Of Nickel Patents (Class 502/335)
  • Patent number: 8278240
    Abstract: There is provided a method of stably producing nanoparticles of a metal alone, in particular a transition metal alone, the method comprises heating a chelate complex (M-DMG) comprised of two dimethyl glyoxime (DMG) molecules and one transition metal (M) ion at 300 to 400° C. so as to generate transition metal (M) nanoparticles carried on carbon particles. The method preferably comprises heating a mixture of said chelate complex (M-DMG) and alumina so as to generate transition metal (M) nanoparticles carried on alumina. Preferably, the transition metal (M) is one of Ni, Cu, Pd, and Pt. Typically, the generated transition metal (M) nanoparticles have a size of a diameter of 5 to 15 nm.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 2, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kyoichi Tange, Alexander Talyzin, Fanny Barde
  • Publication number: 20120237432
    Abstract: A CO2 reforming catalyst may include a catalyst metal and a porous carrier. The catalyst metal may be at least one metal selected from Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and Pd. The catalyst metal may be bonded to the porous carrier to form an alloy.
    Type: Application
    Filed: October 7, 2011
    Publication date: September 20, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In Hyuk Son, Seung Jae Lee, Hyun Chul Lee, Young Gil Jo
  • Patent number: 8268289
    Abstract: The present invention relates to a catalyst for decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms, comprising magnesium, aluminum, nickel and cobalt as constitutional elements, and further comprising ruthenium and/or palladium, wherein the metallic ruthenium and/or metallic palladium in the form of fine particles have an average particle diameter of 0.5 to 20 nm, and a content of the metallic ruthenium and/or metallic palladium is 0.05 to 5.0% by weight based on the weight of the catalyst. The catalyst of the present invention is capable of efficiently decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms (C2 or more hydrocarbons), is less expensive, and exhibits an excellent catalytic activity for decomposition and removal of hydrocarbons, in particular, an excellent capability of decomposing propane, and an excellent anti-coking property.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: September 18, 2012
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Publication number: 20120225956
    Abstract: A catalytic composition is provided for methanol production. The composition includes an alloy of at least two different metals M and M?, where M is selected from Ni, Pd, Ir, and Ru, and M? is selected from Ga, Zn, and Al. A molar ratio of M to M? is in the range of 1:10 to 10:1, and the alloy is configured to catalyze a reduction of CO2 to methanol.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Felix Studt, Frank Abild-Pedersen, Jens K. Norskov, Soren Dahl, Irek Sharafutdinov, Christian F. Elkjaer
  • Patent number: 8246812
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 21, 2012
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Patent number: 8236262
    Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 8211824
    Abstract: A catalytic metal 5 is supported on oxide particles 4, 6 in a first catalyst layer 2, and first binder particles 7 which are fine, and have oxygen ion conductivity are interposed among the oxide particles. A catalytic metal 11 is supported on oxide particles 8, 9, 12 in a second catalyst layer 3 provided on or above the first catalyst layer 2, and second binder particles 13 which are fine, and are capable of storing and releasing oxygen are interposed among the oxide particles.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 3, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Masaaki Akamine, Masahiko Shigetsu
  • Patent number: 8207084
    Abstract: According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst. In at least another embodiment, the urea-resistant coating includes at least one oxide from the group consisting of titanium oxide, tungsten oxide, zirconium oxide, molybdenum oxide, aluminum oxide, silicon dioxide, sulfur oxide, niobium oxide, molybdenum oxide, yttrium oxide, nickel oxide, cobalt oxide, and combinations thereof.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 26, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Yisun Cheng, Yinyan Huang, Christine Kay Lambert
  • Patent number: 8207083
    Abstract: The present invention relates to a catalyst nickel, silica, alumina and magnesium, wherein the nickel to magnesium atomic ratio is 5-75. In particular the present invention relates to a catalyst comprising nickel, silica, alumina and magnesium, wherein the nickel to silicium atomic ratio (Ni/Si) is 2 to 30 to nickel to aluminum atomic ratio (Ni/Al) is 9 to 40 and the nickel to magnesium atomic ratio (Ni/Mg) is 5-75. The invention further relates to a method for preparing such a catalyst. The invention further relates to a process for hydrogenating unsaturated organic compounds.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 26, 2012
    Assignee: BASF Corporation
    Inventors: Pieter Hildegardus Berben, Tjalling Rekker
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Publication number: 20120142523
    Abstract: A porous composite metal oxide, including a mixture of first ultrafine particles containing alumina and second ultrafine particles containing zirconia, wherein the first ultrafine particles and the second ultrafine particles are uniformly dispersed in such a way as to satisfy a condition that standard deviations of content ratios (% by mass) of all metal elements contained in the porous composite metal oxide at 0.1% by mass or more are each 10 or less, the standard deviations being obtained by measuring content ratios of the metal elements at 100 measurement points within a minute analysis region of 20 nm square by energy dispersive X-ray spectroscopy using a scanning transmission electron microscope equipped with a spherical aberration correction function.
    Type: Application
    Filed: September 10, 2010
    Publication date: June 7, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Kimitoshi Sato, Kae Yamamura, Akira Morikawa, Akihiko Suda
  • Patent number: 8187997
    Abstract: The invention provides a catalyst composition composed of a support portion and a catalyst portion. The support portion includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage that is less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Union Carbide Chemicals & Technology LLC
    Inventors: Stephen W. King, Stefan K Mierau
  • Publication number: 20120122674
    Abstract: The present invention relates to petrochemistry and gas chemistry, and discloses a support for catalysis of exothermic processes, particularly the Fischer-Tropsch process, methanol synthesis, hydrogenation and purification of exhaust gases. The support comprises metallic aluminium in the form of a mixture of dispersed powders of flaky and spherical aluminium and the support is in the form of pellets, preferably cylinders, tablets, balls, obtained by extrusion, pelletization, tabletting, rounding or liquid molding. The catalyst prepared on the support comprises an active metal selected from the group consisting of Co, Fe, Ni, Ru, Rh, Pt, Pd, Cu and mixtures thereof.
    Type: Application
    Filed: August 3, 2010
    Publication date: May 17, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimovna Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Patent number: 8178003
    Abstract: A hydrocarbon-reforming catalyst comprising a composite oxide having a composition represented by the following formula (I) in which Co, Ni and M are dispersed in the composite oxide and a process for producing a synthesis gas by using the catalyst are provided. aM.bCo.cNi.dMg.eCa.fO??(I) wherein a, b, c, d, e, and f are molar fractions, a+b+c+d+e=1, 0.0001<a?0.20, 0<b?0.20, 0?c?0.20, 0.001<(b+c)?0.20, 0.60?(d+e)?0.9989, 0<d<0.9989, 0<e<0.9989, f=the number necessary for element to keep charge equilibrium with oxygen. And M is at least one element among Group 3B elements and Group 6A elements in the Periodic Table. The reforming catalyst is able to maintain a high catalytic activity over a long period in reforming hydrocarbons.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: May 15, 2012
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventors: Katutoshi Nagaoka, Yuusaku Takita, Toshiya Wakatsuki
  • Publication number: 20120115713
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
  • Patent number: 8173100
    Abstract: Catalytic system comprising at least two components: a catalyst for the hydrolysis reaction of metal borohydrides to hydrogen; and a material in solid form, the dissolution reaction of which in water is exothermic.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Commisariat a l'Energie Atomique
    Inventors: Philippe Capron, Jérôme Delmas, Nathalie Giacometti, Isabelle Rougeaux
  • Patent number: 8173572
    Abstract: A sol includes metal oxide nanoparticles dispersed in an aqueous liquid, and further includes stabilizer ions. The metal oxide particles include one or more metals selected from a first group consisting of cerium, zirconium, iron, manganese and titanium, and one or more metals selected from a second group consisting of platinum, palladium, rhodium, ruthenium, iridium and osmium. The sols can be used to deposit catalytic coatings onto catalyst substrates, including substrates with narrow channels (i.e. channels with a diameter of less than 500 ?m).
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: May 8, 2012
    Assignee: Johnson Matthey PLC
    Inventor: Mark Robert Feaviour
  • Patent number: 8168561
    Abstract: A core-shell catalyst material can include a core and a shell material. Each of the core material and the shell material can have crystal structures and lattice parameters which allow for a substantially coherent core-shell interface. The shell material can include a catalytically active metal. The circumferential stress of the shell material, ???, at the core-shell interface and at the shell surface, is greater than 0 (tensile) or can be compressive of a lower magnitude than a catalyst made of the shell material alone. The crystal structures of the core material can often be the same as the shell material, although this is not always required.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: May 1, 2012
    Assignee: University of Utah Research Foundation
    Inventor: Anil V. Virkar
  • Patent number: 8168559
    Abstract: According to a first embodiment of a production method of an oxidation catalyst device for exhaust gas purification of the present invention, a plurality of slurries containing a catalyst precursor prepared from mutually different organic acids is coated respectively on a porous filter carrier (2) and calcined. According to a second embodiment of the present invention, the slurry contains the catalyst precursor having a particle diameter distribution ranging from 0.5 to 10 ?m, and the slurry has a viscosity equal to or below 2.0 mPa·s. The oxidation catalyst device of the present invention is composed of a composite metal oxide on a surface of a cell division and a surface of an air pore of the porous filter carrier having a wall-flow structure.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: May 1, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kiyoshi Tanaami, Yuji Isogai
  • Patent number: 8163669
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 24, 2012
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, Paul Napolitano, James Brewster
  • Patent number: 8143187
    Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 27, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Manh Hoang, Kingsley Opoku-Gyamfi
  • Patent number: 8143186
    Abstract: A catalyst composition comprising cobalt as an active catalytic element and a lesser amount of nickel as a promoter supported on a metal oxide support. The support may comprise alumina, silica, silica-alumina, zeolite, zirconia, magnesia or titania. The amount of nickel is preferably less than 50 wt %, relative to the amount of cobalt.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: March 27, 2012
    Assignees: Statoil ASA, Petro SA
    Inventor: Erling Rytter
  • Publication number: 20120063963
    Abstract: Provided is a new catalyst capable of removing carbon monoxide economically without adding particular reaction gas externally. Also provided are a process for producing and an apparatus using such a catalyst. Impregnation of a Ni—Al composite oxide precursor of a nonstoichiometric composition prepared by the solution-spray plasma technique with a ruthenium salt to be supported and performing reduction treatment allows CO methanation reaction to selectively proceed even in the high-temperature range in which CO2 methanation reaction and reverse water-gas-shift reaction proceed preferentially with conventional catalysts. Selective CO methanation reaction occurs reproducibly with another Ni—Al composite oxide precursor or an additive metallic species.
    Type: Application
    Filed: October 21, 2011
    Publication date: March 15, 2012
    Applicant: UNIVERSITY OF YAMANASHI
    Inventors: Masahiro WATANABE, Hisao YAMASHITA, Kazutoshi HIGASHIYAMA, Toshihiro MIYAO, Aihua CHEN
  • Publication number: 20120060418
    Abstract: A catalyst system including at least one metal and an oxide support, said oxide support including at least one of Al2O3, MnxOy, MgO, ZrO2, and La2O3, or any mixtures thereof; said catalyst being suitable for catalyzing at least one reaction under supercritical water conditions is disclosed. Additionally, a system for producing a high-pressure product gas under super-critical water conditions is provided. The system includes a pressure reactor accommodating a feed mixture of water and organic matter; a solar radiation concentrating system heating the pressure reactor and elevating the temperature and the pressure of the mixture to about the water critical temperature point and pressure point or higher. The reactor is configured and operable to enable a supercritical water process of the mixture to occur therein for conversion of the organic matter and producing a high-pressure product fuel gas.
    Type: Application
    Filed: May 20, 2010
    Publication date: March 15, 2012
    Applicants: Ramot At Tel-Aviv University Ltd., Yeda Research and Development Co. Ltd.
    Inventors: Michael Epstein, Abraham Kribus, Alexander Berman
  • Publication number: 20120065442
    Abstract: The present invention relates to supported Ni-catalysts optionally comprising Zn as a promoter, methods for the production of said catalysts and uses of said catalysts for the hydrogenation of a hydrocarbon feed.
    Type: Application
    Filed: May 7, 2010
    Publication date: March 15, 2012
    Inventors: Reinhard Geyer, Klaus Hoheisel, Patrick Vander Hoogerstraete, Jürgen Hunold, Michael Keck, Dirk Lose, Rainer Schödel
  • Publication number: 20120021305
    Abstract: A desulfurizing agent for a hydrocarbon comprises: 10 to 30 percent by mass of a porous inorganic oxide based on the total mass of the desulfurizing agent; 3 to 40 percent by mass of zinc oxide; and 45 to 75 percent by mass of a nickel atom in terms of nickel oxide, wherein the reduction degree of the nickel atom is 50 to 80 percent, and wherein the amount of hydrogen adsorption per unit desulfurizing agent mass is 3.5 to 4.6 ml/g.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Yoshiyuki Nagayasu, Yoshie Miyai, Takaya Matsumoto, Kimika Ishizuki
  • Patent number: 8101539
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: January 24, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Publication number: 20120016042
    Abstract: The present invention concerns a catalyst for carrying out hydrocarbon synthesis starting from a mixture comprising carbon monoxide and hydrogen, the active phase of which comprises at least one metal from group VIII deposited on a support formed by at least one oxide, in which said metal from group VIII is selected from the group constituted by cobalt, nickel, ruthenium or iron, and in which said catalyst has an atomic ratio (Co/Al)not ground/(CO/Al)ground, measured by X-ray photo-emission spectroscopy, in the range 1 to 12. The invention also concerns the catalyst preparation process and its use.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Applicants: IFP Energies nouvelles, ENI S.p.A.
    Inventors: Sylvie Maury, Christele Legens, Loic Sorbier, Fabrice Diehl, Joseph Lopez, Lars Fischer
  • Publication number: 20120015802
    Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
  • Patent number: 8092716
    Abstract: Process for the preparation of a catalytic specie consisting essentially of a metallic support, which is coated with a ceramic active phase layer, mainly compound of the general formula (I): [RhxNiyMglAlm(OH)2]z+(An?z/n)kH2O,??(I) wherein An? is mainly a silicate or a polysilicate anion; 0?x?0.3; 0?y?0.9; 0?l?0.9; 0?m?0.5; 0?k?10; x+y>0; 0.5?y+l?0.9; x+y+l+m=1; and z is the total electrical charge of the cationic element or a compound of the general formula (II): [AzA?1-z][B1-x-yNixRhy]O3-???(II) wherein A and A? are different and are selected from the Lanthanide or the Actinide families or from the group IIa of the Mendeleev's periodical table of elements; B is selected from the transition metal groups of columns IIIb, IVb, Vb, VIb, VIIb, Ib and IIb and group VIIIb of the Mendeleev's periodical table of elements; 0?x?0.7, 0?y?0.5, 0?x+y?0.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 10, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pascal Del-Gallo, Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Valentina Rosetti, Erika Scavetta, Domenica Tonelli
  • Patent number: 8088707
    Abstract: A supported catalyst with a solid sphere structure of the present invention includes an oxide supporting body and a metal such as Ni, Co, Fe, or a combination thereof distributed on the surface and inside of the supporting body. The supported catalyst with a solid sphere structure can maintain a spherical shape during heat treatment and can be used with a floating bed reactor due to the solid sphere structure thereof.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Cheil Industries Inc.
    Inventors: Byeong Yeol Kim, Yun Tack Lee, Seung Yong Bae, Young Sil Lee
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20110313188
    Abstract: The present invention relates to a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, wherein said catalyst comprises one or more elements selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to processes for preparing the inventive catalyst and to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Publication number: 20110312487
    Abstract: A catalyst system for generating at least one polyol from a feedstock comprising saccharide is performed in a continuous or batch manner. Generating the polyol involves, contacting, hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one unsupported component and at least one supported component.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: John Q. Chen, Tom N. Kalnes, Joseph A. Kocal
  • Patent number: 8080494
    Abstract: A catalyst 1 has a heat-resistant support 2 selected from among Al2O3, SiO2, ZrO2, and TiO2, and a first metal 4 supported on an outer surface of the support 2, and included by an inclusion material 3 containing a component of the support 2.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 20, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Katsuo Suga, Makoto Aoyama, Toshiharu Miyamura
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8071655
    Abstract: A catalyst applicable to the synthesis gas conversions especially E-T slurry processes, said catalyst comprising: a) a support containing at least a first aluminate element of mixed spinel structure of formula MxM?(1?x)Al2O4/Al2O3.SiO2, x ranging between and excluding 0 and 1, or of simple spinel structure of formula MAl2O4/Al2O3.SiO2, said support being calcined in an at least partly oxidizing atmosphere, at a temperature ranging between 850° C. and 900° C., and b) an active phase deposited on said support, which contains one or more group VIII metals, selected from among cobalt, nickel, ruthenium or iron. Said catalyst is used in a fixed bed or suspended in a three-phase reactor for hydrocarbon synthesis from a CO, H2 mixture.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: December 6, 2011
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Fabrice Diehl, François Hugues, Marie-Claire Marion, Denis Uzio
  • Publication number: 20110294652
    Abstract: The present invention provides a method for preparing a pyrochlore type oxide having a larger specific surface area, a polymer electrolyte fuel cell and a fuel cell system improved in power generation efficiency and capable of being produced more inexpensively, and a method for producing an electro catalyst for a fuel cell, which electro catalyst has a larger specific surface area, is relatively inexpensive, and has high electrode activity per unit mass. A method for preparing a pyrochlore type oxide represented by A2B2O7-Z wherein A and B represent a metal element, Z represents a number of 0 or more and 1 or less, A includes at least one selected from the group consisting of Pb, Sn, and Zn, and B includes at least one selected from the group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re, wherein the pyrochlore type oxide is produced by a reaction of a halide or nitrate of A with an alkali salt of a metal acid of B.
    Type: Application
    Filed: February 10, 2010
    Publication date: December 1, 2011
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasushi Sato, Tamaki Mizuno, Yuri Seki
  • Patent number: 8067332
    Abstract: A methanation catalyst, a carbon monoxide removing system, a fuel processor, and a fuel cell including the same, and more particularly a non-supported methanation catalyst including the catalytically active non-precious metal particles and the metal oxide particles, and a carbon monoxide removing system, a fuel processor, and a fuel cell including the same. The methanation catalyst has high selectivity for the methanation of carbon monoxide instead of the methanation of carbon dioxide and the reverse water gas shift reaction of carbon dioxide, which are side reactions of the methanation of carbon monoxide, maintains high concentration of generated hydrogen as small amounts of hydrogen and carbon dioxide are consumed, and effectively removes carbon monoxide at low operating temperatures of 200° C. or less.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: November 29, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-chul Lee, Soon-ho Kim, Kang-hee Lee, Doo-hwan Lee, Eun-duck Park, Eun-yong Ko
  • Patent number: 8030242
    Abstract: The invention concerns a process for preparing metallic nanoparticles with an anisotropic nature by using two different reducing agents, preferably with different reducing powers, on a source of a metal selected from columns 8, 9 or 10 of the periodic table of the elements.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: October 4, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Denis Uzio, Catherine Verdon, Cecile Thomazeau, Bogdan Harbuzaru, Gilles Berhault
  • Patent number: 8017545
    Abstract: The present invention relates to a method of making a chemical compound comprising nickel, aluminum, oxygen and sulfur having a general formula Ni2xAl2O2x+3?zSz, wherein 0.5?x?3 and 0?z?2x. The material is effective for the removal of S-compounds from gaseous streams, effective for catalyzing a water gas shift reaction and suppresses the formation of carbon monoxide and hydrogen under conditions where a water gas shift reaction is catalyzed.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 13, 2011
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Manuela Serban, Kurt M. Vanden Bussche, Lisa M. King
  • Publication number: 20110207069
    Abstract: The invention relates to a novel type of active mass and to the use thereof in chemical loopping combustion processes. Said active mass contains a spinel which corresponds to the formula AxA?x?ByB?y?O4. The active masses according to the invention have a high oxygen transfer capacity and oxidation and reduction rates which allow their advantageous use in the looping combustion process.
    Type: Application
    Filed: October 8, 2009
    Publication date: August 25, 2011
    Inventor: Arnold Lambert
  • Publication number: 20110201494
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Application
    Filed: August 24, 2009
    Publication date: August 18, 2011
    Applicant: JOHNSON MATTHEY PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Publication number: 20110195013
    Abstract: The present invention provides a supported catalyst for synthesizing carbon nanotubes. The supported catalyst includes a metal catalyst supported on a supporting body, and the supported catalyst has a surface area of about 15 to about 100 m2/g. The supported catalyst for synthesizing carbon nanotubes according to the present invention can lower production costs by increasing surface area of a catalytic metal to thereby allow production of a large amount of carbon nanotubes using a small amount of the catalyst.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 11, 2011
    Applicant: CHEIL INDUSTRIES INC.
    Inventors: Seung Yong BAE, Byeong Yeol KIM, Yun Tack LEE, Young Kyu CHANG, Young Sil LEE
  • Patent number: 7994089
    Abstract: A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 9, 2011
    Assignee: University of Houston System
    Inventors: Peter Strasser, Shirlaine Koh, Prasanna Mani, Srivastava Ratndeep
  • Patent number: 7994366
    Abstract: Provided is a process for continuously preparing methyl mercaptan by reacting a reactant mixture comprising solid, liquid and/or gaseous carbon- and/or hydrogen-containing compounds with air or oxygen, and/or water and sulfur.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 9, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Jan-Olaf Barth, Hubert Redlingshoefer, Caspar-Heinrich Finkeldei, Christoph Weckbecker, Klaus Huthmacher
  • Patent number: 7985710
    Abstract: The present invention relates to a novel composite metal oxide catalyst, a method of making the catalyst, and a process for producing synthesis gas using the catalyst. The catalyst may be a nickel and cobalt based dual-active component composite metal oxide catalyst. The catalyst may be used to produce synthesis gas by the carbon dioxide reforming reaction of methane. The catalyst on an anhydrous basis after calcinations has the empirical formula: M a m + ? N b n + ? Al c 3 + ? Mg d 2 + ? O ( am 2 + bn 2 + 3 2 ? c + d ) Mm+ and Nn+ are two transition metals serving as dual-active components and selected from the group consisting of Ni, Co, Fe, Mn, Mo, Cu, Zn or mixtures thereof, a+b+c+d=1, and 0.001?a?0.8, 0.001?b?0.8, 0.1?c?0.99, 0.01?d?0.99.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: July 26, 2011
    Assignee: University of Saskatchewan
    Inventors: Hui Wang, Jianguo Zhang, Ajay Kumar Dalai
  • Patent number: 7985395
    Abstract: Catalyst for oxidation reactions which comprises at least one constituent active in the catalysis of hydrogen chloride oxidation and support therefor, which support is based on uranium oxide. The catalyst is notable for a high stability and activity.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 26, 2011
    Assignee: Bayer Technology Services GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter, Stephan Schubert
  • Patent number: 7985830
    Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 26, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Publication number: 20110176988
    Abstract: The ammonia decomposition catalyst of the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, including a catalytically active component containing at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel, preferably including: (I) a catalytically active component containing: at least one kind selected from the group consisting of molybdenum, tungsten, and vanadium; (II) a catalytically active component containing a nitride of at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel; or (III) a catalytically active component containing at least one kind of iron group metal selected from the group consisting of iron, cobalt, and nickel, and at least one metal oxide, thereby making it possible to effectively decompose ammonia into nitrogen and hydrogen at relatively low temperatures and at
    Type: Application
    Filed: September 17, 2009
    Publication date: July 21, 2011
    Inventors: Junji Okamura, Masaru Kirishiki, Masanori Yoshimune, Hideaki Tsuneki