And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/320)
  • Patent number: 10620065
    Abstract: A system and method measures subterranean stress. The system and method includes a cement mixture that is mixed with water to set as a solid and a stress measuring-medium having piezospectroscopic properties that directly reveals stress in situ within the cement mixture in response to a photo stimulation. The stress measuring-medium combines with the cement mixture as a dry blend before being combined with water.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: April 14, 2020
    Assignee: UT-Battelle, LLC
    Inventors: Yarom Polsky, Michael J. Lance, Catherine H. Mattus, James G. Hemrick
  • Patent number: 9725380
    Abstract: The disclosure provides an improved endothermic hydrocarbon conversion process that comprises reacting a hydrocarbon with a multi-component catalyst bed, and regenerating the catalyst bed with air, where the air used in regeneration step and hydrocarbon are at low air to hydrocarbon ratios and optionally at near-atmospheric pressures.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 8, 2017
    Assignee: Clariant Corporation
    Inventors: Vladimir Fridman, Michael A. Urbancic
  • Patent number: 9132414
    Abstract: The present invention relates to a method of producing C4 olefins, from a feed of C4 monohydric alcohol, in which a reaction of dehydration of the monohydric alcohol to at least one olefin, and a reaction of skeletal isomerization of at least one of the olefins produced in one and the same reaction vessel, are carried out in the presence of an alumina-based catalyst with adapted porosity.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: September 15, 2015
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Vincent Coupard, Sylvie Maury, Karine Surla
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8835347
    Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool
  • Publication number: 20140135208
    Abstract: The present invention a catalyst that includes a metallic or ceramic foam catalyst support having surfaces within the foam for the placement of a catalytic material, and an active catalyst material which is applied by washcoating or dipping.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: L'Air Liquide Societe Anonyme Pour I'Etude et I'Expoitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pavol Pranda, Tony Mathew Thampan
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Publication number: 20130310526
    Abstract: A process for preparing a catalyst, and catalysts prepared thereby. The process includes selecting a catalyst support and mixing it with one or more chromium containing compounds oxidizable to a Cr+6 state or already in a Cr+6 state, and with with one or more transition metal catalyst component, and calcining the catalyst support while oxidizing any chromium containing compound to a Cr+6 state, and spray drying the catalyst support to form catalyst particles. The catalyst supports are characterized by a surface area greater than 50 m2/gram and a pore volume greater than 0.5 cc/gram at the time of mixing the catalyst support gels with the chromium containing compound.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY LLC
    Inventor: Robert James Jorgensen
  • Patent number: 8524631
    Abstract: A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 3, 2013
    Assignee: SDCmaterials, Inc.
    Inventor: Maximilian A. Biberger
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8481450
    Abstract: Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has an MCR content of at most 90% of the MCR content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 8475921
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Patent number: 8399580
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Patent number: 8188328
    Abstract: The present invention is an improved cyclic, endothermic hydrocarbon conversion process and a catalyst bed system for accomplishing the same. Specifically, the improved process comprises reacting a hydrocarbon with a multi-component catalyst bed in such a manner that the temperature within the catalyst bed remains within controlled temperature ranges throughout all stages of the process. The multi-component catalyst bed comprises a reaction-specific catalyst physically mixed with a heat-generating material.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2012
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Michael A. Urbancic
  • Patent number: 8178003
    Abstract: A hydrocarbon-reforming catalyst comprising a composite oxide having a composition represented by the following formula (I) in which Co, Ni and M are dispersed in the composite oxide and a process for producing a synthesis gas by using the catalyst are provided. aM.bCo.cNi.dMg.eCa.fO??(I) wherein a, b, c, d, e, and f are molar fractions, a+b+c+d+e=1, 0.0001<a?0.20, 0<b?0.20, 0?c?0.20, 0.001<(b+c)?0.20, 0.60?(d+e)?0.9989, 0<d<0.9989, 0<e<0.9989, f=the number necessary for element to keep charge equilibrium with oxygen. And M is at least one element among Group 3B elements and Group 6A elements in the Periodic Table. The reforming catalyst is able to maintain a high catalytic activity over a long period in reforming hydrocarbons.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: May 15, 2012
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventors: Katutoshi Nagaoka, Yuusaku Takita, Toshiya Wakatsuki
  • Publication number: 20120041160
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8101541
    Abstract: A stationary or fluid bed dehydrogenation catalyst containing an alumina carrier, with chromium and alkali metals consisting of only sodium and potassium, added as promoters. The resultant catalyst demonstrates greater selectivity and olefin yield than prior art dehydrogenation catalysts, especially after aging.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: January 24, 2012
    Assignee: Sud-Chemie Inc.
    Inventor: Vladimir Fridman
  • Patent number: 8092716
    Abstract: Process for the preparation of a catalytic specie consisting essentially of a metallic support, which is coated with a ceramic active phase layer, mainly compound of the general formula (I): [RhxNiyMglAlm(OH)2]z+(An?z/n)kH2O,??(I) wherein An? is mainly a silicate or a polysilicate anion; 0?x?0.3; 0?y?0.9; 0?l?0.9; 0?m?0.5; 0?k?10; x+y>0; 0.5?y+l?0.9; x+y+l+m=1; and z is the total electrical charge of the cationic element or a compound of the general formula (II): [AzA?1-z][B1-x-yNixRhy]O3-???(II) wherein A and A? are different and are selected from the Lanthanide or the Actinide families or from the group IIa of the Mendeleev's periodical table of elements; B is selected from the transition metal groups of columns IIIb, IVb, Vb, VIb, VIIb, Ib and IIb and group VIIIb of the Mendeleev's periodical table of elements; 0?x?0.7, 0?y?0.5, 0?x+y?0.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 10, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pascal Del-Gallo, Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Valentina Rosetti, Erika Scavetta, Domenica Tonelli
  • Patent number: 8062990
    Abstract: A pliable refractory metal carrier (46) may have coated thereon an anchor layer (47) to improve adherence to the carrier (46) of a catalytic coating (48). The conformable catalyst member (26, 82, 82?, 126, 226, 326) may be bent to conform to a curved or bent exhaust pipe (20, 220, 320) within which it is mounted. The pliable metal carrier may be in the form of a tube such as carrier (46) having perforations (54) formed therein, or it may be a metal strip (76) which is folded into accordion pleats (80) and has perforations (78) formed therein. The perforations (54, 78) serve to permit the passage of exhaust gas therethrough. A series of interior closures (58) and annular baffles (60) may be provided to import a serpentine flow path to gases flowed through an exhaust pipe (22) containing a conformable catalyst member (226) therein. A mounting member (68) may be supplied to fasten one end of the conformable catalyst member (226) to the discharge end of an exhaust pipe (220).
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: November 22, 2011
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Joseph C. Dettling, Shau-Lin F. Chen, Matthew P. Larkin
  • Patent number: 8063261
    Abstract: A system for dehydrogenating a C3 or C4 hydrocarbon feed stream containing a first and second layer of catalysts placed in the hydrocarbon feed stream, wherein the feed stream first passes through the first layer and then the second layer of catalysts and wherein the catalysts of the first layer contain from about 50 to about 90 percent by weight of an eta-alumina carrier, from about 10 to about 50 percent by weight of chromia and from about 0.1 to about 5 percent by weight of a zirconium compound and wherein the catalysts of the second layer of catalysts contain from about 50 to about 90 percent by weight of an eta-alumina carrier and from about 10 to about 50 percent by weight of chromia, without an added zirconium compound.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: November 22, 2011
    Assignee: Sud-Chemie Inc.
    Inventors: Andrzej Rokicki, Vladimir Fridman, Michael Urbancic
  • Patent number: 8053386
    Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Gyo-hyun Hwang, Min-ho Kil, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim
  • Patent number: 7985830
    Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 26, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Patent number: 7981831
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 19, 2011
    Assignee: Velocys
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
  • Patent number: 7973207
    Abstract: The present invention is an improved cyclic, endothermic hydrocarbon conversion process and a catalyst bed system for accomplishing the same. Specifically, the improved process comprises reacting a hydrocarbon with a multi-component catalyst bed in such a manner that the temperature within the catalyst bed remains within controlled temperature ranges throughout all stages of the process. The multi-component catalyst bed comprises a reaction-specific catalyst physically mixed with a heat-generating material.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 5, 2011
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Michael A. Urbancic
  • Publication number: 20110144400
    Abstract: The invention relates to a material which is suited as a carrier for catalysts in the dehydrogenation of alkanes and in the oxidative dehydrogenation of alkanes and which is made of an oxide ceramic foam and may contain combinations of the substances aluminium oxide, calcium oxide, silicon dioxide, tin oxide, zirconium dioxide, calcium aluminate, zinc aluminate, silicon carbide, and which is impregnated with one or several suitable catalytically active materials, by which the flow resistance of the catalyst decreases to a considerable degree and the accessibility of the catalytically active material improves significantly and the thermal and mechanical stability of the material increases. The invention also relates to a process for the manufacture of the material and a process for the dehydrogenation of alkanes by using the material according to the invention.
    Type: Application
    Filed: July 28, 2009
    Publication date: June 16, 2011
    Applicant: UHDE GMBH
    Inventors: Muhammad Iqbal Mian, Max Heinritz-Adrian, Oliver Noll, Domenico Pavone, Sascha Wenzel
  • Patent number: 7943108
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: May 17, 2011
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20110105305
    Abstract: An architecture made of a ceramic or a metallic foam has at least one continuous and/or discontinuous, axial and/or radial porosity gradient ranging from 10 to 90% associated to a pore size range from 2 to 60 ppi, at least one continuous and/or discontinuous, axial and/or radial concentration gradient of catalytic active(s) phase(s) from 0.01 wt % to 100 wt % preferentially from 0.1 wt % to 20 wt %, and a microstructure with a specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Daniel Gary, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Fabrice Rossingnol
  • Publication number: 20110105304
    Abstract: Architecture comprising ceramic or metallic foam, characterized in that the foam has a constant axial and radial porosity between 10 to 90% with a pore size between 2 to 60 ppi, and at least one continuous and/or discontinuous, axial and/or radial concentration of catalytic active(s) phase(s) from 0.01 wt % to 100 wt %, preferentially from 0.1 to 20 wt. %, and in that the architecture has a microstructure comprising specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.
    Type: Application
    Filed: June 15, 2009
    Publication date: May 5, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Ex ploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Daniel Gary, Fabrice Rossignol
  • Patent number: 7915196
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: March 29, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Publication number: 20100312035
    Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Applicant: BASF CATALYSTS LLC
    Inventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool
  • Patent number: 7820583
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: October 26, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7811961
    Abstract: According to one embodiment of the present invention, an enhanced NH3 adsorbing automotive exhaust composition including a catalyst composition suitable for use in a selective catalytic reduction (SCR) system and an acidified support composition for enhancing NH3 adsorption capacity of the automotive exhaust composition is disclosed.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: October 12, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Hungwen Jen, George Graham, Robert McCabe
  • Patent number: 7803736
    Abstract: A process for preparing supported, titanized chromium catalysts is disclosed. The process comprises A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound; B) optionally removing the solvent; C) optionally calcining the precatalyst obtained after step B); and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: September 28, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Wolfgang Rohde, Guido Funk, Andreas Haufe, Anke Bold, Neil Nadalin
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7776784
    Abstract: A hydrodesulfurization catalyst used for hydrodesulfurization of catalytically cracked gasoline comprises a support composed mainly of alumina modified with an oxide of at least one metal selected from the group consisting of iron, chromium, cobalt, nickel, copper, zinc, yttrium, scandium and lanthanoid-based metals, with at least one metal selected from the group consisting of Group 6A and Group 8 metals loaded as an active metal on the support. Hydrogenation of olefins generated as by-products during hydrodesulfurization of the catalytically cracked gasoline fraction, as an important constituent base of gasoline, can be adequately inhibited to maintain the octane number, while sufficiently reducing the sulfur content of the hydrodesulfurized catalytically cracked gasoline fraction.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: August 17, 2010
    Assignees: Nippon Oil Corporation, Petroleum Energy Center
    Inventors: Hideshi Iki, Shigeto Hatanaka, Eitaro Morita, Shinya Takahashi
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Patent number: 7749937
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 6, 2010
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van Den Tol-Kershof
  • Patent number: 7740817
    Abstract: A catalyst which efficiently removes particulate matter, SOF, sulfate, and SOOT and the like from the exhaust gas from such an internal combustion engine as a diesel engine without inducing a rise in the back pressure of the engine is provided. The catalyst for the purification of the exhaust gas of an internal combustion engine is formed by using an open flow honeycomb containing in the channel walls thereof such pores as possess an average diameter in the range of 10-40 ?m.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: June 22, 2010
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Takeshi Matsumoto, Takao Kobayashi, Takuji Nakane, Takahiro Uno, Makoto Horiuchi
  • Patent number: 7713908
    Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
  • Patent number: 7695611
    Abstract: Compositions for reduction of NOx emissions generated during catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, (iv) palladium and (v) a noble metal component, preferably platinum, rhodium or iridium, and mixtures thereof. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced content of NOx in an effluent off gas of a full or complete combustion FCC regenerator are accomplished while simultaneously promoting the combustion of CO.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 13, 2010
    Assignee: W. R. Grace & Co.—Conn.
    Inventors: George Yaluris, John Rudesill
  • Patent number: 7655749
    Abstract: Methods for synthesizing dimeric or higher polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst is in particulate form and comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Publication number: 20100009844
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20100009843
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Patent number: 7641875
    Abstract: A multi-phase catalyst for the simultaneous conversion of oxides of nitrogen, carbon monoxide, and hydrocarbons is provided. A catalyst composition comprising the multi-phase catalyst and methods of making the catalyst composition are also provided. The multi-phase catalyst may be represented by the general formula of CeyLn1-xAx+sMOZ, wherein Ln is a mixture of elements originally in the form of single-phase mixed lanthanides collected from natural ores, a single lanthanide, or a mixture of lanthanides; A is an element selected from a group consisting of Mg, Ca, Sr, Ba, Li, Na, K, Cs, Rb, or any combination thereof; and M is an element selected from the group consisting of Fe, Mn, Cr, Ni, Co, Cu, V, Zr, Pt, Pd, Rh, Ru, Ag, Au, Al, Ga, Mo, W, Ti, or any combination thereof; x is a number defined by 0?x<1.0; y is a number defined by 0?y<10; s is a number defined by 0?s<10; where s=0 only when y>0 and y=0 only when s>0.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: January 5, 2010
    Assignee: Catalytic Solutions, Inc.
    Inventor: Stephen J. Golden
  • Publication number: 20090324468
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin
  • Patent number: 7638455
    Abstract: A process for the preparation of a catalyst, which process comprises the steps of: i) mixing an alumina precursor with combustible carbon-containing fibers with a diameter in the range of from 0.5 to 5 ?m and a length of no greater than 100 ?m in an amount in the range of from 20 to 40 wt % based on the total dry mixture; ii) adding nitric acid and water to form an extrudable mass; iii) extruding the mixture to form shaped particles; iv) drying the shaped particles; v) heating the particles in an atmosphere comprising no more than 5 vol % oxygen at a temperature in the range of from 350 to 600° C.; and vi) then heating the particles in a gas mixture comprising at least 12 vol % oxygen at a temperature in the range of from 450 to 600° C.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: December 29, 2009
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Frank Heinz Goerlitz, Wigbert Gerhard Himmel, Jürgen Hunold, Hans-Heino John
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Publication number: 20090305872
    Abstract: Fluid catalytic cracking process comprising the steps of (a) preparing a physical 5 mixture comprising (i) aluminium trihydrate and/or flash-calcined aluminium trihydrate and (ii) a divalent metal oxide, hydroxide, carbonate, or hydroxycarbonate, (b) shaping the physical mixture of step a) to form fluidisable particles, and (c) adding the fluidisable particles obtained from step b) or step c) to a fluid catalytic cracking unit. In this FCC process, active sites of the catalyst composition are formed in-situ, i.e. in the FCC unit, without requiring peptisation, aging, or calcination steps prior to the addition of the composition to the hydrocarbon conversion unit.
    Type: Application
    Filed: November 19, 2005
    Publication date: December 10, 2009
    Applicant: ALBEMARLE NETHERLANDS BV
    Inventors: Dennis Stamires, Paul O'Connor