And Rare Earth Metal (sc, Y Or Lanthanide)containing Patents (Class 502/65)
  • Publication number: 20140274663
    Abstract: The effect of firing (calcination) cycle on metallic substrates in ZPGM catalyst systems is disclosed. ZPGM catalyst samples with washcoat and overcoat are separately fired in a normal, slow and fast firing cycles to determine the optimal firing cycling that may provide an enhanced catalyst performance, as well as the minimal loss of washcoat adhesion from the samples.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274664
    Abstract: Provided are catalysts including: a zeolite component selected from zeolites having 10-member ring pores, zeolites having 12-member ring pores and a combination thereof, 0.1 to 5 weight % of a hydrogenation component selected from Pt, Pd, Ag, Ni, Co, Mo, W, Rh, Re, Ru, Ir and a mixture thereof, and a hydrothermally stable binder component selected from tantalum oxide, tungsten oxide, molybdenum oxide, vanadium oxide, magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, cerium oxide, niobium oxide, tungstated zirconia, cobalt molybdenum oxide, cobalt molybdenum sulfide, nickel molybdenum oxide, nickel molybdenum sulfide, nickel tungsten oxide, nickel tungsten sulfide, cobalt tungsten oxide, cobalt tungsten sulfide, nickel molybdenum tungsten oxide and nickel molybdenum tungsten sulfide, cobalt molybdenum tungsten oxide and cobalt molybdenum tungsten sulfide, wherein the weight ratio of the zeolite to the hydrothermally stable binder is 85:15 to 25:75.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Scott J. Weigel, Joseph Emmanuel Gatt, Darryl Donald Lacy, Randall D. Partidge, Kun Wang, Lei Zhang, Christine Nicole Elia
  • Publication number: 20140274662
    Abstract: The present disclosure refers to variation of compositions for catalytic converters free of platinum group metals, which may be employed to manufacture ZPGM oxidation catalyst systems, to remove main pollutants from exhaust of diesel engines, by oxidizing toxic gases. Suitable support oxides material may include ZrO2, ZrO2 doped with lanthanide group metals, Nb2O5, Nb2O5—ZrO2, Al2O3 and Al2O3 doped with lanthanide group metals, TiO2 and doped TiO2 may be used. Materials suitable for use as ZPGM catalysts include Lanthanum (La), Yttrium (Y), Silver (Ag), Manganese (Mn) and combinations thereof. The disclosed ZPGM DOC systems may include perovskite structures with the characteristic formulation ABO3 or related structures. A plurality of methods may be employed for production of ZPGM diesel oxidation catalyst systems substantially free of PGM, which may include a substrate, a washcoat, and an impregnation layer.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140243188
    Abstract: Alumina binder obtained from aluminum sulfate, the process of preparing the binder and the process of using the binder to prepare catalyst compositions are disclosed. Catalytic cracking catalyst compositions, in particularly, fluid catalytic cracking catalyst composition comprising zeolites, optionally clay and matrix materials bound by an alumina binder obtained from aluminum sulfate are disclosed.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: W. R. GRACE & CO.-CONN.
    Inventor: Ranjit KUMAR
  • Publication number: 20140235429
    Abstract: The invention discloses a process for upgrading feed streams containing residual fractions with high concentrations of metals, more specifically nickel content up to 150 ppm employing acidic catalysts comprising large pore rare earth faujasite zeolite component, pentasil zeolite component and pseudoboehemite containing resid cracking component while the composite is impregnated with lanthanum oxide or aluminium oxide or mixture of both. The hydrocarbon feed stock can be sourced from either petroleum derivatives or from coal, tar or sand. The process results in increased selectivity of propylene in LPG in the range of 39-52%.
    Type: Application
    Filed: October 11, 2012
    Publication date: August 21, 2014
    Applicant: INDIAN OIL CORPORATION LTD.
    Inventors: Arumugam Velayutham Karthikeyani, Biswanath Sarkar, Velusamy Chidambaram, Balaiah Swamy, Pankaj Kumar Kasliwal, Ganga Shanker Mishra, Mohan Prabhu Kuvettu
  • Patent number: 8802582
    Abstract: A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 12, 2014
    Assignee: Catalytic Solutions, Inc.
    Inventors: Rajashekharam Malyala, Svetlana Iretskaya, Stephen J. Golden
  • Publication number: 20140194276
    Abstract: A process for obtaining a catalyst composite comprising the following steps: a). selecting a molecular sieve having pores of 10-or more-membered rings b). contacting the molecular sieve with a metal silicate different from said molecular sieve comprising at least one alkaline earth metal and one or more of the following metals: Ga, Al, Ce, In, Cs, Sc, Sn, Li, Zn, Co, Mo, Mn, Ni, Fe, Cu, Cr, Ti and V, such that the composite comprises at least 0.1 wt % of silicate.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk, Delphine Minoux
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Publication number: 20140161695
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 12, 2014
    Applicants: BASF Corporation, BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20140140909
    Abstract: The present disclosure relates to a substrate comprising nanomaterials for treatment of gases, washcoats for use in preparing such a substrate, and methods of preparation of the nanomaterials and the substrate comprising the nanomaterials. More specifically, the present disclosure relates to a substrate comprising nanomaterial for three-way catalytic converters for treatment of exhaust gases.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: SDCMATERIALS, INC.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20140116923
    Abstract: The present invention relates to a catalyst for Fluid Catalytic Cracking (FCC) which contains a combination of a FCC catalyst component and an additive component with certain physical properties attributed therein. The present invention is also directed to provide methods for the preparation of the catalyst for FCC. The admixture of the FCC catalyst component and additive component is used in cracking of hydrocarbon feedstock containing hydrocarbons of higher molecular weight and higher boiling point and/or olefin gasoline naphtha feedstock for producing lower yield of fuel gas with out affecting the conversion and yield of general cracking products such as gasoline, propylene and C4 olefins.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Srikanta DINDA, Praveen Kumar CHINTHALA, Amit GOHEL, Ashwani YADAV, Sukumar MANDAL, Gopal RAVICHANDRAN, Asit Kumar DAS
  • Patent number: 8703636
    Abstract: A method of manufacturing a catalyst body which includes: combining one or more inorganic components with an inorganic binder, and optionally with an organic binder, to form a mixture, the one or more inorganic components comprising a primary phase material being zeolite, or CeO2—ZrO2, or a combination; forming the mixture into a shaped body; firing the shaped body to allow the inorganic binder to bind the one or more inorganic components; impregnating the shaped body with a source of a reducing or oxidizing element; and heating the impregnated shaped body to form a redox oxide from the source, the redox oxide being supported by the shaped body.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: April 22, 2014
    Assignee: Corning Incorporated
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil
  • Patent number: 8697593
    Abstract: The zeolite catalyst is provided for the alkylation of toluene with methanol to selectively produce styrene and ethylbenzene. The zeolite catalyst is an X-type zeolite modified sequentially, first by ion-exchange with alkali metals, such as cesium, to replace all exchangeable sodium from the zeolite, and then by mixing the modified zeolite with borate salts of a metal such as lanthanum, zirconium, copper, zinc or the like. The initial zeolite composition has a Si to Al molar ratio of approximately 1 to 10, and is preferably either zeolite X or zeolite 13X. The zeolite composition is ion-exchanged with cesium to replace at least 50% of the exchangeable sodium in the zeolite composition. The ion-exchanged zeolite composition is then mixed with a borate salt to form the zeolite catalyst for the alkylation of toluene with methanol for the selective production of styrene and ethylbenzene.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: April 15, 2014
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Sulaiman S. Al-Khattaf, Hideshi Hattori, Balkrishna B. Tope, Abdullah M. Aitani
  • Publication number: 20140080697
    Abstract: The present invention relates to a catalytic cracking catalyst and a preparation process thereof, the catalytic cracking catalyst has a cracking active component, an optional mesoporous aluminosilicate material, a clay and a binder, wherein said cracking active component comprises, substantially consists of or consists of: a rare earth-containing Y zeolite, an optional other Y zeolite, and an optional MFI-structured zeolite, said rare earth-containing Y zeolite has a rare earth content as rare earth oxide of 10-25 wt %, e.g. 11-23 wt %; a unit cell size of 2.440-2.472 nm, e.g. 2.450-2.470 nm; a crystallinity of 35-65%, e.g. 40-60%; a Si/Al atom ratio in the skeleton of 2.5-5.0; and a product of the ratio of the strength I1 of the peak at 2?=11.8±0.1° to the strength I2 of the peak at 2?=12.3±0.1° in the X-ray diffraction spectrogram of the zeolite and the weight percent of rare earth as rare earth oxide in the zeolite of higher than 48, e.g. higher than 55.
    Type: Application
    Filed: June 27, 2013
    Publication date: March 20, 2014
    Applicants: RESEARCH INSTITUTE OF PETROLEUM PROCESSING SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Jun Long, Yuxia Zhu, Yibin Luo, Jinghui Deng, Jinyu Zheng, Fei Ren, Xue Yang, Ying Ouyang
  • Publication number: 20140065042
    Abstract: A three way catalyst includes an extruded solid body having by weight: 10-100% of at least one binder/matrix component; 5-90% of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% optionally stabilised ceria. The catalyst also includes at least one precious metal and optionally at least one non-precious metal, wherein: (i) the at least one precious metal is carried in one or more coating layer(s) on the body surface; (ii) at least one metal is present throughout the body and at least one precious metal is carried in one or more coating layer(s) on a body surface; or (iii) at least one metal is present throughout the body, is present in a higher concentration at a body surface, and at least one precious metal is carried in one or more coating layer(s) on the body surface.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 6, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Ralf Dotzel, Kwangmo Koo, Rainer Leppelt, Jörg Werner Münch, Jeffery Scott Rieck, Hubert Schedel, Duncan John William Winterborn, Todd Howard Ballinger, Julian Peter Cox
  • Publication number: 20140044635
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers haying a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) haying at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 13, 2014
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Publication number: 20140038810
    Abstract: A method for controlling 2-isomer content in linear alkylbenzene obtained by alkylating benzene with olefins and catalyst used in the method.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: UOP LLC
    Inventors: Mark G. Riley, Deng-Yang Jan, Stephen W. Sohn
  • Patent number: 8636959
    Abstract: The present invention is an exhaust gas purification catalyst equipment, and a method of use thereof, formed by arranging a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst, characterized in that said catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i) but the component (iii), in a flow path of exhaust gas, characterized in that a spraying means to supply an urea aqueous solution or an aqueous
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: January 28, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Patent number: 8629074
    Abstract: The zeolite honeycomb structure is constituted of a zeolite raw material containing zeolite particles, noble metal loaded catalyst carriers containing a noble metal loaded onto catalyst carriers, and an inorganic binding material in a honeycomb shape. An average particle diameter of the noble metal loaded catalyst carriers is ten or more times an average particle diameter of the zeolite particles. Moreover, the noble metal loaded catalyst carriers are contained in an amount corresponding to a volume ratio which is from 5 to 25 vol % with respect to 100 vol % of the zeolite particles, and the noble metal is loaded onto the noble metal loaded catalyst carriers in an amount corresponding to a mass ratio which is from 0.2 to 2.0 mass % with respect to 100 mass % of the zeolite particles in the zeolite honeycomb structure.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 14, 2014
    Assignee: NGK Insulators, Ltd.
    Inventor: Yoshio Kikuchi
  • Publication number: 20140005032
    Abstract: The present invention discloses a catalytic cracking catalyst and a preparation process therefor. The catalytic cracking catalyst comprises a cracking active component, 10 wt %-70 wt % of a clay on the dry basis, and 10 wt %-40 wt % of an inorganic oxide binder (as oxide), relative to the weight of the catalytic cracking catalyst, wherein said cracking active component contains, relative to the weight of the catalytic cracking catalyst, 10 wt %-50 wt % of a modified Y-type zeolite on the dry basis and 0-40 wt % of other zeolite on the dry basis, wherein said modified Y-type zeolite is characterized by having a unit cell size of 2.420-2.440 nm; as percent by weight of the modified Y-type zeolite, a phosphorus content of 0.05-6%, a RE2O3 content of 0.03-10%, and an alumina content of less than 22%; and a specific hydroxy nest concentration of less than 0.35 mmol/g and more than 0.05 mmol/g.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 2, 2014
    Applicants: RESEARCH INSTITUTE OF PETROLEUM PROCESSING SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Jun LONG, Fei Ren, Yuxia Zhu, Yibin Luo, Jiasong Yan, Xue Yang, Huiping Tian, Li Zhuang, Beiyan Chen, Minggang Li, Ying Ouyang, Xiangtian Shu
  • Patent number: 8617497
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Grant
    Filed: April 16, 2011
    Date of Patent: December 31, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W. L. Southward
  • Publication number: 20130336863
    Abstract: A catalyst for the selective catalytic reduction of nitrogen oxides in diesel engine exhaust gases using ammonia or a precursor compound decomposable to ammonia is described. The catalyst comprises two superposed coatings applied to a support body, of which the first coating applied directly to the support body comprises a transition metal-exchanged zeolite and/or a transition metal-exchanged zeolite-like compound, and effectively catalyzes the SCR reaction. The second coating has been applied to the first coating so as to cover it on the exhaust gas side. It is configured so as to prevent the contact of hydrocarbons having at least three carbon atoms present in the exhaust gas with the layer beneath, without blocking the passage of nitrogen oxides and ammonia to the first coating.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 19, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Publication number: 20130317269
    Abstract: A mixture can include 0.01 to 30 weight % of a medium or large pore crystalline silicoaluminate, silicoaluminophosphate materials, or silicoaluminate mesoporous molecular sieves (A), and 99.99 to 70 weight % of a MeAPO molecular sieve. The mixture can be included in a catalyst. An XTO process can include contacting an oxygen-containing, halogenide-containing, or sulphur-containing organic feedstock with the catalyst under conditions effective to convert the organic feedstock to olefin products. A combined XTO and OCP process can include contacting the organic feedstock with the catalyst at conditions effective to convert at least a portion of the organic feedstock to form an XTO reactor effluent including light olefins and a heavy hydrocarbon fraction, separating the light olefins from the heavy hydrocarbon fraction, and contacting the heavy hydrocarbon fraction in an OCP reactor at conditions effective to convert at least a portion of the heavy hydrocarbon fraction to light olefins.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 28, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk
  • Publication number: 20130313164
    Abstract: This invention relates to a process of preparing a catalyst from zeolite having a relatively high content of sodium of 18.6 ?g Na2O per zeolite surface area, or greater. The invention comprises adding yttrium compound to the zeolite, either prior to, during, or after its combination with precursors for catalyst matrix. This invention is suitable for preparing zeolite containing fluid cracking catalysts.
    Type: Application
    Filed: November 22, 2011
    Publication date: November 28, 2013
    Applicant: W.R. Grace & Co. - CONN
    Inventors: Yuying Shu, Richard Franklin Wormsbecher, Wu-Cheng Cheng
  • Patent number: 8586780
    Abstract: A shell catalyst for producing vinyl acetate monomer (VAM), comprising an oxidic porous catalyst support, formed as a shaped body, with an outer shell in which metallic Pd and Au are contained. To provide a shell catalyst for producing VAM which has a relatively high activity and can be obtained at relatively low cost, the catalyst support is doped with at least one oxide of an element selected from the group consisting of Li, P, Ca, V, Cr, Mn, Fe, Sr, Nb, Ta, W, La and the rare-earth metals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 19, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8580702
    Abstract: The present invention discloses a catalyst for toluene shape selective disproportionation, comprising: a) 45 to 95 wt % of ZSM-5 molecular sieve having an average particle size of from 0.3 to 6 ?m and a molar ratio of SiO2 to Al2O3 of from 20 to 120; b) 0.01 to 30 wt % of at least one metal selected from the group consisting of Group IIB metals, Group IIIB metals, rare earth elements and Group VIII metals other than nickel, or oxide(s) thereof; c) 0 to 20 wt % of at least one metal selected from the group consisting of Group VA metals, Group VIB metals and alkaline earth metals, or oxide(s) thereof; d) 1 to 25 wt % of a silica inert surface coating derived from an organopolysiloxane; and e) 1 to 50 wt % of a binder. The present invention further discloses a process for shape selectively disproportionating toluene into p-xylene, comprising contacting a reaction stream containing toluene with the catalyst for toluene shape selective disproportionation under toluene disproportionation conditions.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: November 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Dejin Kong, Zhirong Zhu, Wei Li, Qingling Chen, Rong Zhang
  • Patent number: 8551901
    Abstract: A nitrogen-oxide-removing catalyst includes ? zeolite bearing a rare earth metal oxide, and titanium dioxide bearing a rare earth metal oxide; includes ?-zeolite bearing a rare earth metal oxide and iron oxide or iron hydroxide, and titanium dioxide bearing a rare earth metal oxide and iron oxide or iron hydroxide; or includes a carrier made of a ceramic or metallic material, and a layer of the nitrogen-oxide-removing catalyst supported on the carrier.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: October 8, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventor: Kiyoshi Shinoda
  • Publication number: 20130261364
    Abstract: A transalkylation catalyst for the transalkylation of a heavy reformate is provided. The catalyst includes two solid acid zeolites having different physical and chemical properties, and at least three metals selected from the group 4 Lanthanoids, and the elements found in groups 6 and 10 of the periodic table.
    Type: Application
    Filed: March 12, 2013
    Publication date: October 3, 2013
    Applicant: Saudi Arabian Oil Company
    Inventors: Cemal Ercan, Yuguo Wang
  • Publication number: 20130248415
    Abstract: The present invention discloses a catalyst for paraffin isomerization, as well as a preparation method and use thereof. The catalyst comprises a TON molecular sieve modified by rare earth, an inorganic refractory oxide modified by zirconium oxide and a noble metal of group VIII. The weight ratio of the TON molecular sieve modified by rare earth to the inorganic refractory oxides modified by zirconium oxide is 10:90 to 90:10, and the content of the metal of group VIII is 0.1 to 10 wt % based on the metal. When used in the process of isomerization dewaxing of various raw materials containing paraffins, the catalyst can not only decrease the solidifying points of raw oil containing paraffins, but also increase the yield of liquid products. Particularly, when used in the process of isomerization dewaxing of lubricating oil distillates, the catalyst is advantageous in producing base oil for lubricating oil with a high a higher yield, a lower pour point (solidifying point) and a higher viscosity index.
    Type: Application
    Filed: October 13, 2011
    Publication date: September 26, 2013
    Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Huiqing Xu, Quanjie Liu, Liming Jia, Xiwen Zhang, Wei Wang
  • Publication number: 20130253078
    Abstract: Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Kandaswamy Jothimurugesan, Robert James Saxton
  • Patent number: 8535629
    Abstract: Provided is a catalyst comprising (a) a zeolite material having a mean crystal size of at least about 0.5 ?m, having a CHA framework that contains silicon and aluminum, and having a silica-to-alumina mole ratio (SAR) of about 10 to about 25; and (b) an extra-framework promoter metal (M) disposed in said zeolite material as free and/or exchanged metal, wherein the extra-framework promoter metal is copper, iron, and mixtures thereof, and is present in a promoter metal-to-aluminum atomic ratio (M:Al) of about 0.10 to about 0.24 based on the framework aluminum; and optionally comprising (c) at least about 1 weight percent of cerium in said zeolite material, based on the total weight of the zeolite, wherein said cerium is present in a form selected from exchanged cerium ions, monomeric ceria, oligomeric ceria, and combinations thereof, provided that said oligomeric ceria has a particle size of less than 5 ?m.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 17, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Todd Howard Ballinger, Philip Gerald Blakeman, Guy Richard Chandler, Hai-Ying Chen, Julian Peter Cox, Joseph M. Fedeyko, Alexander Nicholas Michael Green, Paul Richard Phillips, Stuart David Reid, Erich C. Weigert, James Alexander Wylie
  • Patent number: 8529754
    Abstract: The present invention relates to a catalytic conversion process for producing more diesel and propylene, comprising contacting the feedstock oil with a catalyst having a relatively homogeneous activity in a reactor, wherein the reaction temperature, weight hourly space velocity and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from 12 to 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil; the fluid catalytic cracking gas oil is fed into the fluid catalytic cracking gas oil treatment device for further processing. Catalytic cracking, hydrogenation, solvent extraction, hydrocracking and process for producing more diesel are organically combined together, and hydrocarbons such as alkanes, alkyl side chains in the feedstock for catalysis are selectively cracked and isomerized.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: September 10, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Singopec
    Inventors: Shouye Cui, Youhao Xu, Zhihai Hu, Jianhong Gong, Chaogang Xie, Yun Chen, Zhigang Zhang, Jianwei Dong
  • Publication number: 20130230441
    Abstract: The selective reduction-type catalyst effectively purifies nitrogen oxides contained in exhaust gas from a lean-burn engine such as a boiler, a gas turbine or a lean-burn engine, a diesel engine, even under high SV, as well as having small pressure loss, by supplying by spraying urea water or ammonia water, as a reducing component, to the selective reduction-type catalyst; and an exhaust gas purification apparatus along with an exhaust gas purification method using the same. The selective reduction-type catalyst for selectively reducing a nitrogen oxide by adding urea or ammonia as a reducing agent of the nitrogen oxide to exhaust gas discharged from a lean-burn engine, characterized by coating a catalyst layer including zeolite containing at least an iron element, and a composite oxide of silica, tungsten oxide, ceria and zirconia, as denitration components, at the surface of a monolithic structure-type substrate.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 5, 2013
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Takashi Hihara, Tomoaki Ito, Yasushi Tanaka, Makoto Nagata
  • Patent number: 8524625
    Abstract: Compositions and methods for preparing mesostructured zeolites having improved hydrothermal stability. Such mesostructured zeolites can be prepared by subjecting a zeolite to rare earth ion exchange prior to and/or subsequent to introducing mesoporosity into the zeolite.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: September 3, 2013
    Assignee: Rive Technology, Inc.
    Inventors: Lawrence B. Dight, Javier Garcia-Martinez, Ioulia Valla, Marvin M. Johnson
  • Patent number: 8513155
    Abstract: An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Chang H Kim, Gongshin Qi
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Publication number: 20130178678
    Abstract: A method for controlling 2-isomer content in linear alkylbenzene obtained by alkylating benzene with olefins and catalyst used in the method.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 11, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Publication number: 20130168290
    Abstract: A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
    Type: Application
    Filed: July 4, 2011
    Publication date: July 4, 2013
    Applicant: INDIAN OIL CORPORATION LTD.
    Inventors: Prabhu K. Mohan, A.V. Karthikeyani, Manish Agarwal, Biswanath Sarkar, Balaiah Swamy, V. Chidambaram, P.S. Choudhury, S. Rajagopal
  • Patent number: 8470726
    Abstract: A catalyst is presented for use in the production of linear alkylbenzenes. The catalyst includes two zeolites combined to improve the quality of the linear alkylbenzenes. The catalyst includes a first zeolite that is UZM-8 and a second zeolite that is a low silica to alumina ratio zeolite. The second zeolite is also cation exchanged with a rare earth elements to provide a zeolite that increases the alkylation of benzene while reducing the amount of skeletal isomerization.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: June 25, 2013
    Assignee: UOP LLC
    Inventors: Mark G. Riley, Deng-Yang Jan, Stephen W. Sohn, Jaime G. Moscoso
  • Publication number: 20130156668
    Abstract: The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite ?. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
    Type: Application
    Filed: September 8, 2011
    Publication date: June 20, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Paul Spurk, Nicola Soeger, Elena Mueller, Stephan Malmberg
  • Publication number: 20130131412
    Abstract: A process and catalyst for improving the yield of propylene from residual oil feedstock includes obtaining residual oil feedstock from a vacuum distillation tower. The residual oil feedstock has contaminant metals such as sodium or vanadium. The residual oil feedstock is contacted with a cracking catalyst in a catalytic cracking zone to make products. A ZSM-5 zeolite, a binder, a filler and a metal trap are components of the cracking catalyst. The metal trap has a trapping agent in an outer shell of the catalyst, a trapping agent in the ZSM-5 binder or combinations thereof. After reacting, the cracking catalyst is separated from the products in a separator zone, then regenerated by combusting coke deposited on a surface of the cracking catalyst in an oxygen-containing environment. The cracking catalyst is returned to the catalytic cracking zone. The catalyst with the metal trap is also disclosed.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: UOP LLC
    Inventors: Robert Mehlberg, Erick D. Gamas-Castellanos, Chad R. Huovie
  • Publication number: 20130130888
    Abstract: The present invention relates to a multifunctional catalyst additive composition for reduction of carbon monoxide and nitrogen oxides in a fluid catalytic cracking process comprising an inorganic oxide; alumino silicate or a zeolite; a noble metal; a metal of Group I A; a metal of Group II A; a metal of Group III A; a metal of Group IV A; a metal of Group V A; a rare earth oxide; at least a metal of Group VIII. The composition is attrition resistant and is incorporated on a support. The present invention also discloses a process for preparing the multifunctional catalyst additive composition. The present invention also discloses a fluid cracking catalyst comprising the multifunctional catalyst additive composition.
    Type: Application
    Filed: May 7, 2012
    Publication date: May 23, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Chiranjeevi THOTA, Dattatraya Tammannashastri GOKAK, P. S. VISWANATHAN
  • Publication number: 20130131419
    Abstract: A fluid catalytic cracking catalyst exhibiting reduced coke make comprises a zeolite cracking component in a matrix of gibbsite having a median particle size of not more than 0.4 microns and preferably not more than 0.3 microns. The zeolite cracking component will normally be a faujasite, with preference to zeolite Y in its various forms such as Y, HY, REY, REHY, USY, REUSY and secondary zeolite additives may be present, including ZSM-5.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: John Scott Buchanan, William A. Wachter, Kun Wang, Kathryn L. Peretti, Daniel Mark Giaquinta, Hongyi Hou
  • Publication number: 20130121902
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Application
    Filed: April 16, 2011
    Publication date: May 16, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W.L. Southward
  • Patent number: 8415519
    Abstract: The invention involves a process for converting an oxygenate-containing feed into an olefin-containing product comprising: (a) providing a co-catalyst oxide of a metal from Groups 2-4 of the Periodic Table of Elements, Lanthanides, Actinides, and combinations thereof, (b) contacting the metal oxide with nitromethane under conditions sufficient for the nitromethane to adsorb onto the metal oxide; (c) analyzing the nitromethane-adsorbed metal oxide using NMR to determine a basic site density of the metal oxide; (d) providing a catalyst system comprising a primary catalyst comprising aluminosilicates, aluminophosphates, silicoaluminophosphates, and metal-containing derivatives and combinations thereof, and the co-catalyst metal oxide whose basic site density is ?0.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Sebastien P. B. Kremer, Teng Xu
  • Publication number: 20130081980
    Abstract: The present invention relates to sulphur reduction catalyst additive composition comprising an inorganic porous support incorporated with metals; an alumino silicate or zeolite component; an alumina component and clay. More particularly the present invention relates to sulphur reduction catalyst additive composition comprising refinery spent catalyst as support. The primary sulphur reduction catalyst additive component of the catalyst composition contains metals of Period III or IV of the Periodic Table, preferably Zinc or Magnesium or combination thereof or one of the transition metals along with other metals.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 4, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Dattatraya Tammannashastri GOKAK, Chiranjeevi THOTA, Pragya RAI, N. JOSE, P.S. VISWANATHAN
  • Patent number: 8409518
    Abstract: A sulfur tolerant oxidation catalyst with appreciable NO and HC oxidation capabilities has been developed for use in any component of an exhaust aftertreatment system for a lean-burn engine where the oxidation of at least NO is desired. Several non-exclusive examples of such components where the oxidation catalyst may be employed include a DOC and a LNT. The oxidation catalyst may comprise perovskite oxide particles that support palladium particles. The ability of the palladium supported perovskite oxide particles to concurrently oxidize NO and HC's can significantly diminish or altogether eliminate the use of platinum in the exhaust aftertreatment system for at least NO oxidation. The oxidation catalyst, moreover, may exhibit superior thermal durability and better NO and HC oxidation activities than platinum in some instances.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Richard J. Blint
  • Publication number: 20130066131
    Abstract: A catalyst composition resulting in increased propylene yields during fluid catalytic cracking processes comprises (i) Y zeolite, (ii) ZSM-5 zeolite, and (iii) Beta zeolite.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: BASF Corporation
    Inventor: David H. Harris
  • Publication number: 20130066126
    Abstract: The present invention relates to a method for producing a zeolite catalyst useful for aromatization of a lower alkane, a zeolite catalyst useful for aromatization of a lower alkane obtainable by said method and a process for aromatization of a lower alkane using the zeolite catalyst of the present invention.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 14, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventor: Suman Kumar Jana