tin, lead, boron, copper, and silver, and a, b, c, d, and e indicate the atomic ratios of relevant elements such that where a+b=1, then b=0.05 to 0.4, c=0.1 to 1, d=0 to 1, and e=the value determined by the state of oxidation of other elements.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: April 27, 1993
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Isao Nakamura, Taizou Matsueda, Yoshitaka Arita
  • Patent number: 5198403
    Abstract: A catalyst for the selective reduction of nitrous oxide with ammonia contains, in addition to titanium oxide as component (A), at least one oxide of W, Si, B, Al, P, Zr, Ba, Y, La, Ce and at least one oxide of V, Nb, Mo, Fe, Cu as component (B), whereby the atomic ratio between the elements of components (A) and (B) amounts to 1:0.001 up to 1. The catalyst can be obtained by kneading reactive titanium oxide with a high specific surface of predominantly anatase with the substances of component (B) or their preliminary stages, adding processing agents, winding up with a homogeneous kneaded mass, extruding the latter, drying the extrudate and calcining in air at 300.degree.-800.degree. C.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: March 30, 1993
    Assignee: Degussa AG
    Inventors: Reinhold Brand, Bernd Engler, Wolfgang Honnen, Edgar Koberstein, Johannes Ohmer
  • Patent number: 5139988
    Abstract: A composition which contains as essential components: crystalline iron antimonate and at least one element selected from the group consisting of vanadium, molybdenum, and tungsten; is useful as a catalyst in the oxidation reaction of organic compounds. Also, a process for producing the composition is disclosed.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: August 18, 1992
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Hiroshi Utsumi, Kenichi Miyaki
  • Patent number: 5137859
    Abstract: A process is described for producing a catalyst composition for hydrodesulfurization of hydrocarbon oil, which comprises:drying and calcining a carrier comprising alumina or an alumina-containing material impregnated with a solution mixture of(A) at least one of an alkoxide, a chelate compound, or a glykoxide of molybdenum or chromium;(B) at least one of an alkoxide, a chelate compound, or a glykoxide of cobalt or nickel; andan organic solvent capable of dissolving (A) and (B). Also described is a process for hydrodesulfurizing hydrocarbon oil using the same catalyst composition.
    Type: Grant
    Filed: March 29, 1991
    Date of Patent: August 11, 1992
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Takashi Fujikawa, Kazushi Usui, Katsuyoshi Ohki
  • Patent number: 5120695
    Abstract: A one-piece catalyst for purifying exhaust gases, particularly from internal combustion engines and gas turbines operated above the stoichiometric ratio. The one-piece honeycomb ceramic or metal carrier has a reduction catalyst on its leading-edge portion and an oxidation catalyst on its trailing-edge portion.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: June 9, 1992
    Assignee: Degusaa Aktiengesellschaft (Degussa AG)
    Inventors: Stephan Blumrich, Reinhold Brand, Bernd Engler, Wolfgang Honnen, Edgar Koberstein
  • Patent number: 5116796
    Abstract: The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: May 26, 1992
    Assignee: The University of Oregon
    Inventors: David J. Edlund, Richard G. Finke, Robert J. Saxton
  • Patent number: 5102846
    Abstract: In a process for producing a catalyst having a composition represented by the following formula usable to produce methacrylic acid by the gas-phase catalytic oxidation of methacrolein with molecular oxygen,P.sub.a Mo.sub.b Cu.sub.c V.sub.d X.sub.e Y.sub.f Z.sub.g O.sub.hwherein P, Mo, Cu, V and O are phosphorus, molybdenum, copper, vanadium and oxygen, respectively, X is at least one element selected from the group consisting of arsenic, antimony, bismuth, germanium, zirconium, tellurium and silver, Y is at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, barium, boron, gallium, cerium and lanthanum, Z is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g and h are an atomic ratio of each element, and when b is 12, a is 0.5 to 3, c is 0.01 to 2, d is 0.01 to 3, e is 0.01 to 3, f is 0 to 3, g is 0.
    Type: Grant
    Filed: October 16, 1990
    Date of Patent: April 7, 1992
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Toru Kuroda, Motomu Oh-Kita, Kazuhiro Ishii
  • Patent number: 5079207
    Abstract: Disclosed is a process for making an .alpha., .beta.-unsaturated monoitrile by the catalytic reaction of a paraffin containing 3-5 carbon atoms with molecular oxygen and ammonia by catalytic contact of the foregoing reactants in a reaction zone with a metal oxide catalyst containing the elements indicated by the empirical formula,V.sub.v A.sub.a D.sub.d Sn.sub.m Sb.sub.n Cu.sub.c O.sub.x (formula 1)in the relative atomic proportions indicated by the subscripts, whereA is selected from Te and BiD is one or more optional elements selected from Mo, W, Ti, Ge, Ce, La, Cr, Mn, Mg, Ca, Co, Ni, Fe, Nb, Ta, Ag, Zn, Cd, B, P, Na, K and Cs, anda is 0.001 to 30d is zero to 30c is 0.001 to 30m is 0.1 to 60n is 0.1 to 60n/v is>12 and<100m+n is.gtoreq.v+a+c+d, andx is determined by the valence requirements of the elements present, andwherein the reactants fed to the reaction zone contain a mole ratio of said paraffin:NH.sub.3 in the range from 2 to 16 and a mole ratio of said paraffin:O.sub.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: January 7, 1992
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Linda C. Glaeser, Mark A. Toft
  • Patent number: 5070058
    Abstract: A method for preparing a catalyst composition is disclosed. In particular, a support is vacuum impregnated with at least one catalytically active element and, thereafter, the vacuum impregnated support is calcined to provide the catalyst composition. Preferably, the vacuum impregnation of the support is performed in a two-step sequence by (a) vacuum impregnating said support with said at least one element and, thereafter, calcining said support, and (b) vacuum impregnating said support with at least one other element.The catalyst composition prepared by the prescribed method is preferably used in a process for producing a mixture of lower aliphatic alcohols.
    Type: Grant
    Filed: January 22, 1990
    Date of Patent: December 3, 1991
    Assignee: Texaco, Inc.
    Inventors: Robert A. Sawicki, Jeffrey B. Harrison
  • Patent number: 5070059
    Abstract: The present invention relates to a catalyst which comprises a vanadium oxide, a chromium oxide, a molybdenum oxide and a boron oxide supported on a silica carrier. This catalyst is suitable for use in the production of aromatic nitriles from alkyl-substituted aromatic compound by the catalytic reaction of a gas mixture containing an alkyl-substituted aromatic compound, ammonia and oxygen or a gas containing molecular oxygen over a catalyst. The present invention further relates to a process for producing the aromatic nitriles using said catalyst.
    Type: Grant
    Filed: October 24, 1990
    Date of Patent: December 3, 1991
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Masao Saito, Kengo Tsukahara, Noriko Takahashi, Yuzi Onda
  • Patent number: 5059573
    Abstract: A process for producing a molybdenum-containing metal oxide fluid-bed catalyst comprising, as essential components,(i) at least one element selected from the group consisting of iron, bismuth, and tellurium,(ii) molybdenum, and(iii) silica,which comprises (a) adjusting an aqueous slurry containing a raw material providing element (i), a molybdenum compound, a silica sol, and a chelating agent capable of inhibiting gelation of the slurry of a pH of at least 6, or (b) adjusting an aqueous slurry containing a raw material providing element (i), a molybdenum compound and a chelating agent capable of inhibiting gelation to a pH of at least 6 and mixing the slurry with a silica sol,then spray drying the thus pH-adjusted aqueous slurry, andcalcining the resulting particles.
    Type: Grant
    Filed: February 15, 1990
    Date of Patent: October 22, 1991
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Kunio Mori, Kiyoshi Moriya
  • Patent number: 4968838
    Abstract: The present invention provides a process for the preparation of a catalyst used in the production of unsaturated carboxylic acids such as methacrylic acid by the gas phase catalytic oxidation of the corresponding unsaturated aldehydes such as methacrolein. Said catalyst is composed of a multi-component composition containing at least phosphorus, molybdenum and antimony. The present invention has attained an improvement in its catalytic performance such as conversion rate, selectivity, single-pass yield, etc. by using antimony trioxide with average particle size of no more than 0.2 micron as a starting material upon preparing said catalyst.
    Type: Grant
    Filed: January 12, 1989
    Date of Patent: November 6, 1990
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Motomu Oh-Kita, Kazuhiro Ishii, Masaake Kato
  • Patent number: 4895822
    Abstract: Hydrocracking catalysts are disclosed which comprise specified amounts of selected inorganic oxides and specified amounts of selected metal components carried thereon. The carrier is essentially derived from solid-phase modification with specified amounts of a selected class of fluorine compounds. Mineral oils are selectively processable with high catalytic activity and at maximum yield.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: January 23, 1990
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Hajime Okazaki, Michiaki Adachi, Masaru Ushio
  • Patent number: 4891347
    Abstract: The present invention provides a process for the preparation of a catalyst used in the production of unsaturated carboxylic acids such as methacrylic acid by the gas phase catalytic oxidation of the corresponding unsaturated aldehydes such as methacrolein. Said catalyst is composed of a multi-component composition containing at least phosphorus, molybdenum and antimony. The present invention has attained an improved in its catalytic performance such as conversion rate, selectivity, single-pass yield etc. by using antimony trioxide with average particle size of no more than 0.2 micron as a starting material upon preparing said catalyst.
    Type: Grant
    Filed: November 7, 1985
    Date of Patent: January 2, 1990
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Motomu Oh-Kita, Kazuhiro Ishii, Masaaki Kato, Masao Kobayashi
  • Patent number: 4871706
    Abstract: Disclosed is the reaction of C.sub.3 to C.sub.4 paraffins with O.sub.2 and NH.sub.3 to make .alpha.,.beta.-unsaturated nitriles and olefins, using certain complex metal oxide catalysts containing V, Sb, W and certain optional elements.
    Type: Grant
    Filed: December 16, 1987
    Date of Patent: October 3, 1989
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Linda C. Glaeser, Mark A. Toft
  • Patent number: 4861746
    Abstract: A catalyst for hydrotreating a heavy hydrocarbon oil which comprises a porous refractory inorganic oxide carrier component and at least one hydrogenating active metal component selected from nickel, cobalt and the like, the metal component concentration in the cross-section of the catalyst being the highest between the center of the cross-section and the periphery thereof.
    Type: Grant
    Filed: January 27, 1988
    Date of Patent: August 29, 1989
    Assignees: Nippon Oil Co., Ltd., Petroleum Energy Center Foundation
    Inventors: Yasuyuki Oishi, Akira Inoue
  • Patent number: 4853357
    Abstract: The additional of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and Isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
    Type: Grant
    Filed: September 30, 1987
    Date of Patent: August 1, 1989
    Assignee: Catalytica Associates
    Inventors: Janis Vasilevskis, Jacques C. De Deken, Robert J. Saxton, Paul R. Wentrcek, Jere D. Fellmann, Lyubov S. Kipnis
  • Patent number: 4837233
    Abstract: Ammoxidation of C.sub.3 to C.sub.5 acyclic alkanes with NH.sub.3 and O.sub.2 using (1) a mole ratio of alkane:NH.sub.3 in the range from 2 to 16 and a mole ratio of alkano:O.sub.2 in the range 1 to 10 and (2) a mixture of particulate catalyst composition, the first being especially effective to promote formation of an unsaturated nitrile and an olefin from the paraffin, and the second catalyst composition being especially effective to promote the conversion of the olefin to the unsaturated nitrile. Catalytic compositions useful in the process are disclosed.
    Type: Grant
    Filed: May 15, 1987
    Date of Patent: June 6, 1989
    Assignee: The Standard Oil Company
    Inventors: Linda C. Glaeser, James F. Brazdil, Jr., Mark A. Toft
  • Patent number: 4829040
    Abstract: Mild hydrocracking is accomplished with a catalyst containing an intermediate pore molecular sieve, such as silicalite or a ZSM-5 type zeolite.
    Type: Grant
    Filed: June 19, 1987
    Date of Patent: May 9, 1989
    Assignee: Union Oil Company of California
    Inventor: John W. Ward
  • Patent number: 4826802
    Abstract: A process for preparing an antimony/tellurium-containing metal oxide catalyst, comprising preparing a slurry containing an antimony compound, a polyvalent metal compound, and a silica support starting material selected from silica sol and mixtures of silica sol and white carbon, fumed silica or silica hydrogel, heating the slurry at a pH or 7 or less and a temperature of at least 40.degree. C., mixing the above heat treated slurry with a tellurium solution which has been independently prepared by oxidizing metallic tellurium with hydrogen peroxide in the presence of the oxide, oxyacid or oxyacid salt of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten, and then drying and calcining the resulting mixture.
    Type: Grant
    Filed: February 24, 1988
    Date of Patent: May 2, 1989
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Yoshimi Nakamura, Hiroshi Utsumi, Kunio Mori
  • Patent number: 4808563
    Abstract: A catalyst is disclosed which comprises a molybdenum-tungsten-containing complex represented by the formulaMo.sub.a W.sub.b M.sub.c A.sub.d O.sub.
    Type: Grant
    Filed: August 19, 1987
    Date of Patent: February 28, 1989
    Assignee: The Standard Oil Company
    Inventor: Louis J. Velenyi
  • Patent number: 4804778
    Abstract: Disclosed is a process for producing methacrylic acid from methacrolein in high yields and at high selectivity which comprises vapor phase catalytic oxidation of methacrolein with molecular oxygen, characterized by using a catalyst represented by the formula: P.sub.a Mo.sub.b V.sub.c Cu.sub.d Zn.sub.e A.sub.f B.sub.g C.sub.h D.sub.i O.sub.
    Type: Grant
    Filed: October 6, 1987
    Date of Patent: February 14, 1989
    Assignee: Mitsubishi Rayon Company, Ltd.
    Inventors: Motomu Oh-Kita, Kazuhiro Ishii, Masaaki Kato
  • Patent number: 4803302
    Abstract: A catalyst represented by the general formulaP.sub.a Mo.sub.b V.sub.c Fe.sub.d Cu.sub.e Z.sub.f X.sub.g Y.sub.h O.sub.iwherein X represents at least one or more of the elements selected form the group consisting of potassium, rubidium, cesium and thallium, Y represents at least one or more of the elements selected from the group consisting of tellurium, lanthanum, boron, silver, chromium, magnesium and barium, Z represents any one of the elements of zirconium or antimony, a to i denote atomic ratios of respective elements, and when b=12, a=0.3-4, c=0.01-3, d=0.01-4, e=0.01-3, f=0.01-3, g=0.01-3, h=0.001-5 and i denotes the number of oxygen atoms required for satisfying the valence number of the said ingredients, and a process for the production of methacrylic acid comprising contacting methacrolein in vapor phase in the presence of said catalyst.
    Type: Grant
    Filed: August 21, 1987
    Date of Patent: February 7, 1989
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Motomu Oh-Kita, Masaaki Kato, Masao Kobayashi