And Group Viii (iron Group Or Platinum Group) Containing Patents (Class 502/74)
  • Patent number: 8987160
    Abstract: Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation.
    Type: Grant
    Filed: March 26, 2011
    Date of Patent: March 24, 2015
    Assignees: Honda Motor Co., Ltd., The University of Connecticut
    Inventors: Steven L. Suib, Boxun Hu, Eric Rolland Kreidler, Christopher James Brooks
  • Patent number: 8987161
    Abstract: A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al+3, wherein the catalyst decreases NOx emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu—Fe-ZSM5, Cu—La-ZSM-5, Fe—Cu—La-ZSM5, Cu—Sc-ZSM-5, and Cu—In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: March 24, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Xiaofan Yang
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 8980209
    Abstract: Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalyst composition comprises an oxidation catalyst comprising a washcoat layer including a platinum group metal supported on a refractory metal oxide support and porous molecular sieve particles having internal pores, the molecular sieve particles protected by a protecting material selected from an organic wax encapsulating the molecular sieve particles, a polymer encapsulating the molecular sieve particles, an inorganic oxide deposited on the surface of the molecular sieve particles, or an organic compound filling the internal pores of the molecular sieve particles, wherein the protecting material prevents interaction of the molecular sieve particles with the platinum group metal.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: March 17, 2015
    Assignee: BASF Corporation
    Inventors: Jeffrey B. Hoke, Oleg Ilinich, Michael Breen
  • Publication number: 20150071851
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 12, 2015
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20150064102
    Abstract: A hydrogen oxidation catalyst is provided, comprising a zeolite that contains at least one catalytically active noble metal or a compound thereof, wherein said zeolite is a hydrophobic zeolite. A use of the catalyst and a method for hydrogen recombination in nuclear power plants, reprocessing plants or fuel element repositories is also specified.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicant: Clariant Produkte (Deutschland) GmbH
    Inventors: Patrick Mueller, Arno Tissler, Frank Klose, RoderikPeter Althoff, Olaf Buettner
  • Patent number: 8969233
    Abstract: The present invention describes a hydrocracking and/or hydrotreatment process using a catalyst comprising an active phase containing at least one hydrogenating/dehydrogenating component selected from the group VIB elements and the non-precious elements of group VIII of the periodic table, used alone or in a mixture, and a support comprising at least one dealuminated zeolite Y having an overall initial atomic ratio of silicon to aluminum between 2.5 and 20, an initial weight fraction of extra-lattice aluminum atoms greater than 10%, relative to the total weight of aluminum present in the zeolite, an initial mesopore volume measured by nitrogen porosimetry greater than 0.07 ml·g?1 and an initial crystal lattice parameter a0 between 24.38 ? and 24.30 ?, said zeolite being modified by a) a stage of basic treatment comprising mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one stage c) of thermal treatment.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: March 3, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Laurent Simon, Emmanuelle Guillon
  • Patent number: 8969232
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 3, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott F. Mitchell, Alla K. Khanmamedova, Scott A. Stevenson, Jim Vartuli
  • Publication number: 20150057478
    Abstract: A method for producing a hydroisomerization catalyst includes a first step of preparing a support precursor by heating a mixture containing an ion-exchanged zeolite and a binder, the ion-exchanged zeolite being prepared by ion-exchanging an organic template-containing zeolite which contains an organic template and has a one-dimensional pore structure including a 10-membered ring in a solution containing ammonium ions and/or protons, at a temperature of 250 to 350° C. under N2 atmosphere, and a second step of preparing a hydroisomerization catalyst, which is prepared by calcining a catalyst precursor, the catalyst precursor being prepared based on the support precursor containing a platinum salt and/or a palladium salt, at a temperature of 350 to 400° C. in an atmosphere containing molecular oxygen, the hydroisomerization catalyst containing a support which includes a zeolite and carries platinum and/or palladium.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 26, 2015
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Mayumi Yokoi, Koshi Takahama
  • Publication number: 20150057475
    Abstract: Processes and bi-functional catalysts are disclosed for hydrotreating bio-oils derived from biomass to produce bio-oils containing fuel range hydrocarbons suitable as feedstocks for production of bio-based fuels.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Huamin Wang, Guo-Shuh J. Lee, Suh-Jane Lee
  • Publication number: 20150056113
    Abstract: The invention relates to a gas purifier that removes moisture and oxygen from inert gases and reducing gases, for example, at sub-atmospheric pressures. The purifier can remove part per million levels of moisture in a gas stream to less than 100 parts per trillion by volume, and has a low pressure drop and a sharp breakthrough curve.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 26, 2015
    Applicant: Entegris, Inc.
    Inventors: Abneesh Srivastava, Thomas Richard Gaffney, Joshua T. Cook, Peter K. Shogren, Daimhin Paul Murphy, Stenio da Costa Pereira
  • Patent number: 8959773
    Abstract: Wall flow membrane filters, fabricated by masking a first subset of the channels at one or both ends of a honeycomb body comprising an array of open-ended through-channels separated by porous channel walls, applying a membrane-forming composition to the porous channel walls of a second subset of the channels, curing the membrane-forming composition to provide a wall-adhering fluid-permeable membrane; and then plugging the first subset of channels at a first end of the body and the second subset of channels at a second end of the body, are useful in exhaust systems of improved particulate filtration efficiency for gasoline direct injection or diesel engines.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: February 24, 2015
    Assignee: Corning Incorporated
    Inventors: Curtis Robert Fekety, Yunfeng Gu, Irene Mona Peterson
  • Publication number: 20150050204
    Abstract: The present invention is related to a catalyst supported for the selective oxidation of sulphur compounds of the tail gas from the Claus process or streams with an equivalent composition to elemental sulphur or sulphur dioxide (SO2). It is also the object of the present invention, a process for the preparation of a catalyst of this type, as well as the process of selective oxidation of sulphur compounds to elemental sulphur using the catalyst of the invention, as well as the process of catalytic incineration of the tail gas from the Claus process using the catalyst of the present invention.
    Type: Application
    Filed: April 23, 2012
    Publication date: February 19, 2015
    Applicant: REPSOL, S.A.
    Inventors: Tomas M. Malango, María Dolores Zafra, Rafael Roldán
  • Publication number: 20150051432
    Abstract: A method for producing a hydroisomerization catalyst according to the present invention includes: a first step of preparing a catalyst to be treated, which contains a support having a one-dimensional porous structure including a 10-membered ring and at least one metal selected from the group consisting of: group 8 to 10 metals of the periodic table, Mo, and W supported on the hydroisomerization catalyst; and a second step of producing a hydroisomerization catalyst having a carbon content of 0.4 to 2.5% by mass by subjecting the catalyst to be treated to a coking treatment by means of a carbon-containing compound.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 19, 2015
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Marie Iwama
  • Publication number: 20150051063
    Abstract: An alkylation catalyst having a zeolite catalyst component and a binder component providing mechanical support for the zeolite catalyst component is disclosed. The binder component is an ion-modified binder that can include metal ions selected from the group consisting of Co, Mn, Ti, Zr, V, Nb, K, Cs, Ga, B, P, Rb, Ag, Na, Cu, Mg, Fe, Mo, Ce, and combinations thereof The metal ions reduce the number of acid sites on the zeolite catalyst component. The metal ions can range from 0.1 to 50 wt % based on the total weight of the ion-modified binder. Optionally, the ion-modified binder is present in amounts ranging from 1 to 80 wt % based on the total weight of the catalyst.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 19, 2015
    Inventors: Sivadinarayana Chinta, Joseph E. Pelati
  • Patent number: 8951929
    Abstract: A process for the pre-treatment of Mo/ZSM-5 and Mo/MCM-22 catalysts is provided, which process comprises heating the catalyst at 500° C. in the presence of propane. The treated catalyst, when used in the non-oxidative dehydrogenation of methane demonstrates improved benzene yield and catalyst stability as compared to catalysts pre-treated with He, methane or H2.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: February 10, 2015
    Assignees: Agency for Science, Technology and Research, Mitsui Chemicals Inc.
    Inventors: Yan Liu, Toru Nishimura
  • Publication number: 20150037233
    Abstract: Provided is an ammonia slip catalyst article having supported palladium in a top or upstream layer for oxidation of carbon monoxide and/or hydrocarbons, an SCR catalyst either in the top layer or in a separate lower or downstream layer, and an ammonia oxidation catalyst in a bottom layer. Also provided are methods for treating an exhaust gas using the catalyst article, wherein the treatment involves reducing the concentrations of ammonia and optionally carbon monoxide and/or hydrocarbons in the exhaust gas.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventors: Joseph Michael Fedeyko, Kevin Doura, Erich Conlan Weigert, Julian Peter Cox, Hai-Ying Chen, Paul Joseph Andersen
  • Patent number: 8946108
    Abstract: A structurally promoted, precipitated, Fischer-Tropsch catalyst that exhibits an RCAI-10 of 0-2.8 and/or produces less than 6 wt % fines after 5 hours ASTM Air Jet Attrition testing, due to formation via: preparing a nitrate solution by forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; structurally promoting the precipitate with at least one source of silicon to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more component selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) a component selected from the group consisting of non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: February 3, 2015
    Assignee: RES USA, LLC.
    Inventors: Dawid J. Duvenhage, Belma Demirel
  • Patent number: 8945309
    Abstract: A catalyst for cellulose hydrolysis and/or the reduction of hydrolysis products, in which a transition metal of group 8 to 11 is supported on a solid support. A method of producing sugar alcohols comprising: hydrolyzing cellulose in the presence of the catalyst in a hydrogen-containing atmosphere with pressurization; and reducing the hydrolysis product of cellulose. Provided are a catalyst for use in the production of sugar alcohols by the hydrolysis and hydrogenation of cellulose that affords easy separation of catalyst and product, and that does not require pH adjustment, acid or alkali neutralization, or activation of the catalyst during reuse, and a method of producing sugar alcohols from cellulose employing this catalyst.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: February 3, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Atsushi Fukuoka, Paresh Laxmikant Dhepe
  • Patent number: 8946107
    Abstract: A process for producing aromatic hydrocarbons which comprises (a) contacting ethane with a dehydroaromatization aromatic catalyst which is comprised of 0.005 to 0.1% wt platinum, an amount of iron which is equal to or greater than the amount of the platinum, from 10 to 99.9% wt of an aluminosilicate, and a binder, and (b) separating methane, hydrogen, and C2-5 hydrocarbons from the reaction products of step (a) to produce aromatic reaction products including benzene.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: February 3, 2015
    Assignee: Shell Oil Company
    Inventors: Ann Marie Lauritzen, Ajay Madhav Madgavkar
  • Publication number: 20150031526
    Abstract: A catalyst article for treating an emission gas is provided comprising (a) an oxidation catalyst comprising at least one noble metal on a WO3—TiO2 support, wherein the support contains about 1 to about 20 weight percent WO3 based on the combined weight of the WO3 and TiO2; and (b) a substrate, wherein the first and second catalyst layers are on and/or within the substrate.
    Type: Application
    Filed: July 28, 2014
    Publication date: January 29, 2015
    Inventors: David Micallef, Alex Parsons
  • Patent number: 8936717
    Abstract: The present invention relates to a catalyst comprising at least one IZM-2 zeolite, at least one amorphous matrix, at least one hydro-dehydrogenating element selected from the group formed by the elements from group VIB and from group VIII of the periodic table and excluding platinum and palladium. The catalyst also optionally contains a controlled quantity of at least one doping element selected from phosphorus, boron and silicon, optionally at least one element from group VB of the periodic table of the elements, and optionally a group VIIA element. The invention also relates to hydrocracking and hydrotreatment processes implementing this catalyst.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 20, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Laurent Simon
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20150018590
    Abstract: In an embodiment a catalyst comprises a medium or large pore zeolite having germanium incorporated into the zeolite framework. The zeolite can have a pore structure that is one dimensional, two dimensional or three dimensional. A metal selected from Group 10 can be deposited on the zeolite. In an embodiment, a process for synthesizing the zeolite comprises preparing a medium pore zeolite containing germanium in the framework of the zeolite and calcining the zeolite. In an embodiment, the catalyst can be used in a process for the conversion of hydrocarbons comprising contacting a hydrocarbon stream containing alkanes, olefins, or mixtures thereof having 2 to 12 carbon atoms per molecule with the catalyst and recovering the product.
    Type: Application
    Filed: April 29, 2014
    Publication date: January 15, 2015
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott A. Stevenson, Alla K. Khanmamedova, Dustin B. Farmer, Scott F. Mitchell, Jim Vartuli
  • Patent number: 8932454
    Abstract: This invention relates to the composition, method of making and use of a hydrocracking catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. The hydrocracking catalysts of invention exhibit improved distillate yield and selectivity as well as improved conversions at lower temperatures than conventional hydrocracking catalysts containing Y zeolites. The hydrocracking catalysts herein are particularly useful in the hydrocracking processes as disclosed herein, particularly for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms and an associated maximization and/or improved selectivity of the distillate yield obtained from such hydrocracking processes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 13, 2015
    Assignee: ExxonMobile Research and Engineering Co.
    Inventors: Jianxin Jason Wu, Ajit B. Dandekar, Christopher G. Oliveri
  • Patent number: 8932973
    Abstract: A catalyst for selective catalytic reduction of NOx having one or more transition metals selected from Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir, Pt, and mixtures thereof supported on a support, wherein the support has a molecular sieve having at least one intergrowth phase having at least two different small-pore, three-dimensional framework structures.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 13, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul J. Andersen, John Leonello Casci, Hai-Ying Chen, Joseph M. Fedeyko
  • Patent number: 8932546
    Abstract: A catalytically active particulate filter is proposed which is suitable for use in an exhaust gas cleaning system for diesel engines. The particulate filter removes diesel soot particles from the exhaust gas and is also effective to oxidize carbon monoxide and hydrocarbons and to convert nitrogen monoxide at least proportionally into nitrogen dioxide. The particulate filter comprises a filter body (3) and two catalytically active coatings (1) and (2) which contain platinum and palladium, or platinum or palladium respectively, wherein the platinum content of the second catalytically active coating (2) is higher than the platinum content of the first catalytically active coating (1).
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Stephanie Frantz, Ulrich Goebel, Franz Dornhaus, Michael Schiffer
  • Publication number: 20150011749
    Abstract: Metal-accumulating plants for preparing compositions including a metal catalyst derived from the plants. The composition is substantially devoid of organic matter. Also, carrying out chemical reactions with the compositions prepared from metal-accumulating plants.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 8, 2015
    Applicants: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Claude Grison, Vincent Escande
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Publication number: 20140378296
    Abstract: A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Donald Wayne Whisenhunt, JR., Dan Hancu, Ashish Balkrishna Mhadeshwar, Benjamin Hale Winkler, Daniel George Norton, Oltea Puica Siclovan, Ming Yin
  • Patent number: 8911697
    Abstract: The invention relates to a catalytically active material for reacting nitrogen oxides with ammonia in the presence of hydrocarbons. The material consists of an inner core (1) made of a zeolite exchanged with one or more transition metals or a zeolite-like compound exchanged with one or more transition metals. The core of the catalytically active material is encased by a shell (2), which is made of one or more oxides selected from silicon dioxide, germanium dioxide, aluminum oxide, titanium oxide, tin oxide, cerium oxide, zirconium dioxide, and mixed oxides thereof.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 16, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Publication number: 20140364303
    Abstract: Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Applicant: CDTI
    Inventor: Randal L. Hatfield
  • Patent number: 8906820
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joseph Michael Fedeyko, Rodney Kok Shin Foo, John Leonello Casci, Hai-Ying Chen, Paul Joseph Andersen, Jillian Elaine Collier, Raj Rao Rajaram
  • Patent number: 8900348
    Abstract: The present invention relates to the use of palladium doped ZSM-5 to adsorb volatile organic compounds (VOCs) derived from organic matter, wherein the Si:Al ratio of the ZSM-5 is less than 5 or equal to 100:1, and wherein the palladium doped ZSM-5 is used in an environment comprising less than 10 vol % of oxygen.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: December 2, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Elizabeth Rowsell, Andrew William John Smith, Stephen Poulston
  • Publication number: 20140349840
    Abstract: Disclosed herein is an ammonia oxidation catalyst for converting nitrogen oxides generated from a mobile source or fixed source into harmless nitrogen using ammonia as a reductant and preventing the formation of nitrogen oxides due to the oxidation of ammonia. The ammonia oxidation catalyst includes selective catalytic reductive zeolite sequentially impregnated with platinum and copper.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 27, 2014
    Applicant: HEESUNG CATALYSTS CORPORATION
    Inventors: Hyun Sik Han, Eun Seok Kim
  • Publication number: 20140349841
    Abstract: Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Joseph A. Patchett, Joseph C. Dettling, Elizabeth A. Przybylski
  • Publication number: 20140339134
    Abstract: The invention relates to a process for preparing a hydroconversion catalyst based on a modified zeolite of the FAU framework type with preserved crystallinity and microporosity, comprising the steps of: A—preparation of a modified zeolite of the FAU framework type, whose intracrystalline structure presents at least one network of micropores, at least one network of small mesopores with a mean diameter of 2 to 5 nm and at least one network of large mesopores with a mean diameter of 10 to 50 nm; these various networks being interconnected; B—mixing the zeolite with a binder, shaping the mixture, and then calcining; C—impregnation of the shaped zeolite with at least one compound of a catalytic metal chosen from compounds of a metal from group VIII and/or from group VIB, in acidic medium, provided that at least one compound of a catalytic metal is soluble within said acidic medium and that the acid acts as a complexing or chelating agent for at least one compound of a catalytic metal.
    Type: Application
    Filed: October 23, 2012
    Publication date: November 20, 2014
    Applicant: TOTAL RAFFINAGE FRANCE
    Inventors: Delphine Minoux, Nadiya Danilina
  • Patent number: 8889587
    Abstract: A catalyst system comprising a first catalytic composition comprising a first catalytic material disposed on a metal inorganic support; wherein the metal inorganic support has pores; and at least one promoting metal. The catalyst system further comprises a second catalytic composition comprising, (i) a zeolite, or (ii) a first catalytic material disposed on a first substrate, the first catalytic material comprising an element selected from the group consisting of tungsten, titanium, and vanadium. The catalyst system may further comprise a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. A catalyst system comprising a first catalytic composition, the second catalytic composition, and the third catalytic composition is also provided. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20140336286
    Abstract: Disclosed are hybrid synthesis gas conversion catalysts containing at least one Fischer-Tropsch component and at least one acidic component deposited on a monolith catalyst support for use in synthesis gas conversion processes and methods for preparing the catalysts. Also disclosed are synthesis gas conversion processes in which the hybrid synthesis gas conversion catalysts are contacted with synthesis gas to produce a hydrocarbon product containing at least 50 wt % C5+ hydrocarbons. Also disclosed are synthesis gas conversion processes in which at least one layer of Fischer-Tropsch component deposited onto a monolith support is alternated with at least one layer of acidic component in a fixed bed reactor.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Charles Leonard Kibby, Robert James Saxton, JR., Kandaswamy Jothimurugesan, Tapan Kumar Das, Howard Steven Lacheen, Michael Bartz, Alfred Hass
  • Patent number: 8883667
    Abstract: A purification catalyst which prevents contamination within a reflow furnace, including flux components, while suppressing the generation of CO is provided. A purification catalyst for a reflow furnace gas, having one or two of zeolite and silica-alumina as an active ingredient.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: November 11, 2014
    Assignee: Nikki-Universal Co., Ltd.
    Inventors: Yoshiki Nakano, Takanobu Sakurai, Shinichi Ueno
  • Patent number: 8883100
    Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Martin Paulus, Klaus Wanninger
  • Publication number: 20140326641
    Abstract: The invention relates to a method of preparing a catalyst comprising a) preparation of a support comprising 0.2 to 30 wt % of zeolite NU-86 and from 70 to 99.8 wt % of a porous mineral matrix, the percentages by weight being expressed relative to the total weight of said support, b) impregnation of the support prepared according to step a) with at least one solution containing at least one precursor of at least one metal selected from group VIII metals and group VIB metals, used alone or as a mixture, c) at least one ripening step, and d) at least one drying step carried out at a temperature below 150° C., without a subsequent calcining step. The present invention also relates to a process for hydrocracking hydrocarbon feeds using the catalyst prepared according to the method of preparation according to the invention.
    Type: Application
    Filed: November 23, 2012
    Publication date: November 6, 2014
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Emmanuelle Guillon, Magalie Roy-Auberger
  • Publication number: 20140322114
    Abstract: A three-way catalyst including a mixture of nickel and copper is provided for reducing carbon monoxide, hydrocarbon emissions, and nitrogen oxides from vehicle engine exhausts. The catalyst is impregnated onto a carrier substrate which is non-reactive with nickel and copper. When used in a vehicle exhaust gas treatment system, the nickel-copper catalyst provides improved efficiency in reducing CO, HC, and NOx emissions over the use of conventional three-way-catalysts and provides enhanced oxygen storage capacity (OSC) and water-gas-shift (WGS) functions.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: Ford Global Technologies, Inc.
    Inventors: Hungwen Jen, Eva Thanasiu, Jeffrey Scott Hepburn
  • Publication number: 20140315710
    Abstract: A process for producing aromatic hydrocarbons which comprises (a) contacting one or more lower alkanes with a dehyroaromatization aromatic catalyst which is comprised of 0.005 to 0.1% wt platinum, not more than 0.2% wt of an amount of an attenuating metal wherein the amount of platinum is not more than about 0.02% wt more than the amount of the attenuating metal, from about 10 to about 99.9% wt of an aluminosilicate, and a binder, and (b) separating methane, hydrogen, and C2-5 hydrocarbons from the reaction products of step (a) to produce aromatic reaction products including benzene.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Ann Marie LAURITZEN, Ajay Madhav MADGAVKAR
  • Publication number: 20140316177
    Abstract: A modified catalyst is described which can be used as a dehydration/hydrogenation catalyst in a multistage catalyst system for the catalysed production of saturated hydrocarbons from carbon oxides and hydrogen. The modified catalyst comprises: an acidic substrate comprising an M1-zeolite or M1-silicoalumino phosphate (SAPO) catalyst, where M1 is a metal; and a modifier including a metal M2. M2 comprises an alkali metal or alkaline earth metal. In examples described the modifier includes a Group II metal, for example Ca.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 23, 2014
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, BP P.L.C.
    Inventors: Qingjie Ge, Xiangang Ma, Chuanyan Fang, Hengyong Xu
  • Patent number: 8865120
    Abstract: The present invention is directed to a process for the production of ion-exchanged (metal-doped, metal-exchanged) Zeolites and Zeotypes, In particular, the method applied uses a sublimation step to incorporate the ion within the channels of the Zeolitic material. Hence, according to this dry procedure no solvent is involved which obviates certain drawbacks connected with wet exchange processes known in the art.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 21, 2014
    Assignee: Umicore AG & Co., KG
    Inventors: Fei Wen, Barry W. L. Southward, Liesbet Jongen, Alexander Hofmann, Daniel Herein
  • Patent number: 8859454
    Abstract: The invention relates to a method for producing a catalyst, wherein the catalyst has a high activity and selectivity with regard to the oxidation of CO and NO. The invention also relates to the catalyst produced using the method according to the invention, the use of the catalyst as oxidation catalyst as well as a catalyst component which contains the catalyst according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst component containing the catalyst according to the invention.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 14, 2014
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 8858907
    Abstract: Methods and systems for selective catalytic reduction of NOx with an ammonia reductant and a zeolite catalyst loaded with at least two metals selected from the group of tungsten, cobalt, and vanadium. An exhaust stream including NOx and a reductant stream including ammonia are provided to a catalytic reactor having the metal loaded zeolite catalyst at suitable operating temperatures for NOx reduction of at least 90%.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup, Jason M. McMullan
  • Patent number: 8845881
    Abstract: The invention relates to a process for the production of middle distillates from a paraffinic feedstock that is produced by Fischer-Tropsch synthesis, implementing a hydrocracking/hydroisomerization catalyst that comprises at least one hydro-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table and a substrate that comprises at least one zeolite that has at least one series of channels of which the opening is defined by a ring with 12 oxygen atoms modified by a) a stage for introducing at least one alkaline cation that belongs to group IA or IIA of the periodic table, b) a stage for treatment of said zeolite in the presence of at least one molecular compound that contains at least one silicon atom, c) at least one stage for partial exchange of said alkaline cations by NH4+ cations such that the remaining content of alkaline cations in the modified zeolite at the end of stage c) is such that the alkaline cation/aluminum molar ratio
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 30, 2014
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Laurent Simon, Christophe Bouchy
  • Patent number: 8846559
    Abstract: A catalyst and method of forming a catalyst for use in aromatic alkylation involves treating a zeolite, which may be a ZSM-5 zeolite, with a phosphorus-containing compound. The phosphorus-treated zeolite is combined with a binder material. The bound phosphorus-treated zeolite is treated with an aqueous solution of a hydrogenating metal compound by contacting the bound phosphorus-treated zeolite with the aqueous solution and separating the aqueous solution from the bound phosphorus-treated zeolite to form a hydrogenating-metal-containing zeolite catalyst. The catalyst may be used in preparing an alkyl aromatic product by contacting a hydrogenating-metal-containing zeolite catalyst with an aromatic alkylation feed of an aromatic compound and an alkylating agent under reaction conditions suitable for aromatic alkylation.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: September 30, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Neeta Kulkarni