Of Group I (i.e., Alkali, Ag, Au Or Cu) Patents (Class 502/344)
  • Patent number: 8815272
    Abstract: An environment-friendly porous bead-satellite nanoparticles composite which has excellent recovery and repeated usage performance and can be used as a catalyst, an antiviral agent, or an antimicrobial, and a fabrication method thereof are provided. The porous bead-satellite nanoparticles composite includes a porous bead, a molecule having a first end coupled to the surface of the porous bead and including a functional group at a second end, and satellite nanoparticles coupled to the functional group, wherein the porous bead may have a core-shell structure including a cluster core of nanoparticles and a porous bead shell covering the cluster core.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: August 26, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyoungja Woo, Hye Hun Park, Wooyoung Park
  • Publication number: 20140228201
    Abstract: Method for producing a substrate with Au (gold) nanoclusters affixed to the surface thereof and substrate and catalyst obtained by means of said method. The method consists in preparing a solution containing, in disperse form, Au nanoclusters and, also in disperse form, a substrate with a surface functionalised with a polyelectrolyte that confers a net electric charge thereon, and in intensely agitating said solution to affix Au nanoclusters to the substrate surface. This results in a substrate that has a surface with Au nanoclusters affixed in disperse form, significantly without clusters. The invention also relates to a catalyst that comprises said substrate with Au nanoclusters affixed to the surface thereof. Said catalyst is particularly suitable for use in oxidation reactions.
    Type: Application
    Filed: October 17, 2012
    Publication date: August 14, 2014
    Applicant: UNIVERSITAT POLITECNICA DE CATALUNYA
    Inventors: Ernest Mendoza Gómez, Jordi Llorca Piqué
  • Patent number: 8802044
    Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 12, 2014
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard
  • Publication number: 20140216918
    Abstract: This invention discloses a method for fabricating a gold/titanium dioxide core-shell structured photocatalyst and the application thereof to photocatalytic decomposition of organic compounds under ultraviolet irradiation. The method comprises steps: fabricating a solution of gold ions; fabricating gold/titanium dioxide core-shell structured nanoparticles; and crystallizing the gold/titanium dioxide core-shell structured nanoparticles, wherein gold and titanium dioxide are mixed by a weight ratio of 0.005 to 0.03. The gold/titanium dioxide core-shell structured photocatalyst can effectively decompose organic compounds and dyes under ultraviolet irradiation.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: BIOPTIK TECHNOLOGY, INC.
    Inventors: Chin-Chang YANG, YU-WEN CHEN, YAO-JEN TU, Jia-Long Jiang
  • Patent number: 8795619
    Abstract: A catalyst for purification of exhaust gas, in which a noble metal is supported on a metal oxide support, has a basic site content of 1 mmol/L-cat or less, as determined on the basis of an amount of CO2 desorbed per liter of the catalyst as measured by a CO2 temperature-programmed desorption method.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 5, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Tadashi Suzuki, Satoru Kato, Naoki Takahashi, Takaaki Kanazawa, Masanori Yamato, Kazuhiro Yoshimoto, Michihiko Takeuchi, Yuuji Matsuhisa
  • Patent number: 8785343
    Abstract: This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: July 22, 2014
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co., Ltd.
    Inventors: Jingwei Liu, Zezhuang Li, Shaohui Chen, Aiwu Yang, Jiye Bai, Lijuan Liu, Yingwu Wang
  • Patent number: 8778830
    Abstract: Solid-supported gold nanoparticles for use as a catalyst for the synthesis of quinolines from anilines and aldehydes using oxygen as an oxidant are provided. Also provided are a method for the preparation of SiO2-supported gold nanoparticles by in situ deposition of gold nanoparticles to silica gel and a method for synthesizing quinolines from anilines and aldehydes using oxygen as an oxidant.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: July 15, 2014
    Assignee: The University of Hong Kong
    Inventors: Chi-Ming Che, Man-Ho So
  • Publication number: 20140194541
    Abstract: The present invention relates to a catalyst for C2 oxygenate synthesis in which a hydrogenated active metal is supported on a porous carrier to synthesize a C2 oxygenate from a mixed gas containing hydrogen and carbon monoxide, wherein the porous carrier has an average pore diameter of 0.1 to 20 nm.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 10, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, SEKISUI CHEMICAL CO., LTD.
    Inventors: Tomoaki Nishino, Toshihito Miyama, Kazuhisa Murata, Yanyong Liu
  • Publication number: 20140186747
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: July 3, 2014
    Applicant: The Trustees of Columbia University in the city of New York
    Inventor: Jose Bevk
  • Patent number: 8765625
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 1, 2014
    Assignee: Shubin, Inc.
    Inventors: Xianghong Hao, Juan Cai
  • Patent number: 8765630
    Abstract: A catalyst for the manufacture of alkylene oxide, for example ethylene oxide, by the vapor-phase epoxidation of alkene containing impregnated silver and at least one efficiency-enhancing promoter on an inert, refractory solid support, said support incorporating a sufficient amount of zirconium component (present and remaining substantially as zirconium silicate) as to enhance at least one of catalyst activity, efficiency and stability as compared to a similar catalyst which does not contain the zirconium component.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: July 1, 2014
    Inventors: Juliana G. Serafin, Albert C. Liu, Seyed R. Seyedmonir, Hwaili Soo, Thomas Szymanski
  • Patent number: 8758718
    Abstract: Improved catalysts for oxidation of sulfur dioxide which are alkali metal-promoted vanadium catalysts which are further promoted by gold. Improved methods employing such catalyst for oxidation of sulfur dioxide and for manufacture of sulfuric acid. Improved methods for multiple step oxidation of sulfur dioxide in which the last oxidation step is carried out employing improved catalysts of this invention at temperatures lower than 400° C.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 24, 2014
    Assignee: TDA Research, Inc.
    Inventors: Girish Srinivas, Steven C. Gebhard
  • Patent number: 8759241
    Abstract: A method for making a catalyst composition suitable for various purposes, such as the reduction of nitrogen oxides, is provided. The method includes combining dawsonite or a dawsonite derivative with a catalytic active element.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventor: Venkat Subramaniam Venkataramani
  • Patent number: 8753596
    Abstract: The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite ?. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 17, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Paul Spurk, Nicola Soeger, Elena Mueller, Stephan Malmberg
  • Patent number: 8741242
    Abstract: A NOx storage component comprises caesium silicate (Cs2SiO3) and at least one platinum group metal. The invention also includes a NOx absorber catalyst comprising a NOx storage component according to the invention disposed on a substrate monolith; a method of treating exhaust gas containing NOx from a lean burn internal combustion engine comprising the steps of contacting a NOx storage component comprising caesium silicate (Cs2SiO3) and at least one platinum group metal with lean exhaust gas containing NOx to adsorb NOx thereon; and periodically desorbing adsorbed NOx by contacting the NOx storage component with stoichiometric or rich exhaust gas; and a method of making a NOx storage component according to the invention comprising the steps of combining and reacting an aqueous salt of at least one platinum group metal, an aqueous caesium salt and a source of silica.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Jonathan Ashley Cooper, Michael Anthony Howard
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8735318
    Abstract: A catalyst for NOx storage and reduction may include a carrier that contains alkali metal and Al, or alkali earth metal and Al, a NOx storage element of alkali metal, alkali earth metal or rare earth element, and one or more noble metals that are selected from the group consisting of Pt, Pd, Ru, Ag, Au and Rh. The catalyst for NOx storage and reduction shows excellent NOx storage and reduction capability, maintains excellent storage and reduction capability especially before and after deterioration and sulfation, and shows excellent catalytic activity under low temperature environment, while maintaining unusually high hydrophobicity.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 27, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: In-Sik Nam, Sang Jun Park, Jin Ha Lee, Young-Kee Youn
  • Publication number: 20140135208
    Abstract: The present invention a catalyst that includes a metallic or ceramic foam catalyst support having surfaces within the foam for the placement of a catalytic material, and an active catalyst material which is applied by washcoating or dipping.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: L'Air Liquide Societe Anonyme Pour I'Etude et I'Expoitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pavol Pranda, Tony Mathew Thampan
  • Patent number: 8716165
    Abstract: A method for providing a catalyst on a substrate is disclosed comprising providing a first washcoat comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material, contacting the first washcoat with a substrate to form a coated substrate, and then contacting the coated substrate with a second washcoat comprising an oxide or an oxide-supported catalyst to physisorb, chemisorb, bond, or otherwise adhere the oxide or the oxide-supported catalyst to the coated substrate. Also disclosed is a catalyst on a substrate comprising: a substrate; an anchor layer comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material; and a second layer comprises an oxide or an oxide-supported catalyst. The catalyst on a substrate can be in either green or fired form.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventor: William Peter Addiego
  • Patent number: 8716175
    Abstract: There is provided a catalyst for producing ethylene oxide from ethylene which is composed of at least silver (Ag), cesium (Cs), rhenium (Re) and a carrier, and can be improved, in particular, in selectivity. The present invention relates to a catalyst for producing ethylene oxide from ethylene, comprising at least silver (Ag), cesium (Cs), rhenium (Re) and a carrier, said catalyst being produced by optionally pretreating the carrier to support an alkali metal thereon and then supporting Ag, Cs and Re on the carrier, wherein the carrier has a specific surface area of 0.6 to 3.0 m2/g and a weight ratio of a silicon (Si) content to a sodium (Na) content of 2 to 50 in terms of SiO2/Na2O; a content of Re in the catalyst is 170 to 600 ppm per 1 m2/g of the specific surface area of the carrier on the basis of a weight of the carrier; and a molar ratio of Cs to Re in the catalyst is 0.3 to 19.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 6, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Katsumi Nakashiro, Soichiro Yamada, Takanao Matsumoto
  • Patent number: 8703643
    Abstract: A catalyst for NOx storage and reduction may include a carrier that contains alkali metal and Al, or alkali earth metal and Al, a NOx storage element of alkali metal, alkali earth metal or rare earth element, and one or more noble metals that are selected from the group consisting of Pt, Pd, Ru, Ag, Au and Rh. The catalyst for NOx storage and reduction shows excellent NOx storage and reduction capability, maintains excellent storage and reduction capability especially before and after deterioration and sulfation, and shows excellent catalytic activity under low temperature environment, while maintaining unusually high hydrophobicity.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: April 22, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: In-Sik Nam, Sang Jun Park, Jin Ha Lee, Young-Kee Youn
  • Publication number: 20140106258
    Abstract: Truncated ditetragonal gold prisms (Au TDPs) are synthesized by adding a dilute solution of gold seeds to a growth solution, and allowing the growth to proceed to completion. The Au TDPs exhibit the face-centered cubic crystal structure and are bounded by 12 high-index {310} facets. The Au TDPs may be used as heterogeneous catalysts as prepared, or may be used as substrates for subsequent deposition of an atomically thin layer of a platinum group metal catalyst. When the Au TDPs are used as substrates, the atomically thin layer of metal reproduces the high-index facets of the Au TDPs.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Fang Lu, Oleg Gang, Yugang Zhang, Yu Zhang, Jia X. Wang
  • Patent number: 8691723
    Abstract: The sequential production of a library of N different solids, in particular heterogeneous catalysts, where N within a day is an integer of at least 2, is performed by a) producing at least two different sprayable solutions, emulsions and/or dispersions of elements and/or element compounds of the chemical elements present in the catalyst and optionally of dispersions of inorganic support materials, b) continuously metering the at least two different solutions, emulsions and/or dispersions in a predefined ratio into a mixing apparatus in which the solutions, emulsions and/or dispersions are homogeneously mixed, c) continuously drying the mixture removed from the mixing apparatus and recovering the dried mixture, d) changing the ratios in step b) and repeating steps b), c) and d) (N?1) times until N different dried mixtures are obtained, e) optionally shaping and optionally calcining the mixtures to give the solids.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 8, 2014
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Frieder Borgmeier, Martin Dieterle
  • Patent number: 8685877
    Abstract: A catalyst particle for use in growth of elongated nanostructures, such as e.g. nanowires, is provided. The catalyst particle comprises a catalyst compound for catalyzing growth of an elongated nanostructure comprising a nanostructure material without substantially dissolving in the nanostructure material and at least one dopant element for doping the elongated nanostructure during growth by substantially completely dissolving in the nanostructure material. A method for forming an elongated nanostructure, e.g. nanowire, on a substrate using the catalyst particle is also provided. The method allows controlling dopant concentration in the elongated nanostructures, e.g. nanowires, and allows elongated nanostructures with a low dopant concentration of lower than 1017 atoms/cm3 to be obtained.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 1, 2014
    Assignee: IMEC
    Inventors: Francesca Iacopi, Philippe M. Vereecken
  • Publication number: 20140087937
    Abstract: A catalytic article for decomposition of a volatile organic compound includes a porous support body, a plurality of active centers formed on the support body and adapted for catalytic decomposition of the volatile organic compound, and a plurality of capture centers bound to the support body. Each of the active centers is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the capture centers includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: National Yunlin University of Science & Technology
    Inventors: Bo-Tau Liu, Cheng-Hsien Hsieh, De-Hua Wang
  • Patent number: 8680005
    Abstract: The invention relates to a method of production of catalyst particles, comprising platinum and tin and also at least one further element, selected from lanthanum and cesium, on zirconium dioxide as support, comprising the steps: preparation of one or more solutions containing precursor compounds of Pt, Sn and at least one further element of La or Cs and also ZrO2, converting the solution(s) to an aerosol, bringing the aerosol into a directly or indirectly heated pyrolysis zone, carrying out pyrolysis, and separation of the particles formed from the pyrolysis gas. Suitable precursor compounds comprise zirconium(IV) acetylacetonate, lanthanum(II) acetylacetonate and cesium acetate, hexamethyldisiloxane, tin 2-ethylhexanoate, platinum acetylacetonate, zirconium(IV) propylate in n-propanol and lanthanum(II) acetylacetonate. The invention also relates to the catalyst particles obtainable using the method according to the invention, and to the use thereof as dehydrogenation catalysts.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Stefan Hannemann, Dieter Stützer, Goetz-Peter Schindler, Peter Pfab, Frank Kleine Jäger, Dirk Groβschmidt
  • Patent number: 8664148
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 4, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 8664149
    Abstract: Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 4, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: John T. Brady, Marvin E. Jones, Larry A. Brey, Gina M. Buccellato, Craig S. Chamberlain, John S. Huberty, Allen R. Siedle, Thomas E. Wood, Badri Veeraraghavan, Duane D. Fansler
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Patent number: 8648225
    Abstract: A process for hydrogenating highly unsaturated hydrocarbons to less unsaturated hydrocarbons wherein production of saturated hydrocarbons is minimized. The process utilizes catalyst including Ce2O3, MgO, and an inorganic support, and optionally palladium, optionally silver, and/or an optional alkali metal.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: February 11, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Marvin M Johnson, Darin B. Tiedtke
  • Patent number: 8648007
    Abstract: An apparatus and method for vaporizing and transporting an alkali metal salt is shown. The apparatus has a first conduit capable of transporting an alkali metal salt solution and a second conduit in fluid communication with the first conduit, the second conduit capable of transporting steam so that the alkali metal salt is dissipated into the steam forming a solution that can be transported, such as to a remote reaction zone. The solution can be transported via a third conduit that is capable of being heated by a heat source. The method can be used to add a promoter to a dehydrogenation catalyst during a dehydrogenation reaction.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 11, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Joseph E. Pelati, James R. Butler, Hollie Craig
  • Publication number: 20140038815
    Abstract: A method of producing a composite nanoparticle (M-AxOy), having: generating, in an inert gas, an alloy (A-M) nanoparticle, which contains 0.1 at. % to 30 at. % of a noble metal (M), with the balance being a base metal (A) and inevitable impurities, and which has a particle size of 1 nm to 100 nm, to heat the alloy (A-M) nanoparticle and to bring the alloy (A-M) nanoparticle into contact with a supplied oxidizing gas during transportation of the alloy (A-M) nanoparticle with the inert gas, to oxidize the base metal component (A) in the floating alloy (A-M) nanoparticle, and to phase separate into the thus-oxidized base metal component (AxOy) and the noble metal component (M), to thereby obtain a composite nanoparticle (M-AxOy) having one noble metal particle (M) combined to the surface of a particulate base metal oxide (AxOy).
    Type: Application
    Filed: February 2, 2012
    Publication date: February 6, 2014
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kenji Koga, Makoto Hirasawa, Hiroaki Sakurai, Naoto Koshizaki
  • Publication number: 20140031195
    Abstract: The method for producing a material loaded with gold nanoparticles, includes: impregnating a carrier with an anionic gold-hydroxo complex solution including a transparent solution that has a pH of not lower than 8, does not contain a halide anion, and contains a conjugate base of a weak acid not coordinated to gold and an anionic hydroxo complex of trivalent gold having a square planar molecular geometry whose at least one ligand is OH? and not containing a halide anion as a ligand; removing water; heating; and washing with water. According to the method, in a method for preparing a gold nanoparticle catalyst using a liquid phase method, a gold compound not containing a halide such as chloride is used as a raw material, and the gold compound can be supported efficiently. Furthermore, a gold nanoparticle-loaded catalyst having high activity can be obtained through a simple preparation method.
    Type: Application
    Filed: April 18, 2012
    Publication date: January 30, 2014
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Hiroaki Sakurai, Takae Takeuchi, Kenji Koga, Masato Kiuchi
  • Patent number: 8637719
    Abstract: The invention concerns a catalyst comprising a porous support, palladium, at least one metal selected from the group constituted by alkalis and alkaline-earths, in which: the specific surface area of the porous support is in the range 50 to 210 m2/g; the palladium content in the catalyst is in the range 0.05% to 2% by weight; at least 80% by weight of the palladium is distributed in a crust at the periphery of the support, the thickness of said crust being in the range 20 to 200 ?m; the metallic dispersion D is in the range 25% to 70%; the density of the palladium particles in the crust is in the range 1500 to 4100 particles of palladium per ?m2; and said alkali and/or alkaline-earth metal is distributed homogeneously across the support. The invention also concerns the preparation of the catalyst and its use in selective hydrogenation.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 28, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Lars Fischer, Carine Petit-Clair, Cecile Thomazeau, Lois Sorbier, Catherine Verdon
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8623782
    Abstract: There is provided by the present invention a process for preparing a copper-based catalyst having good catalytic activity, markedly excellent durability and good reproducibility. The process for preparing a copper-based catalyst of the invention is a process for preparing a catalyst composed of metal oxides containing copper oxide as an essential component and is characterized by comprising the following steps: (1) a step of bringing an acidic metal salt solution containing copper and a precipitant solution into contact with each other to obtain a slurry solution containing a precipitate of a catalyst precursor, and (2) a step of continuously bringing the slurry solution and a wash liquid into contact with each other to wash the precipitate, with substantially keeping the suspended state.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: January 7, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Masami Murakami, Ken Maeda, Yuya Goto
  • Patent number: 8618018
    Abstract: The invention relates to catalytically active components for thermal ionization detectors for the detection of compounds containing halogen which have an improved structure as well as to a manufacturing method for an oxide ceramic sintering material for the components. It is the object of the invention to manufacture catalytically active components for thermal ionization detectors for gas chromatographic applications which are thermally, mechanically and chemically stable in the long term and which have increased sensitivity to the materials to be detected. In this respect, the sintering material should be adjustable in a controllable manner in the ideal parameter required for the detector. It is proposed in accordance with the invention to use an oxide ceramic sintering material for the components which comprises a crystalline phase and an amorphous glass phase, with it being essential to the invention that the amorphous glass phase is formed with 0.1 to 20% by weight of a cesium compound.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 31, 2013
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Viktar Sauchuk, Peter Otschik, Klaus Eichler, Mihails Kusnezoff
  • Patent number: 8618020
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 31, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Publication number: 20130345048
    Abstract: A simplified method of manufacturing a catalyst for soot combustion includes the synthesis of a catalyst composition. A substrate is prepared for receipt of the composition and a sol solution is created utilizing the composition synthesized. Finally, a catalytic coating is applied to the substrate, through use of the sol solution. The catalyst composition may be any suitable composition including a K2O, CaO, SiO2 (KCS-1) silcate catalyst, and the substrate may be a wire mesh, such as for example, a commercial metallic wire mesh. The application of the coating to the substrate, may be performed through any suitable coating process including, for example, a sol-gel dipping process, spraying, painting, etc.
    Type: Application
    Filed: November 30, 2012
    Publication date: December 26, 2013
    Applicant: University of Notre Dame du Lac
    Inventor: University of Notre Dame du Lac
  • Patent number: 8614158
    Abstract: Processes for activating and/or regenerating Fischer-Tropsch and/or oxygenate synthesis catalysts include the transportation of a modular, portable catalyst activation and/or regeneration unit to Fischer-Tropsch and/or oxygenate production units. An alternative process for activating and/or regenerating Fischer-Tropsch and/or oxygenate synthesis catalysts includes activating and/or regenerating the catalyst in a production unit at a catalyst treatment facility. An alternative process for activating and/or regenerating Fischer-Tropsch and/or oxygenate synthesis catalysts includes activating and/or regenerating the catalyst in a synthesis reactor at a catalyst treatment facility.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 24, 2013
    Assignee: Schlumberger Technology Corporation
    Inventor: Stephen C. Leviness
  • Patent number: 8614161
    Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
  • Publication number: 20130337995
    Abstract: In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 8609575
    Abstract: A catalyst of one or more complex oxides having a nominal composition as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with atomic number 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with atomic number 25 to 30; P is selected from one or more elements with atomic number 44 to 50 and 76 to 83; x is defined as a number where 0<x?1; y is defined as a number where 0?y<0.5; and z is defined as a number where 0<z<0.2.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 17, 2013
    Assignee: Very Small Particle Company Limited
    Inventors: Peter Cade Talbot, Jose Antonio Alarco, Geoffrey Alan Edwards
  • Publication number: 20130331606
    Abstract: Processes are disclosed for the conversion of 1,6-hexanediol to adipic acid employing a chemocatalytic reaction in which 1,6-hexanediol is reacted with oxygen in the presence of particular heterogeneous catalysts including at least one of platinum or gold. The metals are preferably provided on a support selected from the group of titania, stabilized titania, zirconia, stabilized zirconia, silica or mixtures thereof, most preferably zirconia stabilized with tungsten. The reaction with oxygen is carried out at a temperature from about 100° C. to about 300° C. and at a partial pressure of oxygen from about 50 psig to about 2000 psig.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 12, 2013
    Inventors: Eric L. DIAS, Vincent J. MURPHY, James A. W. SHOEMAKER
  • Publication number: 20130331257
    Abstract: The invention relates to a method for producing micro-nano combined active systems in which nanoparticles of a first component are bonded to microparticles of a second component, comprising the following steps: (a) producing a low-ligand colloidal suspension containing nanoparticles of the first component, (b) adding microparticles to the colloidal suspension containing the nanoparticles or adding the colloidal suspension containing the nanoparticles to a dispersion containing the microparticles and intensively mixing so that the nanoparticles adsorb onto the microparticles, (c) separating the microparticles and the nanoparticles bonded thereto from the liquid and drying the microparticles and the nanoparticles bonded thereto.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: LASER ZENTRUM HANNOVER E.V.
    Inventors: Stephan Barcikowski, Philipp Wagener, Andreas Schwenke
  • Patent number: 8586780
    Abstract: A shell catalyst for producing vinyl acetate monomer (VAM), comprising an oxidic porous catalyst support, formed as a shaped body, with an outer shell in which metallic Pd and Au are contained. To provide a shell catalyst for producing VAM which has a relatively high activity and can be obtained at relatively low cost, the catalyst support is doped with at least one oxide of an element selected from the group consisting of Li, P, Ca, V, Cr, Mn, Fe, Sr, Nb, Ta, W, La and the rare-earth metals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 19, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8580216
    Abstract: A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Rajashekharam V. Malyala, Stephen J. Golden
  • Publication number: 20130288889
    Abstract: A visible light sensitive photocatalyst including: a composite including a first metal oxide, a second metal oxide, and a heterojunction therebetween, wherein the first and second metal oxides each include a Group 11 metal, wherein a first bond between metal atoms of the first metal oxide has a length that is smaller than a Van der Waals distance between the metals of the first bond, wherein a second bond between metal atoms of the second metal oxide has a length that is smaller than a Van der Waals distance between the metals of the second bond, and, wherein the composite has a band gap energy of about 1.0 eV to about 2.5 eV.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 31, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-gon KIM, Seoung-jae IM, Tae-hyung KIM, Jeong-hee LEE
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8562934
    Abstract: A surface of a substrate comprising microcavities leading out of the substrate is placed in contact with an aqueous solution comprising a plurality of suspended particles and a fabric. Perpendicular pressure is applied the expanse of the substrate between the fabric and the surface of the substrate, and relative movement of the fabric and the surface is applied to the expanse of the substrate. At least one particle is thus fed into each microcavity, therein forming a porous material that is a catalyst material for nanothread or nanotube growth.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: October 22, 2013
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Jean-Christophe Coiffic, Maurice Rivoire