Having Specifically Intended Extraneously Added Iron Group (i.e., Fe, Co, Ni) Component Patents (Class 502/406)
  • Patent number: 7135430
    Abstract: Divalent and trivalent metal salts are added to the solution containing the fluorine compound to precipitate the layered double hydroxide containing the fluorine compound between layers. By these processes, the fluorine compound can be fixed with high rate. Moreover, if necessary, the precipitated layered double hydroxide can be recovered to separate the fluorine compound or its salt between layers. Therefore, the burden to environment or the ecosystem by the fluorine compound can be reduced.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: November 14, 2006
    Assignee: JEMCO Inc.
    Inventors: Kiyoshi Fuda, Toshiaki Matsunaga, Takeshi Kamiya, Kota Omori
  • Patent number: 7125498
    Abstract: An oxygen-absorbing composition including iron and a soluble tartrate. A method of absorbing oxygen from a closed environment including the steps of providing an oxygen-absorbing composition containing iron and a tartrate, injecting water into the composition, and placing the composition into the closed environment. An oxygen-absorbing packet containing iron and a tartrate. All of the foregoing-mentioned compositions preferably include an electrolyte. The tartrates may be selected from the group which may include sodium acid tartrate, potassium acid tartrate, potassium sodium tartrate tetrahydrate and sodium tartrate dihydrate, but are not limited thereto.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: October 24, 2006
    Assignee: Multisorb Technologies, Inc.
    Inventor: George E. McKedy
  • Patent number: 7122502
    Abstract: A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: October 17, 2006
    Assignee: Sandia Corporation
    Inventors: David M. Teter, Patrick V. Brady, James L. Krumhansl
  • Patent number: 7056537
    Abstract: The present invention relates to a method of abating hydrogen sulfide gas emitted by or generated in landfills. Certain embodiments of the present invention relate to contacting hydrogen sulfide gas with Fuller's earth or other carrier materials and metals such as silver, copper, iron, zinc or mixtures thereof, and other components.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: June 6, 2006
    Assignee: Aceto Corporation
    Inventor: Richard Weschler
  • Patent number: 6994792
    Abstract: The present invention relates to mixtures of various adsorption materials, whose adsorption properties supplement one another in the mixture.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: February 7, 2006
    Assignee: Bayer Aktiengesellschaft
    Inventor: Andreas Schlegel
  • Patent number: 6992043
    Abstract: In ridding fluids, including hydrocarbon fluids, both gaseous and liquid, of sulfur compounds including hydrogen sulfide, oxides of sulfur, and thiols, the present invention uses a small quantity of an activator, generally a noble metal oxide, preferably a copper species, along with a known oxide product, such as iron oxide or zinc oxide, to thoroughly remove sulfur contaminants in a short amount of time. The activator allows for the use of smaller reactor vessels and the production of hydrocarbon fluids substantially free of sulfur products.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: January 31, 2006
    Assignee: M-I, L.L.C.
    Inventor: Delbert C. Scranton, Jr.
  • Patent number: 6984604
    Abstract: Supported bis(phosphorus) ligands are disclosed for use in a variety of catalytic processes, including the isomerization, hydrogenation, hydroformylation, and hydrocyanation of unsaturated organic compounds. Catalysts are formed when the ligands are combined with a catalytically active metal, such as nickel.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 10, 2006
    Assignee: Invista North America S.A.R.L.
    Inventors: Michael W. Cobb, Weiming Qiu
  • Patent number: 6926875
    Abstract: Disclosed are a porous material comprising particles without substantial fibrous structure and having pores, the pores having a mean pore diameter in a meson-pore region, sharp pore size distribution, and at least a part of the pores being connected three-dimensionally to form a three-dimensional network structure with random passages, the porous material preferably being of alumina and having a spongy structure or the porous material preferably being an aggregate of particles having an aspect ratio of 3 or less; a process of producing the porous material which includes a step of aging a system capable of becoming an oxide on thermal decomposition; a catalyst for exhaust gas purification having excellent NOx removal performance, high resistance against sulfur poisoning, and satisfactory high-temperature durability which comprises the porous material as a carrier having supported thereon a noble metal and an NOx storage component; and a method of exhaust gas purification using the catalyst.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 9, 2005
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Miho Hatanaka, Akihiko Suda, Toshiyuki Tanaka, Naoki Takahashi, Toshio Yamamoto, Yusuke Akimoto, Naohiro Terao
  • Patent number: 6921026
    Abstract: A humidity control device for use in maintaining a desired humidity in packages of food, the device including a protective case, a water vapor permeable pouch and a thickened saturated solution, the solution having a suitable humidity control point for use within a food container. The device further employs a combination of an oxygen scavenger system to stop mold growth with anaerobic conditions and/or a mold inhibitor in the filling of the pouch or preferentially printed on the outside of the pouch.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: July 26, 2005
    Inventors: Albert L. Saari, Robert L. Esse
  • Patent number: 6914034
    Abstract: Adsorbents for removing anions of a heavy metals comprise a porous carbon in which at least one oxygen-containing compound of iron, copper, and/or aluminum is incorporated. The oxygen-containing compound may be incorporated into the porous carbon by impregnation or dispersion of a suitable precursor of such a compound. The precursor may be further treated to yield the oxygen-containing compound. Such adsorbents are particularly useful for removing arsenic and/or selenium from the environment and may be used in treating drinking water sources.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: July 5, 2005
    Assignee: Calgon Carbon Corporation
    Inventor: Toan Phan Vo
  • Patent number: 6914033
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of a cerium oxide, a scandium oxide, a lanthanum oxide, and combinations of any two or more thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: July 5, 2005
    Assignee: ConocoPhillips Company
    Inventors: Jason J. Gislason, Robert W. Morton, Roland Schmidt, M. Bruce Welch
  • Patent number: 6869522
    Abstract: In a desulfurization process for the removal of organosulfur compounds from a hydrocarbon fluid stream such as cracked-gasoline or diesel fuel wherein a bifunctional sorbent system is employed, surface treatment of the bifunctional sorbent during the use of same for desulfurization results in an extension of the useful life of the bifunctional sorbent prior to the regeneration and reactivation of same for further use in the desulfurization of the hydrocarbon fluid stream.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: March 22, 2005
    Assignee: ConocoPhillips Company
    Inventors: Gyanesh P. Khare, Bryan W. Cass, Donald R. Engelbert, Edward L. Sughrue, Dennis R. Kidd, Max W. Thompson
  • Patent number: 6849186
    Abstract: Buoyant, sphere-like materials on the order of about 10 to about 300 microns and surrounded, at least in part, by (1) a variable blend of a ferromagnetic and paramagnetic material and (2) an absorbing or adsorbing material are effective vehicles for isolating targeted materials. By virtue of its relatively low density, the composite material is capable of remaining sufficiently suspended in solution for a suitable amount of time. In addition, the blend of ferromagnetic and paramagnetic materials allows for the isolation of a composite material from an environment such as a solution, yet discourages substantial self-attachment of the composite materials in solution, when subject to a magnetic field. Accordingly, multiple embodiments of composite materials having these and other properties are disclosed, as well as methods for making and using the same.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: February 1, 2005
    Assignee: Phillips Plastic Corporation
    Inventors: James R. Johnson, Majid Entezarian
  • Patent number: 6815390
    Abstract: The present invention relates to a new catalyst system for fluorous biphasic catalysis processes which comprises functionalized polymeric beads, monodisperse SiO2 or SiO2 flakes associated with the catalyst. These functionalized particles are used as a support for catalysts in fluorous biphasic catalysis (FBC).
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: November 9, 2004
    Assignee: Merck Patent GmbH
    Inventors: Julian F. S. Vaughan, Martin G. Pellatt, James Sherrington, Eric George Hope
  • Patent number: 6803343
    Abstract: A sorbent composition comprising a support and a reduced-valence noble metal can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: October 12, 2004
    Assignee: ConocoPhillips Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6790422
    Abstract: Active alumina catalysts, well suited for the Claus reaction, for the hydrolysis of organosulfur compounds and for catalytically removing objectionable sulfur compounds from gaseous effluents comprised thereof, contain a cocatalytically effective amount of sodium values, such effective amount, expressed by weight of Na2O, ranging from 1,200 ppm to 2,700 ppm.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: September 14, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Olivier Legendre, Christophe Nedez
  • Publication number: 20040147397
    Abstract: A composition of and method for forming activated carbon with magnetic properties for magnetic separation of the activated carbon from a liquid being treated is disclosed wherein a solution iron magnetic precursor is intimately mixed or absorbed into a porous carbon precursor or mixed with a solution or meltable carbon precursor to form an essentially homogeneous mixture or solution that when dried and pyrolized forms activated carbon particles with magnetic material evenly dispersed throughout the activated carbon material. The activated carbon particles may be of fine particle size, even powdered, and still retain magnetic properties sufficient for magnetic separation. In a particular aspect of the invention, a carbon precursor of soft wood is soaked in a solution of a ferric salt, dried, pyrolized and activated.
    Type: Application
    Filed: March 25, 2004
    Publication date: July 29, 2004
    Inventors: Jan D. Miller, Gustavo A Munoz, Saskia Duyvesteyn
  • Publication number: 20040127358
    Abstract: The invention according to one aspect provides oxygen sorbent materials, which are able to remove trace amounts of oxygen in either a gas-flow or an enclosed system over a wide temperature range. In particular, the invention relates to bulk solid oxygen sorbents that can lower equilibrium oxygen concentrations to below 1 part per trillion (1 ppt). The oxygen sorbents have high surface area, nano-sized crystalline mixed oxides that include cerium oxide, zirconium oxide and preferably yttrium oxide, and an aliquot of catalytic materials such as precious metal. The present sorbents can work in noxious environments, since the materials are not sensitive to toxic elements, which would typically poison conventional catalysts. In another aspect, a product and method for fabricating an opto-electronic device that includes a getter material, incorporating an iteration of the sorbent material, is provided.
    Type: Application
    Filed: June 25, 2003
    Publication date: July 1, 2004
    Inventors: Michael E. DeRosa, Mingqian He, Yuming Xie
  • Patent number: 6743405
    Abstract: A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200° C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: June 1, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Ranjani Siriwardane
  • Patent number: 6733734
    Abstract: Regenerable gas purifier materials are provided capable of reducing the level of contaminants such as oxygen and moisture in a hydride gas stream to parts-per-billion levels or sub-parts-per-billion levels. The purifier materials of this invention comprise a thin layer of one or more reduced forms of a metal oxide coated on the surface of a nonreactive substrate. The thin layer may further contain the completely reduced form of the metal. In one embodiment, the total surface area of the thin layer is less than 100 m2/g.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: May 11, 2004
    Assignee: Matheson Tri-Gas
    Inventors: Tadaharu Watanabe, Dan Fraenkel
  • Publication number: 20040087442
    Abstract: A composition for absorbing oxygen and releasing carbon dioxide in a high moisture environment including by weight an iron-based component for absorbing oxygen in an amount of between about 15% and 60%, a carbon dioxide releasing component for releasing carbon dioxide in an amount of between about 8% and 50%, an acidifying component for providing acid for activating the carbon dioxide releasing component, and a dry water-attracting component for preventing premature activation of the iron-based component and carbon dioxide releasing component and for attracting water from a high moisture environment to thereby supply water for activating the acidifying component and the iron-based component.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Applicant: Multisorb Technologies, Inc.
    Inventors: John S. Cullen, George E. McKedy
  • Patent number: 6726852
    Abstract: A method of manufacturing a synthesis gas containing hydrogen and carbon monoxide comprises steps of removing only hydrogen sulfide from a natural gas containing hydrogen sulfide and carbon dioxide by permitting the natural gas to pass through a hydrogen sulfide-removing device filled with a hydrogen sulfide absorbent, adding carbon dioxide and steam to the natural gas which the hydrogen sulfide has been removed to prepare a mixed gas, and feeding the mixed gas into a reaction tube of a reformer, thereby permitting mainly a steam reforming reaction to take place in the mixed gas. This method enables hydrogen sulfide in natural gas to be removed while permitting the carbon dioxide of natural gas to be effectively utilized, thereby reducing the quantity of carbon dioxide to be added to the natural gas to be transferred to the reformer.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: April 27, 2004
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaki Iijima, Kazuto Kobayashi, Kazuhiro Morita
  • Publication number: 20040063578
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of a gallium oxide, an indium oxide, and combinations of any two or more thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Inventors: Robert W. Morton, Jason J. Gislason, M. Bruce Welch, David E. Simon, Roland Schmidt
  • Publication number: 20040048743
    Abstract: Attrition resistant, sorbent compositions for the removal of elemental sulfur and sulfur compounds, such as hydrogen sulfide and organic sulfides, from cracked-gasoline and diesel fuels are prepared by the impregnation of a sorbent support comprising zinc oxide, expanded perlite, and alumina with a promoter such as nickel, nickel oxide or a precursor of nickel oxide followed by reduction of the valence of the promoter metal in the resulting promoter metal sorbent support composition.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 11, 2004
    Applicant: ConocoPhillips Company
    Inventors: James L. Malandra, Edward L. Sughrue, Marvin J. Johnson, Glen W. Dodwell, Larry E. Reed, Joseph E. Bares, Jason J. Gislason, Robert W. Morton
  • Publication number: 20040038817
    Abstract: A method for producing an iron-containing sorption material for treating feed water or waste water in order to remove harmful trace constituents by adsorption. To this end, an iron-containing solution is initially dehydrated in order to increase the salt content and transformed into a suspension of iron-containing solids from which the sorption material is obtained. By subsequently increasing the pressure of the suspension at a temperature of less than −5° C., the iron-containing solids in the suspension are transformed to dimensionally stable solid complexes. The iron-complex containing particles significantly facilitate treatment of water to remove hazardous trace materials because they provide a large surface area for carrying out the adsorption, yet filters made of this material do not become clogged even when treating heavily polluted waste water. In addition, the use of the sorption material of the invention makes it possible to dispense with use of fillers and/or auxiliary filter materials.
    Type: Application
    Filed: June 13, 2003
    Publication date: February 26, 2004
    Applicant: GEH Wasserchemie GmbH & Co. KG
    Inventor: Wolfgang Driehaus
  • Patent number: 6683024
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on the support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: January 27, 2004
    Assignee: ConocoPhillips Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Publication number: 20040007505
    Abstract: A system for enhancing fluid/solids contacting in a fluidization reactor by controlling the particle size distribution of the solid particulates in the reactor.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 15, 2004
    Inventors: Paul F. Meier, Edward L. Sughrue, Jan W. Wells, Douglas W. Hausler, Max W. Thompson
  • Publication number: 20040009873
    Abstract: The present invention provides an adsorbent for removing water and/or other oxygen-containing impurities from a fluid comprising ammonia to the ppb level and methods for making and using same. The adsorbent preferably comprises a substrate having a plurality of pores and a surface area that ranges from about 100 to about 2,500 m2/g and a compound disposed within a least a portion of the substrate. In certain preferred embodiments, the compound comprises at least one cation from the group consisting of ammonium (I), lithium (I), sodium (I), potassium (I), cesium (I); magnesium (II), calcium (II), strontium (II), barium (II), manganese (II), nickel (II), iron (II), zinc (II); aluminum (III), indium (III), iron (III), and zirconium (IV) or combinations thereof that is ionically associated with an anion from the group consisting of halide, sulfide, sulfite, or sulfate.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 15, 2004
    Inventors: Chun Christine Dong, Madhukar Bhaskara Rao, Dingjun Wu
  • Publication number: 20040007498
    Abstract: A composition comprising an iron oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Inventors: Jason J. Gislason, Robert W. Morton, Roland Schmidt, M. Bruce Welch
  • Patent number: 6667273
    Abstract: A composition for absorbing oxygen and releasing carbon dioxide in a high moisture environment including by weight an iron-based component for absorbing oxygen in an amount of between about 15% and 60%, a carbon dioxide releasing component for releasing carbon dioxide in an amount of between about 8% and 50%, an acidifying component for providing acid for activating the carbon dioxide releasing component, and a dry water-attracting component for preventing premature activation of the iron-based component and carbon dioxide releasing component and for attracting water from a high moisture environment to thereby supply water for activating the acidifying component and the iron-based component.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: December 23, 2003
    Assignee: Multisorb Technologies, Inc.
    Inventors: John S. Cullen, George E. McKedy
  • Patent number: 6649555
    Abstract: A deactivated sorbent composition is reactivated by contacting the deactivated sorbent with a reducing stream under activation conditions sufficient to reduce the amount of sulfates associated with the sorbent composition.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: November 18, 2003
    Assignee: ConocoPhillips Company
    Inventors: Glenn W. Dodwell, Ronald E. Brown, Robert W. Morton, Jason J. Gislason
  • Publication number: 20030203815
    Abstract: A sorbent composition comprising a promoter metal, zinc oxide, and a high density refractory metal oxide used to more effectively desulfurize a sulfur-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: April 26, 2002
    Publication date: October 30, 2003
    Inventors: Gyanesh P. Khare, Glenn W. Dodwell
  • Publication number: 20030166465
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventor: Gyanesh P. Khare
  • Publication number: 20030113258
    Abstract: A desulfurizing agent comprising a silica-alumina carrier having an Si/Al mole ratio of 10 or less and nickel carried thereon; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a specific surface area of pores having a pore diameter of 3 nm or less of 100 m2/g or more; an Ni-Cu based desulfurizing agent comprising a carrier and, carried thereon, (A) nickel, (B) copper, and (C) an alkali metal or another metal; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a hydrogen adsorption capacity of 0.4 mmol/g or more; and methods for producing these nickel-based and nickel-copper-based desulfurizing agents. The above desulfurizing agents are capable of adsorbing and removing with good efficiency the sulfur contained in hydrocarbons derived from petroleum to a content of 0.2 wt. ppm or less and have a long service life.
    Type: Application
    Filed: September 23, 2002
    Publication date: June 19, 2003
    Inventors: Hisashi Katsuno, Satoshi Matsuda, Kazuhito Saito, Masahiro Yoshinaka
  • Publication number: 20030114299
    Abstract: A sorbent composition comprising a support, a promoter, and a silicate can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: November 28, 2001
    Publication date: June 19, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6558547
    Abstract: A material for introducing inorganic elements into water, the material including a carrier and a plurality of inorganic compounds that are sparingly soluble in water, wherein the carrier is an organic ion-exchanger having a porous structure in the air-dry state. The organic ion-exchanger reacts with the sparingly soluble compounds such that the sparingly soluble inorganic compounds are contained in pores of the organic ion-exchanger with a ratio of the ion-exchanger to the sparingly soluble inorganic compounds being 35-90:10-65 percent by weight.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 6, 2003
    Assignee: Otkrytoe Aktsionernoe Obschestvo “Nauchno-Issledovatelsky Institut Plasticheskikh Mass Im. G. S. Petrova”
    Inventors: Dzhulietta Petrovna Solntseva, Mikhail Stanislavovich Krasnov, Mikhail Sergeevich Amiragov, Leonid Sergeevich Bobe
  • Publication number: 20030069133
    Abstract: This application provides an invention of a molded product comprising a carbonaceous material having a carbon content of 30 to 70 mass % obtained by dry distillation of solidified refuse fuels and a binder. Since the molded product can be utilized as an environment cleaning material such as for foul water cleaning as it is or after processing, it can provide a stage of effectively utilizing refuses and promote consumption thereof.
    Type: Application
    Filed: June 19, 2002
    Publication date: April 10, 2003
    Inventors: Yasuyuki Yamaguchi, Takuya Tsubota, Utaka Yamauchi, Ryoichi Nagata
  • Publication number: 20030064889
    Abstract: Attrition resistant, sorbent compositions for the removal of elemental sulfur and sulfur compounds, such as hydrogen sulfide and organic sulfides, from cracked-gasoline and diesel fuels are prepared by the impregnation of a sorbent support comprising zinc oxide, expanded perlite, and alumina with a promoter such as nickel, nickel oxide or a precursor of nickel oxide followed by reduction of the valence of the promoter metal in the resulting promoter metal sorbent support composition.
    Type: Application
    Filed: April 11, 2002
    Publication date: April 3, 2003
    Inventors: Edward L. Sughrue, Marvin M. Johnson, Glenn W. Dodwell, Larry E. Reed, Joseph E. Bares, Jason J. Gislason, Robert W. Morton, James L. Malandra
  • Patent number: 6541419
    Abstract: A sulfur sorber for the reduction of gaseous sulfur compounds, e.g., H2S, in a gas stream The sulfur sorber, e.g., zinc oxide, is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers have a total thickness of at least 3 g/in3 of the carrier. Preferably, the sorber is present in the form of at least three layers on the surface of the monolith carrier.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: April 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Publication number: 20030047489
    Abstract: A sorbent composition comprising a support and reduced-valence iron can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 13, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6528441
    Abstract: A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form CnH2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: March 4, 2003
    Assignee: Westinghouse Savannah River Company, L.L.C.
    Inventors: Leung K Heung, George G. Wicks
  • Patent number: 6511642
    Abstract: Disclosed are a porous material comprising particles without substantial fibrous structure and having pores, the pores having a mean pore diameter in a meso-pore region, sharp pore size distribution, and at least a part of the pores being connected three-dimensionally to form a three-dimensional network structure with random passages, the porous material preferably being of alumina and having a spongy structure or the porous material preferably being an aggregate of particles having an aspect ratio of 3 or less; a process of producing the porous material which includes a step of aging a system capable of becoming an oxide on thermal decomposition; a catalyst for exhaust gas purification having excellent NOx removal performance, high resistance against sulfur poisoning, and satisfactory high-temperature durability which comprises the porous material as a carrier having supported thereon a noble metal and an NOx storage component; and a method of exhaust gas purification using the catalyst.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: January 28, 2003
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Miho Hatanaka, Akihiko Suda, Toshiyuki Tanaka, Naoki Takahashi, Toshio Yamamoto, Yusuke Akimoto, Naohiro Terao
  • Patent number: 6491740
    Abstract: The present invention provides for methods and compositions for gas separation and purification utilizing a metallo-organic polymer adsorbent in processes for separating carbon dioxide, water, nitrogen oxides and hydrocarbons from gas streams.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: December 10, 2002
    Assignee: The BOC Group, Inc.
    Inventors: Qing Min Wang, Dongmin Shen, Martin Bülow, Miu Ling Lau, Frank R. Fitch, Shuguang Deng
  • Publication number: 20020182135
    Abstract: In ridding fluids, including hydrocarbon fluids, both gaseous and liquid, of sulfur compounds including hydrogen sulfide, oxides of sulfur, and thiols, the present invention uses a small quantity of an activator, generally a noble metal oxide, preferably a copper species and/or a manganese species, along with a known oxide product, such as iron oxide, iron hydroxide, zinc oxide, zinc hydroxide, manganese oxide, manganese hydroxide, or combinations thereof, to thoroughly remove sulfur contaminants in a short amount of time. The activator allows for the use of smaller reactor vessels and the production of hydrocarbon fluids substantially free of sulfur products.
    Type: Application
    Filed: March 8, 2002
    Publication date: December 5, 2002
    Applicant: M-I L.L.C.
    Inventors: Thomas G. Braga, Delbert C. Scranton
  • Publication number: 20020179887
    Abstract: Supported perovskite-type oxides are described. The perovskite-type oxides have the general formula of AxA′x′ByB′y′O3-&dgr;, wherein A is an ion of a metal of Group IIIa or IIIb of the periodic table of elements or mixtures thereof; A′ is an ion of a metal of Groups Ia or IIa of the periodic table or mixtures thereof; B and B′ are ions of a d-block transition metal of the periodic table or mixtures thereof; x, x′, y and y′ vary from 0 to 1; 0.95<x+x′<1.05; 0.95<y+y′<1.05; &dgr; is the deviation from ideal oxygen stoichiometry. This invention also provides for the selection of support materials and the shapes of supported perovskite-type oxides as well as the methods for making them.
    Type: Application
    Filed: April 29, 2002
    Publication date: December 5, 2002
    Inventors: Yongxian Zeng, Rudolph J. Wolf, Frank R. Fitch, Martin Bulow, Satish S. Tamhankar, Divyanshu R. Acharya
  • Patent number: 6468942
    Abstract: An adsorptive-filtration media for the capture of waterborne or airborne constituents. The media comprises a granular substrate and an amphoteric compound bonded to the substrate in the presence of a crystal inhibiting agent. The media can also comprise a substrate having a specific gravity of less than 1.0 and an amphoteric compound bonded to the substrate. Another media comprises a substrate with a specific surface area of greater than 0.1 m2/gm and an amphoteric compound bonded to the substrate. Another media includes a granular substrate and a manganese oxide amphoteric compound formed on the substrate. Also disclosed is a pavement material for the capture of waterborne constituents. The pavement material comprises a porous pavement substrate and an amphoteric compound bonded to the substrate. Also disclosed is a method for producing a porous, cementitious material.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: October 22, 2002
    Inventor: John J. Sansalone
  • Publication number: 20020147110
    Abstract: Attrition resistant, sorbent compositions for the removal of elemental sulfur and sulfur compounds, such as hydrogen sulfide and organic sulfides, from cracked-gasoline and diesel fuels are prepared by the impregnation of a sorbent support comprising zinc oxide, expanded perlite, and alumina with a promoter such as nickel, nickel oxide or a precursor of nickel oxide followed by reduction of the valence of the promoter metal in the resulting promoter metal sorbent support composition.
    Type: Application
    Filed: February 6, 2002
    Publication date: October 10, 2002
    Inventors: Glenn W. Dodwell, Robert W. Morton, Jason J. Gislason
  • Patent number: 6461535
    Abstract: The present invention provides a process for removing arsenic from ground water to be processed and used in remote dwellings. The process includes (a) contacting a clay, a coagulant, and an oxidizer with water containing arsenic to form a coagulated colloidal mixture; (b) adsorbing the arsenic onto the coagulated colloidal mixture; and (c) separating the water from the coagulated colloidal mixture. The invention also provides a composition ready for use in removing arsenic from ground water to be used in remote areas. The composition includes an activated clay, a coagulant, and an oxidizer in predetermined proportions for efficient removal of arsenic from ground water.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: October 8, 2002
    Assignee: Pan American Health Organization
    Inventor: María Luisa Castro de Esparza
  • Patent number: 6436872
    Abstract: An oxygen-absorbing composition containing particulate annealed electrolytically reduced iron of between about 100 mesh and 325 mesh in an amount of about up to 63% by weight, a salt such as sodium chloride in an amount by weight of about up to 3.5%, and a water-supplying component comprising activated carbon. with liquid water therein of a mesh size of between about 20 mesh and 50 mesh in an amount by weight of up to about 85% in an envelope which will resist the passage of liquid water out of the envelope but will permit flow of oxygen into the envelope at a satisfactory rate.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: August 20, 2002
    Assignee: Multisorb Technologies, Inc.
    Inventor: George E. McKedy
  • Patent number: 6432873
    Abstract: A composition and method of making a strength enhanced composition are described. The composition comprises zinc oxide, silica and colloidal oxide solution. The colloidal oxide solution is utilized as a binding agent to provide a strength enhanced absorbent composition that can be utilized in an absorption process for the purpose of removing sulfur contaminants from fluid streams.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: August 13, 2002
    Inventors: Gyanesh P. Khare, Ralph E. Bonnell